Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 11;15(5):4251–4257. doi: 10.1007/s12274-021-4065-9

Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy

Jingyuan Nie 1, Yibing Deng 1, Fang Tian 1, Shengchao Shi 1, Peng Zheng 1,
PMCID: PMC9077643  PMID: 35574260

Abstract

Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL.

graphic file with name 12274_2021_4065_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material (additional SDS-PAGE, UV-vis, protein sequences, and more experimental methods) is available in the online version of this article at 10.1007/s12274-021-4065-9.

Keywords: cation-π interaction, neutrophil gelatinase-associated lipocalin (NGAL), single-molecule force spectroscopy, atomic force microscopy (AFM)

Electronic Supplementary Material

12274_2021_4065_MOESM1_ESM.pdf (987.4KB, pdf)

Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy

Acknowledgments

This work was funded by the Fundamental Research Funds for the Central Universities (No. 14380259), Natural Science Foundation of Jiangsu Province (No. BK20200058), the National Natural Science Foundation of China (Nos. 21771103 and 21977047), and computational resources from computing facilities of the High-Performance Computing Center (HPCC) of Nanjing University.

References

  • [1].Ma J C, Dougherty D A. The cation-π interaction. Chem. Rev. 1997;97:1303–1324. doi: 10.1021/cr9603744. [DOI] [PubMed] [Google Scholar]
  • [2].Kumar K, Woo S M, Siu T, Cortopassi W A, Duarte F, Paton R S. Cation-π interactions in protein-ligand binding: Theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 2018;9:2655–2665. doi: 10.1039/C7SC04905F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Mahadevi A S, Sastry G N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013;113:2100–2138. doi: 10.1021/cr300222d. [DOI] [PubMed] [Google Scholar]
  • [4].Shigedomi K, Osada S, Jelokhani-Niaraki M, Kodama H. Systematic design and validation of ion channel stabilization of amphipathic α-helical peptides incorporating tryptophan residues. ACS Omega. 2021;6:723–732. doi: 10.1021/acsomega.0c05254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Dougherty D A. The cation-π interaction. Acc. Chem. Res. 2013;46:885–893. doi: 10.1021/ar300265y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Waheed Q, Khan H M, He T, Roberts M, Gershenson A, Reuter N. Interfacial aromatics mediating cation-π interactions with choline-containing lipids can contribute as much to peripheral protein affinity for membranes as aromatics inserted below the phosphates. J. Phys. Chem. Lett. 2019;10:3972–3977. doi: 10.1021/acs.jpclett.9b01639. [DOI] [PubMed] [Google Scholar]
  • [7].Wang Q, Li R, Ouyang X, Wang G J. A novel indole-based conjugated microporous polymer for highly effective removal of heavy metals from aqueous solution via double cation-π interactions. RSC Adv. 2019;9:40531–40535. doi: 10.1039/C9RA07970J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Crowley P B, Golovin A. Cation-n interactions in protein-protein interfaces. Proteins: Struct., Funct. Bioinformatics. 2005;59:231–239. doi: 10.1002/prot.20417. [DOI] [PubMed] [Google Scholar]
  • [9].Dougherty D A, Stauffer D A. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science. 1990;250:1558–1560. doi: 10.1126/science.2274786. [DOI] [PubMed] [Google Scholar]
  • [10].Zheng W W, Dignon G L, Jovic N, Xu X C, Regy R M, Fawzi N L, Kim Y C, Best R B, Mittal J. Molecular details of protein condensates probed by microsecond long atomistic simulations. J. Phys. Chem. B. 2020;124:11671–11679. doi: 10.1021/acs.jpcb.0c10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Singh V B. Spectroscopic signatures and the cation-π interaction in conformational preferences of the neurotransmitter dopamine in aqueous solution. ACS Chem. Neurosci. 2021;12:613–625. doi: 10.1021/acschemneuro.0c00597. [DOI] [PubMed] [Google Scholar]
  • [12].Boknevitz K, Darrigan C, Chrostowska A, Liu S Y. Cation-n binding ability of BN indole. Chem. Commun. 2020;56:3749–3752. doi: 10.1039/D0CC00869A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Gebbie M A, Wei W, Schrader A M, Cristiani T R, Dobbs H A, Idso M, Chmelka B F, Waite J H, Israelachvili J N. Tuning underwater adhesion with cation-π interactions. Nat. Chem. 2017;9:473–479. doi: 10.1038/nchem.2720. [DOI] [PubMed] [Google Scholar]
  • [14].Prampolini G, d’Ischia M, Ferretti A. The phenoxyl group-modulated interplay of cation-π and σ-type interactions in the alkali metal series. Phys. Chem. Chem. Phys. 2020;22:27105–27120. doi: 10.1039/D0CP03707A. [DOI] [PubMed] [Google Scholar]
  • [15].Pinheiro S, Soteras I, Gelpí J L, Dehez F, Chipot C, Luque F J, Curutchet C. Structural and energetic study of cation-π-cation interactions in proteins. Phys. Chem. Chem. Phys. 2017;19:9849–9861. doi: 10.1039/C6CP08448F. [DOI] [PubMed] [Google Scholar]
  • [16].Rivas-Pardo J A, Li Y, Mártonfalvi Z, Tapia-Rojo R, Unger A, Fernández-Trasancos Á, Herrero-Galán E, Velázquez-Carreras D, Fernández J M, Linke W A, et al. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat. Commun. 2020;11:2060. doi: 10.1038/s41467-020-15465-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Le S M, Yu M, Yan J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin-talin/α-catenin linkages. Sci. Adv. 2019;5:eaav2720. doi: 10.1126/sciadv.aav2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Hoffer N Q, Neupane K, Pyo A G T, Woodside M T. Measuring the average shape of transition paths during the folding of a single biological molecule. Proc. Natl. Acad. Sci. USA. 2019;116:8125–8130. doi: 10.1073/pnas.1816602116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Dahal N, Nowitzke J, Eis A, Popa I. Binding-induced stabilization measured on the same molecular protein substrate using single-molecule magnetic tweezers and heterocovalent attachments. J. Phys. Chem. B. 2020;124:3283–3290. doi: 10.1021/acs.jpcb.0c00167. [DOI] [PubMed] [Google Scholar]
  • [20].Wolny M, Batchelor M, Bartlett G J, Baker E G, Kurzawa M, Knight P J, Dougan L, Woolfson D N, Paci E, Peckham M. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci. Rep. 2017;7:44341. doi: 10.1038/srep44341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Zhang X X, Chen J L, Li E C, Hu C G, Luo S Z, He C Z. Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem. 2020;8:600918. doi: 10.3389/fchem.2020.600918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Li J Q, Wijeratne S S, Nelson T E, Lin T C, He X, Feng X W, Nikoloutsos N, Fang R, Jiang K, Lian I, et al. Dependence of membrane tether strength on substrate rigidity probed by single-cell force spectroscopy. J. Phys. Chem. Lett. 2020;11:4173–4178. doi: 10.1021/acs.jpclett.0c00730. [DOI] [PubMed] [Google Scholar]
  • [23].Paul D, Roy A, Nandy A, Datta B, Borar P, Pal S K, Senapati D, Rakshit T. Identification of biomarker hyaluronan on colon cancer extracellular vesicles using correlative afm and spectroscopy. J. Phys. Chem. Lett. 2020;11:5569–5576. doi: 10.1021/acs.jpclett.0c01018. [DOI] [PubMed] [Google Scholar]
  • [24].Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, Drescher K, Müller D J, Essen L O, Mösch H U. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. Elife. 2020;9:e55587. doi: 10.7554/eLife.55587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Schönfelder J, Alonso-Caballero A, De Sancho D, Perez-Jimenez R. The life of proteins under mechanical force. Chem. Soc. Rev. 2018;47:3558–3573. doi: 10.1039/C7CS00820A. [DOI] [PubMed] [Google Scholar]
  • [26].Xiang W T, Li Z D, Xu C Q, Li J, Zhang W K, Xu H P. Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems. Chem.—Asian J. 2019;14:1481–1486. doi: 10.1002/asia.201900332. [DOI] [PubMed] [Google Scholar]
  • [27].Zhao P, Xu C Q, Sun C X, Xia J H, Sun L, Li J, Xu H P. Exploring the difference of bonding strength between silver(I) and chalcogenides in block copolymer systems. Polym. Chem. 2020;11:7087–7093. doi: 10.1039/D0PY01201G. [DOI] [Google Scholar]
  • [28].Hoffmann T, Tych K M, Crosskey T, Schiffrin B, Brockwell D J, Dougan L. Rapid and robust polyprotein production facilitates single-molecule mechanical characterization of β-barrel assembly machinery polypeptide transport associated domains. ACS Nano. 2010;9:8811–8821. doi: 10.1021/acsnano.5b01962. [DOI] [PubMed] [Google Scholar]
  • [29].Brockwell D J, Paci E, Zinober R C, Beddard G S, Olmsted P D, Smith D A, Perham R N, Radford S E. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Mol. Biol. 2003;10:731–737. doi: 10.1038/nsb968. [DOI] [PubMed] [Google Scholar]
  • [30].Müller D J, Dumitru A C, Lo Giudice C, Gaub H E, Hinterdorfer P, Hummer G, De Yoreo J J, Dufrêne Y F, Alsteens D. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem. Rev. 2021;121:11701–11725. doi: 10.1021/acs.chemrev.0c00617. [DOI] [PubMed] [Google Scholar]
  • [31].Scholl Z N, Li Q, Yang W T, Marszalek P E. Single-molecule force spectroscopy reveals the calcium dependence of the alternative conformations in the native state of β, γ-crystallin protein. J. Biol. Chem. 2016;291:18263–18275. doi: 10.1074/jbc.M116.729525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Rico F, Russek A, González L, Grubmüller H, Scheuring S. Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc. Natl. Acad. Sci. USA. 2019;116:6594–6601. doi: 10.1073/pnas.1816909116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Zheng P, Li H B. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability. J. Am. Chem. Soc. 2011;133:6791–6798. doi: 10.1021/ja200715h. [DOI] [PubMed] [Google Scholar]
  • [34].Yuan G D, Liu H X, Ma Q, Li X, Nie J Y, Zuo J L, Zheng P. Single-molecule force spectroscopy reveals that iron-ligand bonds modulate proteins in different modes. J. Phys. Chem. Lett. 2019;10:5428–5433. doi: 10.1021/acs.jpclett.9b01573. [DOI] [PubMed] [Google Scholar]
  • [35].Song G B, Ding X, Liu H X, Yuan G D, Tian F, Shi S C, Yang Y, Li G Q, Zheng P. Single-molecule force spectroscopy reveals that the Fe-N bond enables multiple rupture pathways of the 2Fe2S cluster in a MitoNEET monomer. Anal. Chem. 2020;92:14783–14789. doi: 10.1021/acs.analchem.0c03536. [DOI] [PubMed] [Google Scholar]
  • [36].Tunn I, de Léon A S, Blank K G, Harrington M J. Tuning coiled coil stability with histidine-metal coordination. Nanoscale. 2018;10:22725–22729. doi: 10.1039/C8NR07259K. [DOI] [PubMed] [Google Scholar]
  • [37].Infante E, Stannard A, Board S J, Rico-Lastres P, Rostkova E, Beedle A E M, Lezamiz A, Wang Y J, Breen S G, Panagaki F, et al. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat. Phys. 2019;15:973–981. doi: 10.1038/s41567-019-0551-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Oh Y J, Köhler M, Lee Y, Mishra S, Won Park J, Hinterdorfer P. Label-free probing of binding affinity using topography and recognition imaging. Biophys. J. 2020;118:174a–175a. doi: 10.1016/j.bpj.2019.11.1069. [DOI] [PubMed] [Google Scholar]
  • [39].Fu L L, Wang H, Li H B. Harvesting mechanical work from folding-based protein engines: From single-molecule mechanochemical cycles to macroscopic devices. CCS Chem. 2019;1:138–147. doi: 10.31635/ccschem.019.20180012. [DOI] [Google Scholar]
  • [40].Perales-Calvo J, Lezamiz A, Garcia-Manyes S. The mechanochemistry of a structural zinc finger. J. Phys. Chem. Lett. 2010;6:3335–3340. doi: 10.1021/acs.jpclett.5b01371. [DOI] [PubMed] [Google Scholar]
  • [41].Freitas F C, de Oliveira R J. Extension-dependent drift velocity and diffusion (drdiff) directly reconstructs the folding free energy landscape of atomic force microscopy experiments. J. Phys. Chem. Lett. 2020;11:800–807. doi: 10.1021/acs.jpclett.9b02146. [DOI] [PubMed] [Google Scholar]
  • [42].Herman K, Lekka M, Ptak A. Unbinding kinetics of syndecans by single-molecule force spectroscopy. J. Phys. Chem. Lett. 2018;9:1509–1515. doi: 10.1021/acs.jpclett.7b03420. [DOI] [PubMed] [Google Scholar]
  • [43].Stigler J, Rief M. Calcium-dependent folding of single calmodulin molecules. Proc. Natl. Acad. Sci. USA. 2012;109:17814–17819. doi: 10.1073/pnas.1201801109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Pelz B, Žoldák G, Zeller F, Zacharias M, Rief M. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy. Nat. Commun. 2016;7:10848. doi: 10.1038/ncomms10848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Gunnoo M, Cazade P A, Orlowski A, Chwastyk M, Liu H P, Ta D T, Cieplak M, Nash M, Thompson D. Steered molecular dynamics simulations reveal the role of Ca2+ in regulating mechanostability of cellulose-binding proteins. Phys. Chem. Chem. Phys. 2018;20:22674–22680. doi: 10.1039/C8CP00925B. [DOI] [PubMed] [Google Scholar]
  • [46].Zheng P, Cao Y, Bu T J, Straus S K, Li H B. Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins. Biophys. J. 2011;100:1534–1541. doi: 10.1016/j.bpj.2011.01.062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Muddassir M, Manna B, Singh P, Singh S, Kumar R, Ghosh A, Sharma D. Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability. Chem. Commun. 2018;54:9635–9638. doi: 10.1039/C8CC05557B. [DOI] [PubMed] [Google Scholar]
  • [48].Yang B, Liu Z W, Liu H P, Nash M A. Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 2020;7:85. doi: 10.3389/fmolb.2020.00085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Stahl S W, Nash M A, Fried D B, Slutzki M, Barak Y, Bayer E A, Gaub H E. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA. 2012;109:20431–20436. doi: 10.1073/pnas.1211929109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Durner E, Ott W, Nash M A, Gaub H E. Post-translational sortase-mediated attachment of high-strength force spectroscopy handles. ACS Omega. 2017;2:3064–3069. doi: 10.1021/acsomega.7b00478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Deng Y B, Wu T, Wang M D, Shi S C, Yuan G D, Li X, Chong H C, Wu B, Zheng P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun. 2019;10:2775. doi: 10.1038/s41467-019-10696-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Dietz H, Rief M. Protein structure by mechanical triangulation. Proc. Natl. Acad. Sci. USA. 2006;103:1244–1247. doi: 10.1073/pnas.0509217103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Becke T D, Ness S, Kaufmann B K, Hartmann B, Schilling A F, Sudhop S, Hilleringmann M, Clausen-Schaumann H. Pilus-1 backbone protein RrgB of streptococcus pneumoniae binds collagen i in a force-dependent way. ACS Nano. 2019;13:7155–7165. doi: 10.1021/acsnano.9b02587. [DOI] [PubMed] [Google Scholar]
  • [54].Xing H, Li Z D, Wang W B, Liu P R, Liu J, Song Y, Wu Z L, Zhang W K, Huang F H. Mechanochemistry of an interlocked poly[2]catenane: From single molecule to bulk gel. CCS Chem. 2020;2:513–523. doi: 10.31635/ccschem.019.201900043. [DOI] [Google Scholar]
  • [55].Bao Y, Luo Z L, Cui S X. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 2020;49:2799–2827. doi: 10.1039/C9CS00855A. [DOI] [PubMed] [Google Scholar]
  • [56].Liu, Z. W.; Moreira, R. A.; Dujmović, A.; Liu, H. P.; Yang, B.; Poma, A. B.; Nash, M. A. Mapping mechanostable pulling geometries of a therapeutic anticalin/CTLA-4 protein complex. Nano Lett., in press, 10.1021/acs.nanolett.1c03584. [DOI] [PMC free article] [PubMed]
  • [57].Synakewicz M, Bauer D, Rief M, Itzhaki L S. Bioorthogonal protein-DNA conjugation methods for force spectroscopy. Sci. Rep. 2019;9:13820. doi: 10.1038/s41598-019-49843-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Hu X L, Zhao X Q, He B Z, Zhao Z, Zheng Z, Zhang P F, Shi X J, Kwok R T K, Lam J W Y, Qin A J, et al. A simple approach to bioconjugation at diverse levels: Metal-free click reactions of activated alkynes with native groups of biotargets without prefunctionalization. Research. 2018;2018:3152870. doi: 10.1155/2018/3152870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Gasymov O K, Abduragimov A R, Glasgow B J. Cation-n interactions in lipocalins: Structural and functional implications. Biochemistry. 2012;51:2991–3002. doi: 10.1021/bi3002902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Bao G H, Clifton M, Hoette T M, Mori K, Deng S X, Qiu A D, Viltard M, Williams D, Paragas N, Leete T, et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 2010;6:602–609. doi: 10.1038/nchembio.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Goetz D H, Holmes M A, Borregaard N, Bluhm M E, Raymond K N, Strong R K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell. 2002;10:1033–1043. doi: 10.1016/S1097-2765(02)00708-6. [DOI] [PubMed] [Google Scholar]
  • [62].Hutter J L, Bechhoefer J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993;64:1868–1873. doi: 10.1063/1.1143970. [DOI] [Google Scholar]
  • [63].Marko J F, Siggia E D. Stretching DNA. Macromolecules. 1995;28:8759–8770. doi: 10.1021/ma00130a008. [DOI] [Google Scholar]
  • [64].Ainavarapu S R K, Brujić J, Huang H H, Wiita A P, Lu H, Li L, Walther K A, Carrion-Vazquez M, Li H B, Fernandez J M. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 2007;92:225–233. doi: 10.1529/biophysj.106.091561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Zheng P, Cao Y, Li H B. Facile method of constructing polyproteins for single-molecule force spectroscopy studies. Langmuir. 2011;27:5713–5718. doi: 10.1021/la200915d. [DOI] [PubMed] [Google Scholar]
  • [66].Tian F, Tong B, Sun L, Shi S C, Zheng B, Wang Z B, Dong X C, Zheng P. N501y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife. 2021;10:e69091. doi: 10.7554/eLife.69091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].LeBlanc M A, Fink M R, Perkins T T, Sousa M C. Type III secretion system effector proteins are mechanically labile. Proc. Natl. Acad. Sci. USA. 2021;118:e2019566118. doi: 10.1073/pnas.2019566118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [68].Cao Y, Lam C, Wang M J, Li H B. Nonmechanical protein can have significant mechanical stability. Angew. Chem., Int. Ed. 2006;45:642–645. doi: 10.1002/anie.200502623. [DOI] [PubMed] [Google Scholar]
  • [69].Dietz H, Bertz M, Schlierf M, Berkemeier F, Bornschlogl T, Junker J P, Rief M. Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat. Protoc. 2006;1:80–84. doi: 10.1038/nprot.2006.12. [DOI] [PubMed] [Google Scholar]
  • [70].Zheng P, Chou C C, Guo Y, Wang Y Y, Li H B. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin. J. Am. Chem. Soc. 2013;135:17783–17792. doi: 10.1021/ja406695g. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12274_2021_4065_MOESM1_ESM.pdf (987.4KB, pdf)

Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy


Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES