Abstract
Geochemical differentiation of soils has a series of consequences on plant and places pressure on the ecological environment. The quantitative evaluation of element migration in the Earth’s critical zone is a challenging task. In this study, two demonstration study areas of Scutellaria baicalensis Georgi were selected, and multiple chemical weathering indexes, chemical loss fraction, mass migration coefficients and biological enrichment coefficient method were used to assess the ecological and geochemical suitability. The results show that for the element of Fe, Zn, Se, Cu, Co, Ni, Mo and Ge, the degree of weathering and soil maturation, were greater in the rhyolitic tuff area than in the Plagioclase gneiss area. In both research sites, the heavy metal level of samples in Scutellaria baicalensis Georgi did not exceed the standard limits. The plagioclase gneiss region’s surface soil environment was more alkaline, and the content of soil organic matter was lower, resulting in a higher bioenrichment intensity of Ge, Co, Cu, and Se elements in Scutellaria baicalensis Georgi than in the rhyolite-tuff area. The elements of Cd, Nb, Mo, Pb and As are considerably enriched in the soil of the plagioclase gneiss area but lost by leaching in the soil of the rhyolite tuff area, which is connected to the interplay of elemental abundance and human impact in the parent materials. This study provides a good example of how to assess growth suitability of Chinese medicinal materials in the Earth’s critical zone.
Electronic supplementary material
Supplementary material (Appendix 1) is available in the online version of this article at 10.1007/s11629-021-7015-9.
Keywords: Earth’s critical zone, Biogeochemistry characteristics, Weathering mechanism, Element migration, Chinese medicinal materials, Chengde
Electronic supplementary material
Acknowledgments
The authors would like to thank the editor and anonymous reviewers for their valuable comments that greatly improved this work. This research was funded by the China Geological Survey, grant number DD20190822.
Contributor Information
Xia Li, Email: lx2003cg@163.com.
Xiao-feng Wei, Email: yanchixiaowei@163.com.
Jin Wu, Email: WuJin@bjut.edu.cn.
Zhi-qiang Yin, Email: yinzhiqiang@mail.cgs.gov.cn.
Li-qin Wan, Email: 313273589@qq.com.
Hou-yun Sun, Email: shyun@cugb.edu.cn.
Yong-long An, Email: aylzfj@163.com.
References
- Alaimo MG, Dongarra G, La RA, et al. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy) Ecotoxicol Environ Saf. 2018;157:182–190. doi: 10.1016/j.ecoenv.2018.03.080. [DOI] [PubMed] [Google Scholar]
- Amber AB, Viqar S. Inhibition of transforming growth factor − -β(TGF-β) signaling by Scutellaria baicalensis and Fritillaria cirrhosa extracts in endometrial cancer. J Cell Biochem. 2015;116(8):1797–1805. doi: 10.1002/jcb.25138. [DOI] [PubMed] [Google Scholar]
- Anderson RS. Pinched topography initiates the critical zone. Science (N.Y.) 2015;350(6260):506–512. doi: 10.1126/science.aad2266. [DOI] [PubMed] [Google Scholar]
- An PJ, Zhang ZQ, Wamg LW. Review of Earth critical zone research. Adv Earth Sci. 2016;31(12):1228–1234. [Google Scholar]
- An YL, Huang Y, Sun Z, et al. Chemical speciation and bioavailability of five heavy metals in soil of Beijing plain area in two years. Geol Bull China. 2018;37(6):1142–1149. [Google Scholar]
- Babechuk MG, Widdowson M, Kamber BS. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol. 2014;363:56–75. doi: 10.1016/j.chemgeo.2013.10.027. [DOI] [Google Scholar]
- Basic research opportunities in the Earth Sciences board on earth sciencesresources . Basic research opportunities in Earth Sciences. Washington DC: National academies press; 2000. pp. 35–45. [Google Scholar]
- Brantley SL, Goldhaber MB, Ragnarsdottir KV. Crossing disciplines and scales to understand the critical zone. Elements. 2007;3(5):307–314. doi: 10.2113/gselements.3.5.307. [DOI] [Google Scholar]
- Braude MR, Bassily R. Drug-induced liver injury secondary to Scutellaria baicalensis (Chinese skullcap) Primary sources for research and education. 2019;49(4):544–546. doi: 10.1111/imj.14252. [DOI] [PubMed] [Google Scholar]
- Chadwick OA, Brimhall GH, Hendricks DM. From a black box to a gray box: A mass balance interpretation of pedogenesis. Geomorphology. 1990;3:369–390. doi: 10.1016/0169-555X(90)90012-F. [DOI] [Google Scholar]
- Cheng CS, Chen J, Tan HY, et al. Scutellaria baicalensis and cancer treatment: recent progress and perspectives in biomedical and clinical studies. Am J Chin Med. 2018;46(1):25–54. doi: 10.1142/S0192415X18500027. [DOI] [PubMed] [Google Scholar]
- Cox R, Lowe DR, Cullers RL. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta. 1995;59(14):2919–2940. doi: 10.1016/0016-7037(95)00185-9. [DOI] [Google Scholar]
- Eduardo G, Marta P, Massimo S, et al. Provenance versus weathering control on the composition of tropical river mud (southern Africa) Chem Geol. 2014;366:61–74. doi: 10.1016/j.chemgeo.2013.12.016. [DOI] [Google Scholar]
- Fedo CM, Nesbitt HW, Young GM. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology. 1995;23(10):921–924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2. [DOI] [Google Scholar]
- Fu W, Luo P, Hu ZY, et al. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism, formation preference. Ore Geol Rev. 2019;114(9):103–120. [Google Scholar]
- Guo LP, Wang S, Zhang J, et al. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geoherblism. Sci China Life Sci. 2013;56(11):1047–1056. doi: 10.1007/s11427-013-4562-5. [DOI] [PubMed] [Google Scholar]
- Guo M, Wu ZL, Wang CG, et al. Synthesis and anti-tumor activity of baicalin-metal complex. Acta Pharm Sin. 2014;49(3):337–345. [PubMed] [Google Scholar]
- He HL, Yu SY, Song XY, et al. Origin of nelsonite and Fe-Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite. Ore Geol Rev. 2016;79:367–381. doi: 10.1016/j.oregeorev.2016.05.028. [DOI] [Google Scholar]
- Hewawasam T, Blanckenburg FV, Bouchez J, et al. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka. Geochim Cosmochim Acta. 2013;118:202–230. doi: 10.1016/j.gca.2013.05.006. [DOI] [Google Scholar]
- Holl R, Kling M, Schroll E. Metallogenesis of Germanium-A review. Ore Geol Rev. 2007;30:145–180. doi: 10.1016/j.oregeorev.2005.07.034. [DOI] [Google Scholar]
- Jin BR, Chung KS, Kim HJ, et al. Chinese skullcap (Scutellaria baicalensis Georgi) inhibits inflammation and proliferation on benign prostatic hyperplasia in rats. J Ethnopharmacol. 2019;235:481–488. doi: 10.1016/j.jep.2019.01.039. [DOI] [PubMed] [Google Scholar]
- Kong WW. Evaluation of quality and ecological suitability of Scutellaria. Jilin: Jilin Agricultural University; 2008. [Google Scholar]
- Laila M, Naaila O, Abdessamed H, et al. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicol Environ Saf. 2019;169:150–160. doi: 10.1016/j.ecoenv.2018.11.009. [DOI] [PubMed] [Google Scholar]
- Lam W, Bussom S, Guan FL, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced Gastrointestinal toxicity. Sci Transl Med. 2010;2(45):45–59. doi: 10.1126/scitranslmed.3001270. [DOI] [PubMed] [Google Scholar]
- Li LX, Li HM, Zi JW, et al. Role of fluids in Fe-Ti-P mineralization of the Proterozoic Damiao anorthosite complex, China: Insights from baddeleyite—zircon relationships in ore and altered anorthosite. Ore Geol Rev. 2019;115:103186. doi: 10.1016/j.oregeorev.2019.103186. [DOI] [Google Scholar]
- Lin H. Earth’s critical zone and hydropedology: concepts, characteristics, and advances. Hydrol Earth Syst Sci. 2010;14:25–45. doi: 10.5194/hess-14-25-2010. [DOI] [Google Scholar]
- Luo Y, Lv YH, Fu BJ, et al. When multi-functional landscape meets critical zone science: advancing multi-disciplinary research for sustainable human well-being. Natl Sci Rev. 2019;6(2):349–358. doi: 10.1093/nsr/nwy003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lv YH, Li T, Zhang K, et al. Fledging critical zone science for environmental sustainability. Environ Sci Technol. 2017;51(15):8209–8211. doi: 10.1021/acs.est.7b02677. [DOI] [PubMed] [Google Scholar]
- Ma L, Jin LX, Brantley LS. How mineralogy and slope aspect affect REE release and fractionation during shale weathering in the Susquehanna/Shale Hills critical zone Observatory. Chem Geol. 2011;290(1–2):31–49. doi: 10.1016/j.chemgeo.2011.08.013. [DOI] [Google Scholar]
- Martignier L, Verrecchia PE. Weathering processes in superficial deposits (regolith) and their influence on pedogenesis: A case study in the Swiss Jura Mountains. Geomorphology. 2013;189:26–40. doi: 10.1016/j.geomorph.2012.12.038. [DOI] [Google Scholar]
- Ministry of LandResources, PRC . Analysis methods for regional geochemical sample. Beijing.: Geological Publishing House; 2016. [Google Scholar]
- Moses C, Robinson D, Barlow J. Methods for measuring rock surface weathering and erosion: A critical review. Earth Sci Rev. 2014;135:141–161. doi: 10.1016/j.earscirev.2014.04.006. [DOI] [Google Scholar]
- Nesbitt HW, Young GM. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 1982;299:715–717. doi: 10.1038/299715a0. [DOI] [Google Scholar]
- Nesbitt HW, Young GM. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta. 1984;48(7):1523–1534. doi: 10.1016/0016-7037(84)90408-3. [DOI] [Google Scholar]
- Oeser RA, Stroncik N, Moskwa LM, et al. Chemistry and microbiology of the critical zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera. Catena. 2018;170:183–203. doi: 10.1016/j.catena.2018.06.002. [DOI] [Google Scholar]
- Pan LL. Study on the medicinal materials quality of Scutellaria baicalensis Georgi and its ecological attitudes. Jilin: Jilin Agricultural University; 2011. [Google Scholar]
- Peng B, Rate A, Song ZL, et al. Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China. Appl Geochemistry. 2014;51:191–203. doi: 10.1016/j.apgeochem.2014.09.007. [DOI] [Google Scholar]
- Qiu SF, Zhu ZY, Yang T, et al. Chemical weathering of monsoonal eastern China: implications from major elements of topsoil. J Asian Earth Sci. 2014;81(4):77–90. doi: 10.1016/j.jseaes.2013.12.004. [DOI] [Google Scholar]
- Richter DD, Billings SA. One physical system: Tansley’s ecosystem as Earth’s critical zone, Tansley review. New Phytol. 2015;206(3):900–912. doi: 10.1111/nph.13338. [DOI] [PubMed] [Google Scholar]
- Sun HY, Sun XM, Jia FC, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellaria baicalensis in Chengde, Hebei Province. Geol China. 2020;47(6):1646–1667. [Google Scholar]
- Vigil R, Cala V, García RJ et al. (1993) Clay genesis in textural contrasted soils in semiarid conditions. Min. Petrogr. Acta. XXXV 253–259.
- Vigil R, García R, Rubio RJ, et al. Soil Alteration processes on granite in the central mountain range (Spain) Zeitschrift für Geomorphologie, NF. 1999;44–2:233–248. [Google Scholar]
- Wang S, Zhao MX, Guo LP, et al. The content of inorganic elements of Scutellaria baicalensis from dofferemt origins and its relationship with inorganic elements in relevant rhizosphere soil. Acta Ecol Sin. 2014;34(16):4734–4745. [Google Scholar]
- Wang ZL, Deng TD, Wang RM, et al. Characteristics of migration and accumulation of rare earth elements in the rock-soil-navel orange system. Geol China. 2009;36(6):1382–1394. [Google Scholar]
- Wang ZL, Wang S, Yi K, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018;56(1):465–484. doi: 10.1080/13880209.2018.1492620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen XF, Zhang XY, Wei J, et al. Understanding the Biogeochemical Process and Mechanism of Ecosystem Carbon Cycle from the Perspective of the Earth’s critical zone. Adv Earth Sci. 2019;34(5):471–479. [Google Scholar]
- Wu BJ, Peng B, Zhang K, et al. A new chemical index of identifying the weathering degree of black shales. Acta Geol Sin. 2016;90(4):818–832. [Google Scholar]
- Wu XY, Ling SX, Ren Y, et al. Elemental migration characteristics and chemical weathering degree of black shale in Northeast Chongqing, China. Earth Sci. 2016;41(2):218–233. doi: 10.1007/s12665-015-4915-4. [DOI] [Google Scholar]
- Xu N, Meng FY, Zhou GF, et al. Assessing the suitable cultivation areas for Scutellaria baicalensis in China using the Maxent model and multiple linear regression. Biochem Syst Ecol. 2020;90:104052. doi: 10.1016/j.bse.2020.104052. [DOI] [Google Scholar]
- Yang Y, Zhou XH, Tie BQ, et al. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere. 2017;188:148–156. doi: 10.1016/j.chemosphere.2017.08.140. [DOI] [PubMed] [Google Scholar]
- Zhang GL, Zhu YG, Shao MG. Understanding sustainability of soil and water resources in a critical zone perspective. Science China Earth Sci. 2019;62:1716–1718. doi: 10.1007/s11430-019-9368-7. [DOI] [Google Scholar]
- Zhang M, Chen SL, Seto S, et al. Correlation of antioxidative properties and vaso-relaxation effects of major active constituents of traditional Chinese medicines. Pharm Biol. 2009;47(4):366–371. doi: 10.1080/13880200902753064. [DOI] [Google Scholar]
- Zhang ZC, Santosh M, Li JW. Iron deposits in relation to magmatism in China. J Asian Earth Sci. 2015;113(3):951–956. doi: 10.1016/j.jseaes.2015.09.026. [DOI] [Google Scholar]
- Zhao MX, Lv JR, Guo LP, et al. Effects of inorganic elements of soil on contents of inorganic elements and baicalin in Scutellaria. Chinese J Exp Tradit Med Formul. 2010;16(9):103–106. [Google Scholar]
- Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull. 2016;61(18):1391–1398. doi: 10.1007/s11434-016-1136-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv. 2016;2(4):1–15. doi: 10.1126/sciadv.1501780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Q, Cui MY, Levsh O, et al. Two CYP82D Enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4’-Deoxyflavones in Scutellaria baicalensis. Mol Plant. 2018;11(1):135–148. doi: 10.1016/j.molp.2017.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhi HJ, Jin X, Zhu HY, et al. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza a virus induced acute lung injury. J Pharm Biomed Anal. 2020;177:112876. doi: 10.1016/j.jpba.2019.112876. [DOI] [PubMed] [Google Scholar]
- Zhu YG, Duan GL, Chen BD, et al. Mineral weathering and element cycling in soil-microorganism-plant system. Sci China: Earth Sci. 2014;57(5):888–896. doi: 10.1007/s11430-014-4861-0. [DOI] [Google Scholar]
- Zhu YG, Li G, Zhang GL, et al. Soil security: From Earth’s critical zone to ecosystem services. Acta Geogr Sin. 2015;70(12):1859–1869. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
