Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2022 May;36(5):633–642. [Article in Chinese] doi: 10.7507/1002-1892.202201063

壳寡糖构建的胰岛仿生微环境通过降低细胞内活性氧保护胰岛免受低氧诱导损伤

Islet biomimetic microenvironment constructed by chitosan oligosaccharide protects islets from hypoxia-induced damage by reducing intracellular reactive oxygen species

Dongzhi WANG 1,2, Yibing GUO 2, Yan HUANG 1, Biwen ZHU 1,2, Haopeng PAN 3, Zhiwei WANG 1,*
PMCID: PMC9108655  PMID: 35570640

Abstract

Objective

Gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia.

Methods

Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively.

Results

GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05).

Conclusion

GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.

Keywords: Islets, chitosan oligosaccharide, reactive oxygen species, biomimetic microenvironment


胰岛移植是一种很有希望治愈1型糖尿病的方法[1]。在胰岛分离、培养及移植后早期,胰岛因缺氧而产生氧化应激[2]。氧化应激所产生的活性氧可以与活细胞中的生物分子反应,进而通过膜脂质过氧化、蛋白质氧化和核酸裂解,导致细胞活性和功能的广泛损害[3-4]。因此,构建适宜的胰岛微环境,能够减少低氧导致的胰岛内活性氧的产生,是保护胰岛活性与功能和避免移植失败的理想方法[5-6]

目前,通过构建生物材料改善低氧引起的胰岛损伤得到越来越多关注。Lee等[7]通过将过氧化钙(CaO2)与聚二甲基硅氧烷(polydimethylsiloxane,PDMS)混合制备了一种产氧支架,结果显示PDMS+CaO2支架中的胰岛表现出更高的细胞活力和胰岛素分泌能力。Liang等[8]在此基础上,将PDMS和CaO2制备成微珠,并进一步整合到大孔PDMS支架中,用于提高胰岛的移植效果。Razavi等[9]将CaO2掺入基于胶原蛋白的冷冻凝胶生物支架中,制作了一种新型产氧生物材料,通过持续产氧提高移植胰岛的活力。目前大多数研究都集中在构建产氧生物材料用于胰岛移植,但是CaO2的性质并不稳定,不能控制产氧速度和氧气浓度,同时体内安全性和长期疗效还有待进一步研究。

壳寡糖(chitosan oligosaccharide,COS)能有效清除自由基,降低细胞内活性氧水平从而保护细胞活性[10-11]。此外,COS来源于壳聚糖,性质稳定,具有优异的生物安全性。因此,COS为改善移植胰岛活性带来了希望。但是COS作为单一成分不具备构建细胞外基质的能力,因此需要与水凝胶相结合。透明质酸和明胶是不同组织细胞外基质的主要成分,具有优异的生物相容性[12-13]。经甲基丙烯酸酯改性后的甲基丙烯酰化透明质酸(hyaluronic acid methacryloyl,HAMA)和甲基丙烯酰化明胶(gelatin methacryloyl,GelMA)作为生物墨水,目前被广泛应用于水凝胶3D打印[14-16]。GelMA可以为水凝胶提供足够的结构支撑,HAMA为细胞的包埋和增殖提供了适宜的环境。重要的是,两者可以在相同的光引发剂苯基-2,4,6-三甲基苯甲酰基膦酸锂作用下,通过紫外线照射快速成胶,实现无缝的结构整合[17]

本研究将COS加入GelMA/HAMA中,制备不同COS浓度的GelMA/HAMA/COS水凝胶,用于胰岛仿生微环境的构建,体外共培养评价GelMA/HAMA/COS水凝胶对低氧条件下胰岛内活性氧的抑制作用以及对胰岛活性和功能的保护作用。

1. 材料与方法

1.1. 实验动物、细胞及主要试剂、仪器

8周龄SPF级雄性健康SD大鼠50只,体质量200~250 g,购自南通大学实验动物中心。小鼠上皮样成纤维细胞(L929细胞)购自上海ATCC细胞库。

COS(上海源叶生物科技有限公司);GelMA、HAMA(苏州永沁泉智能设备有限公司);细胞计数试剂盒8(cell counting kit 8,CCK-8)(Dojindo公司,日本);胶原酶P、大鼠/小鼠胰岛素ELISA试剂盒(Sigma公司,美国);FBS、DMEM/F12完全培养基、Hank液、淋巴细胞分离液(GIBCO公司,美国);活性氧试剂盒(上海碧云天生物技术有限公司);双硫腙、克-林二氏重碳酸盐缓冲液(KRB缓冲液)、活/死细胞染色试剂盒(北京索莱宝生物科技有限公司);胰岛素抗体(Cell Signaling Technology公司,美国);抗胰高血糖素抗体(Abcam公司,英国)。扫描电镜(Hitachi公司,日本);流变仪(ThermoFisher Scientific公司,德国);ELISA 酶标仪(Bio-Rad公司,美国)。

1.2. GelMA/HAMA/COS水凝胶相关观测

1.2.1. GelMA/HAMA/COS水凝胶的制备

将6%(W/V)GelMA溶液与4%(W/V)HAMA溶液均匀混合,加入等体积不同浓度的COS溶液,通过紫外线(365 nm,185 mW/cm2)照射20 s成胶。以组织培养板为对照组,COS浓度分别为0、1、5、10、20 mg/mL的GelMA/HAMA/COS水凝胶为实验组。

1.2.2. GelMA/HAMA/COS水凝胶的表征

通过扫描电镜观察水凝胶微观形态并测量孔径;流变仪检测水凝胶储能模量(G’)和耗能模量(G’’),反映水凝胶的成胶能力;测量水凝胶的接触角,以评估水凝胶的亲水性和对细胞的黏附性。以上检测样本量均为3。

1.2.3. GelMA/HAMA/COS水凝胶的细胞毒性检测

将1 mL GelMA/HAMA/COS水凝胶加入5 mL 完全培养基(含10%FBS的DMEM/F12培养液)中,37℃浸泡24 h,得到水凝胶浸出液。将L929细胞以5 000个/孔接种于96孔板中,用GelMA/HAMA/COS水凝胶浸出液培养48 h,加入10 μL CCK-8溶液后使用ELISA酶标仪于450 nm处检测吸光度(A)值(n=5),表示细胞活力。

1.3. 大鼠胰岛相关观测

1.3.1. 胰岛的提取、培养与鉴定

取SD大鼠行腹部正中切口,充分暴露胰腺,近十二指肠乳头处结扎胆总管,于胆总管起始部注射胶原酶P 10 mL,沿充盈胰腺边缘剪断系膜,完整取出胰腺。37℃水浴消化15 min,Hank液终止消化并洗涤;8 mL淋巴细胞分离液吹打混匀后,上层加入2 mL Hank液,以离心半径15 cm、2 000 r/min离心30 min获得胰岛,光镜下观察胰岛形态。用完全培养基培养胰岛,双硫腙染色对胰岛纯度进行鉴定。

1.3.2. 葡萄糖刺激胰岛素释放(glucose-stimulated insulin secretion,GSIS)实验

采用GSIS实验检测大鼠胰岛的胰岛素分泌功能。将提取的胰岛用完全培养基稳定培养24 h,经PBS溶液冲洗后加入KRB缓冲液孵育2 h,依次加入低糖(5 mmol/L葡萄糖)和高糖(30 mmol/L葡萄糖)的KRB缓冲液孵育30 min;收集上清,根据大鼠/小鼠胰岛素ELISA试剂盒说明,利用ELISA酶标仪于450 nm处检测A值(n=3),通过拟合曲线计算胰岛素分泌量。

1.3.3. 低氧对胰岛活性的影响

将提取的胰岛在低氧(1%O2)下分别培养24、48、72 h,使用钙黄绿素(Calcein)-乙酰甲氧基甲酯(acetyl methyl,AM)/碘化丙啶(propidium iodide,PI)进行活/死细胞染色检测胰岛活性(n=3),并计算死细胞比例,以未经低氧处理的胰岛作为对照。

1.4. GelMA/HAMA/COS水凝胶对大鼠胰岛活性和功能的影响

1.4.1. 包封胰岛的GelMA/HAMA/COS水凝胶制备

将200 μL含不同浓度COS的无菌GelMA/HAMA/COS混合液与200%±10%胰岛当量混合,得到均匀的水凝胶和细胞混悬液,注入底部直径8 mm的圆形模具,紫外线(365 nm,185 mW/cm2)照射20 s成胶,得到包封胰岛的GelMA/HAMA/COS水凝胶,置入24孔板,加入完全培养基后于37℃细胞培养箱内培养。

1.4.2. 水凝胶对低氧下胰岛内活性氧的影响

将不同COS浓度的GelMA/HAMA/COS水凝胶中的胰岛在常氧(20%O2)和低氧(1%O2)条件下培养48 h,通过活性氧试剂盒检测细胞内积累的活性氧水平。按照1∶1 000用无血清培养液稀释活性氧荧光探针(DCFH-DA),使其终浓度为10 μmol/L,加入胰岛后37℃细胞培养箱内孵育20 min,通过荧光显微镜对细胞内DCFH-DA进行检测和统计。以单纯的GelMA/HAMA水凝胶作为对照组(n=3)。

1.4.3. 水凝胶对低氧下胰岛活性的影响

将大鼠胰岛在各组水凝胶中低氧(1%O2)条件下培养48 h,使用Calcein-AM/PI进行活/死细胞染色检测胰岛活性(n=3)。

1.4.4. 水凝胶对低氧下胰岛功能的影响

实验分为3组,单纯胰岛作为对照(A组),GelMA/HAMA水凝胶为B组,GelMA/HAMA/COS水凝胶为C组;其中C组COS浓度的选择结合水凝胶表征以及活性氧和活/死细胞染色结果确定。① 免疫荧光染色:胰岛在各组水凝胶中低氧(1%O2)条件下培养48 h,4%多聚甲醛固定和5%驴血清封闭,加入一抗兔抗胰岛素抗体(1∶100)和小鼠抗胰高血糖素抗体(1∶400)4℃孵育过夜,二抗山羊抗小鼠IgG(AlexaFluor®488)(1∶500)和驴抗兔IgG(AlexaFluor®555)(1∶500)室温孵育1 h,DAPI染核。检测相关基因表达水平,并使用Image J软件对相关基因的荧光强度进行量化。② GSIS实验:胰岛在各组水凝胶中低氧(1%O2)条件下培养48 h后,同1.3.2方法计算低糖和高糖条件下各组胰岛素分泌量,检测各组胰岛对葡萄糖刺激的反应性。

1.5. 统计学方法

应用GraphPad Prism 8统计软件进行分析。计量资料经正态性检验均符合正态分布,数据以均数±标准差表示,多组间比较采用单因素方差分析,两两比较采用LSD检验;检验水准α=0.05。

2. 结果

2.1. GelMA/HAMA/COS水凝胶相关观测

① 扫描电镜观察:GelMA/HAMA/COS水凝胶内部呈现多孔结构,单纯GelMA/HAMA水凝胶(0 mg/mL COS浓度组)孔径较小,随着COS浓度增加,水凝胶孔径逐渐增大且凝胶纤维增粗,COS浓度为20 mg/mL时水凝胶孔径显著大于其余各浓度组,差异有统计学意义(P<0.05)。② 流变仪检测:所有样品给予紫外线照射后,G’和G’’均迅速升高,G’保持在1×104 Pa左右,G’’保持在1~100 Pa之间;G’大于G’’,提示成功形成水凝胶。③ 接触角检测:随着COS浓度增加,水凝胶的接触角稍有增加,亲水性稍有下降,但各组接触角均<90°。COS浓度为5、10、20 mg/mL的水凝胶接触角大于COS浓度为0 mg/mL的水凝胶,差异有统计学意义(P<0.05)。④ 细胞毒性检测:CCK-8检测示,不同COS浓度的GelMA/HAMA/COS水凝胶A值差异均无统计学意义(P>0.05),均无明显细胞毒性,能够促进水凝胶表面生长的L929细胞黏附和增殖。见图1

图 1.

Characterization and cytotoxicity detection of GelMA/HAMA/COS hydrogels

GelMA/HAMA/COS水凝胶的表征和细胞毒性检测

a. 扫描电镜观察(×300) 从左至右依次为0、1、5、10、20 mg/mL COS浓度组;b. 流变仪检测 从左至右依次为0、1、5、10、20 mg/mL COS浓度组;c. 水凝胶孔径;d. 接触角检测;e. 接触角定量检测;f. CCK-8法检测细胞毒性

a. Scanning electron microscopy observation (×300) From left to right for 0, 1, 5, 10, and 20 mg/mL COS concentration groups; b. Rheological analysis From left to right for 0, 1, 5, 10, and 20 mg/mL COS concentration groups, respectively; c. Hydrogel pore size; d. Contact angle measurement; e. Quantitative detection of contact angle; f. CCK-8 assay for cytotoxicity

图 1

2.2. 大鼠胰岛相关观测

① 胰岛提取及鉴定:大鼠胰岛在光镜下呈类圆形,细胞质丰富,为黄褐色,半透明,边缘清晰。双硫腙染色示超过95%的胰岛变为棕红色,提示胰岛有较高纯度。见图2。② GSIS实验:胰岛对低糖和高糖的刺激均具有较好响应,胰岛素分泌量分别为(14.81±1.04)ng/mL和(28.01±2.07)ng/mL,差异有统计学意义(t=9.896,P<0.001)。③ 低氧对胰岛活性的影响:随着低氧培养时间延长,胰岛活性逐渐降低,死细胞逐渐增多(图3)。低氧处理24、48、72 h时,死细胞比例分别达17.00%±1.42%、29.39%±2.84%、43.70%±3.25%,与对照组0.89%±0.71%比较差异均有统计学意义(P<0.001)。

图 2.

Morphology and identification of rat islets (×10)

大鼠胰岛形态及鉴定(×10)

a. 胰岛形态;b. 双硫腙染色

a. Islet morphology; b. Dithizone staining

图 2

图 3.

Live/dead cell staining to detect the effect of hypoxia on rat islet viability (Fluorescence microscope×40)

活/死细胞染色观察低氧对大鼠胰岛活性的影响(荧光显微镜×40)

从上至下依次为活细胞、死细胞及二者合并 a. 对照组;b. 低氧处理24 h;c. 低氧处理48 h;d. 低氧处理72 h

From top to bottom for live cells, dead cells, and merge, respectively a. Control group; b. Hypoxic treatment for 24 hours; c. Hypoxic treatment for 48 hours; d. Hypoxic treatment for 72 hours

图 3

2.3. GelMA/HAMA/COS水凝胶对大鼠胰岛活性和功能的影响

2.3.1. 水凝胶对低氧下胰岛内活性氧的影响

胰岛在常氧和低氧状态下都会产生活性氧,其中低氧条件下活性氧更多。对照组单纯的GelMA/HAMA水凝胶并不能降低细胞活性氧,而GelMA/HAMA/COS水凝胶降低细胞内活性氧具有COS浓度依赖性,随着COS浓度的增高活性氧清除能力逐渐增强。COS浓度达到5 mg/mL时,GelMA/HAMA/COS水凝胶能降低常氧条件下胰岛内的活性氧,COS浓度达到10 mg/mL时,GelMA/HAMA/COS水凝胶显著降低了低氧条件下胰岛内的活性氧水平。见图4

图 4.

Effect of hydrogel on reactive oxygen species in islet under hypoxia (Fluorescence microscope×40)

水凝胶对低氧下胰岛内活性氧的影响(荧光显微镜×40)

从左至右依次为对照组及0、1、5、10、20 mg/mL COS浓度组a. 常氧条件;b. 低氧条件

From left to right for 0, 1, 5, 10, and 20 mg/mL COS concentration groups, respectively a. Normoxic conditions; b. Hypoxic conditions

图 4

2.3.2. 水凝胶对低氧下胰岛活性的影响

GelMA/HAMA/COS水凝胶能提高胰岛活性,且与COS浓度成正相关,随着COS浓度增高胰岛死细胞数量逐渐减少,当COS浓度为10 mg/mL和20 mg/mL时,未见明显凋亡细胞。见图5。因此,结合水凝胶表征以及活性氧和活死细胞染色结果,选择COS浓度为10 mg/mL的GelMA/HAMA/COS水凝胶进行后续功能实验。

图 5.

Live/dead cells staining to detect the effect of hypoxia on the activity of rat islet in hydrogel (Fluorescence microscope×40)From top to bottom for live cells, dead cells, and merge, respectively a. Control group; b. 0 mg/mL COS concentration group; c. 1 mg/mL COS concentration group; d. 5 mg/mL COS concentration group; e. 10 mg/mL COS concentration group; f. 20 mg/mL COS concentration group

活/死细胞染色观察低氧对各组水凝胶中大鼠胰岛活性的影响(荧光显微镜×40)

从上至下依次为活细胞、死细胞及二者合并 a. 对照组;b. 0 mg/mL COS浓度组;c. 1 mg/mL COS浓度组;d. 5 mg/mL COS浓度组;e. 10 mg/mL COS浓度组;f. 20 mg/mL COS浓度组

图 5

2.3.3. 水凝胶对低氧下胰岛功能的影响

① 免疫荧光染色:C组胰岛素基因和胰高血糖素基因表达量明显高于A、B组,差异均有统计学意义(P<0.05);B组胰高血糖素基因表达量明显高于A组(P<0.05),但A、B组间胰岛素基因表达量比较差异无统计学意义(P>0.05)。见图67a。② GSIS实验:低糖及高糖刺激下,C组胰岛素分泌量均显著高于A、B组,差异有统计学意义(P<0.05);A、B组间差异无统计学意义(P>0.05)。见图7b

图 6.

Effect of hydrogel on the function of islet under hypoxic condition by immunofluorescence staining (Fluorescence microscope×40)From left to right for insulin, glucagon, nucleus, and merge, respectively a. Group A;   b. Group B;   c. Group C

免疫荧光染色观察水凝胶对低氧下胰岛功能的影响(荧光显微镜×40)

从左至右依次为胰岛素、胰高血糖素、细胞核及三者合并 a. A组;b. B组;c. C组

图 6

图 7.

The effect of hydrogel on islet function under hypoxia

水凝胶对低氧下胰岛功能的影响

a. 免疫荧光染色定量检测;b. GSIS实验检测胰岛素分泌量

a. Quantitative detection by immunofluorescence staining; b. GSIS assay to detect insulin secretion

图 7

3. 讨论

1型糖尿病是一种选择性破坏胰岛β细胞的自身免疫性疾病[18]。皮下胰岛素注射作为临床治疗最常用的方法,不能实现血糖的生理性调控和延缓长期糖尿病的并发症,因此胰岛移植作为内源性胰岛素分泌系统是一种有效的β细胞替代疗法[19]。然而,在胰岛分离和移植过程中,细胞外基质的破坏会使胰岛长期处于缺氧状态,并且胰岛缺乏抗氧化酶的表达,缺氧条件下极易受到活性氧的攻击[20]。此外,胰岛具有高度的代谢活性,胰岛素的分泌需要大量氧供来维持[21]。因此,缺氧是导致胰岛损伤和移植失败的主要原因,改善缺氧引起的氧化应激损伤是提高胰岛移植效率的关键[22]

COS可以直接清除细胞内的羟自由基、超氧阴离子等反应性自由基,抑制DNA损伤,从而保护细胞免受氧化应激损伤[23-24]。COS的抗氧化能力可能和抑制丝裂原活化蛋白激酶的磷酸化,并激活Nrf2信号通路有关[25]。研究表明COS能显著降低双氧水诱导的细胞凋亡和细胞内活性氧的产生,同时提高细胞的抗氧化能力,通过调节Nrf2/ARE信号通路保护细胞免受氧化损伤和凋亡[11]。在COS改善阿霉素诱导的心脏毒性的研究中,COS可以通过降低细胞内活性氧,增加线粒体膜电位和降低凋亡蛋白Caspase-3和Caspase-9表达,从而逆转阿霉素引起的细胞活力下降,保护心肌细胞免受阿霉素诱导的凋亡[26]。因此,我们实验将COS和胰岛相结合,利用COS的抗氧化能力改善缺氧诱导的胰岛损伤。但是,COS作为单一成分不能完整重建胰岛细胞外基质仿生微环境,因此需要水凝胶参与构建细胞外基质的结构部分。

GelMA和HAMA因其较低的细胞毒性和快速光固化成胶特性,目前广泛应用于细胞移植载体[27]、3D生物打印[28]以及类器官的构建[29]等。结合GelMA的力学性能和HAMA亲水性的优点,构建的GelMA/HAMA水凝胶同时具备良好的机械性能和优异亲水性,有利于维持3D打印水凝胶的基本结构和形态,同时为细胞体内移植后提供适宜和湿润的微环境。此外,GelMA/HAMA水凝胶的多孔结构利于细胞黏附和营养物质运输。虽然GelMA和HAMA构建的复合水凝胶作为细胞外基质能够为胰岛移植提供力学支撑和细胞黏附位点,但并不能改善长期移植面临的细胞凋亡和功能失活。因此,我们实验创新性地将COS与GelMA/HAMA水凝胶相结合,发挥各自优势,构建具有抗氧化功能的GelMA/HAMA/COS复合水凝胶,用于模拟胰岛细胞外基质仿生微环境。

本研究中构建了模拟体内胰岛仿生微环境的GelMA/HAMA/COS水凝胶。扫描电镜结果显示,与GelMA/HAMA相比,实验组随COS浓度增加,凝胶纤维增粗且孔径增大,纤维增粗利于胰岛附着,胰岛的大小为50~200 μm,较小孔径不利于胰岛形态的维持,当COS浓度达到10 mg/mL和20 mg/mL时,GelMA/HAMA/COS水凝胶孔径大小足以容纳绝大多数胰岛。接触角实验结果显示,随着COS浓度增加,水凝胶的亲水性有所降低,虽然COS有很好的水溶性,但是其亲水性弱于GelMA和HAMA。但即使是COS浓度为20 mg/mL的GelMA/HAMA/COS水凝胶,其接触角仍然<90°,具有很好的生物相容性。

我们将提取的胰岛在低氧条件下培养,证明了低氧会持续诱导胰岛凋亡。使用GelMA/HAMA/COS水凝胶进一步培养胰岛,活性氧染色结果表明,COS下调了胰岛在低氧条件下活性氧的生成,且活性氧的清除能力与COS浓度成正相关。活/死细胞染色结果表明,细胞内活性氧的积累是导致胰岛细胞凋亡的重要原因,且活性氧水平和细胞凋亡数量具有正相关性,而COS能降低活性氧引起的细胞凋亡。其中,COS浓度为10 mg/mL和20 mg/mL时,GelMA/HAMA/COS水凝胶在常氧和低氧下均能有效清除细胞内的活性氧,从而改善胰岛活性。结合水凝胶表征的实验结果,COS浓度为10 mg/mL的GelMA/HAMA/COS水凝胶是模拟胰岛仿生微环境的最佳浓度。通过胰岛免疫荧光染色和GSIS实验进一步提示该COS浓度水凝胶对胰岛功能具有积极影响。

综上述,GelMA/HAMA/COS水凝胶具有良好的生物相容性和活性氧清除能力,在低氧和常氧条件下均能通过减轻活性氧提高胰岛的存活和功能。因此,该复合水凝胶可用于胰岛仿生微环境构建,提高胰岛功能和移植效果。本研究不仅为开发抗氧化的COS生物材料提供了新的线索,而且为提高功能性移植物的存活率和扩大临床胰岛移植的可用性提供了理论依据。后续将进一步通过3D打印构建胰岛类器官,并通过转录组测序、分子生物学功能实验阐明其可能的作用机制。

利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道

伦理声明 研究方案经南通大学动物实验伦理委员会批准(S20210201-907),研究过程遵循国际通行的动物福利和伦理准则;实验动物生产许可证号:SCXK(苏)2019-0001,实验动物使用许可证号:SYXK(苏)2017-0046

作者贡献声明 王东芝、郭益冰:实验操作、论文撰写;朱必文、潘浩鹏:数据整理、统计学分析;黄䶮、王志伟:课题设计、研究指导、论文修改、经费支持

Funding Statement

国家自然科学青年科学基金(82001977);江苏省研究生科研与实践创新计划项目(KYCX19_2073)

National Natural Science Foundation of China-Youth Science Fund (82001977); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_2073)

References

  • 1.Wu S, Wang L, Fang Y, et al. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater, 2021, 10(20): e2100965. doi: 10.1002/adhm.202100965.
  • 2.Xu Y, Tan M, Ma X, et al. Human mesenchymal stem cells-derived conditioned medium inhibits hypoxia-induced death of neonatal porcine islets by inducing autophagy. Xenotransplantation, 2020, 27(1): e12556. doi: 10.1111/xen.12556.
  • 3.Tan Y, Nie W, Chen C, et al Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets. Exp Biol Med (Maywood) 2019;244(9):781–788. doi: 10.1177/1535370219844472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wang G, Wang Z, Sun N, et al Reactive oxygen species-responsive silk sericin microcapsules used for antioxidative stress damage. Microsc Res Tech. 2021;84(4):618–626. doi: 10.1002/jemt.23620. [DOI] [PubMed] [Google Scholar]
  • 5.Keshtkar S, Kaviani M, Jabbarpour Z, et al Significant reduction of apoptosis induced via hypoxia and oxidative stress in isolated human islet by resveratrol. Nutr Metab Cardiovasc Dis. 2020;30(7):1216–1226. doi: 10.1016/j.numecd.2020.04.011. [DOI] [PubMed] [Google Scholar]
  • 6.Coronel MM, Liang JP, Li Y, et al Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials. 2019;210:1–11. doi: 10.1016/j.biomaterials.2019.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lee EM, Jung JI, Alam Z, et al. Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. Xenotransplantation, 2018, 25(2): e12378. doi: 10.1111/xen.12378.
  • 8.Liang JP, Accolla RP, Soundirarajan M, et al Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater. 2021;130:268–280. doi: 10.1016/j.actbio.2021.05.028. [DOI] [PubMed] [Google Scholar]
  • 9.Razavi M, Primavera R, Kevadiya BD, et al A collagen based cryogel bioscaffold that generates oxygen for islet transplantation. Adv Funct Mater. 2020;30(15):1902463. doi: 10.1002/adfm.201902463. doi: 10.1002/adfm.201902463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wang DW, Li SJ, Tan XY, et al Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydr Polym. 2021;256:117556. doi: 10.1016/j.carbpol.2020.117556. doi: 10.1016/j.carbpol.2020.117556. [DOI] [PubMed] [Google Scholar]
  • 11.Zhang X, Liang S, Gao X, et al Protective effect of chitosan oligosaccharide against hydrogen peroxide-mediated oxidative damage and cell apoptosis via activating Nrf2/ARE signaling pathway. Neurotox Res. 2021;39(6):1708–1720. doi: 10.1007/s12640-021-00419-w. [DOI] [PubMed] [Google Scholar]
  • 12.Velasco-Rodriguez B, Diaz-Vidal T, Rosales-Rivera LC, et al Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications. Int J Mol Sci. 2021;22(13):6758. doi: 10.3390/ijms22136758. doi: 10.3390/ijms22136758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wang S, Guan S, Zhu Z, et al Hyaluronic acid doped-poly (3, 4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C Mater Biol Appl. 2017;71:308–316. doi: 10.1016/j.msec.2016.10.029. [DOI] [PubMed] [Google Scholar]
  • 14.Mouser VHM, Levato R, Mensinga A, et al Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res. 2020;61(2):137–151. doi: 10.1080/03008207.2018.1553960. [DOI] [PubMed] [Google Scholar]
  • 15.Guan G, Qizhuang Lv None, Liu S, et al 3D-bioprinted peptide coupling patches for wound healing. Mater Today Bio. 2021;13:100188. doi: 10.1016/j.mtbio.2021.100188. doi: 10.1016/j.mtbio.2021.100188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Posniak S, Chung JHY, Liu X, et al Bioprinting of chondrocyte stem cell co-cultures for auricular cartilage regeneration. ACS Omega. 2022;7(7):5908–5920. doi: 10.1021/acsomega.1c06102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fan Y, Yue Z, Lucarelli E, et al Hybrid printing using cellulose nanocrystals reinforced GelMA/HAMA hydrogels for improved structural integration. Adv Healthc Mater. 2020;9(24):e2001410. doi: 10.1002/adhm.202001410. doi: 10.1002/adhm.202001410. [DOI] [PubMed] [Google Scholar]
  • 18.Colli ML, Szymczak F, Eizirik DL Molecular footprints of the immune assault on pancreatic beta cells in type 1 diabetes. Front Endocrinol (Lausanne) 2020;11:568446. doi: 10.3389/fendo.2020.568446. doi: 10.3389/fendo.2020.568446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Yoshihara E, O’Connor C, Gasser E, et al Immune-evasive human islet-like organoids ameliorate diabetes. Nature. 2020;586(7830):606–611. doi: 10.1038/s41586-020-2631-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Nishime K, Miyagi-Shiohira C, Kuwae K, et al Preservation of pancreas in the University of Wisconsin solution supplemented with AP39 reduces reactive oxygen species production and improves islet graft function. Am J Transplant. 2021;21(8):2698–2708. doi: 10.1111/ajt.16401. [DOI] [PubMed] [Google Scholar]
  • 21.Sayadi LR, Alexander M, Sorensen AM, et al Micro/nanobubbles: Improving pancreatic islet cell survival for transplantation. Ann Plast Surg. 2019;83(5):583–588. doi: 10.1097/SAP.0000000000001954. [DOI] [PubMed] [Google Scholar]
  • 22.Lau J, Henriksnäs J, Svensson J, et al Oxygenation of islets and its role in transplantation. Curr Opin Organ Transplant. 2009;14(6):688–693. doi: 10.1097/MOT.0b013e32833239ff. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang J, Sun X, Chen Y, et al Preparation of 2, 6-diurea-chitosan oligosaccharide derivatives for efficient antifungal and antioxidant activities. Carbohydr Polym. 2020;234:115903. doi: 10.1016/j.carbpol.2020.115903. doi: 10.1016/j.carbpol.2020.115903. [DOI] [PubMed] [Google Scholar]
  • 24.Zhang J, Wang W, Mao XZ, et al Chitopentaose protects HaCaT cells against H2O2-induced oxidative damage through modulating MAPKs and Nrf2/ARE signaling pathways . Journal of Functional Foods. 2020;72:10408. doi: 10.1016/j.jff.2020.104086. doi: 10.1016/j.jff.2020.104086. [DOI] [Google Scholar]
  • 25.Chang Q, Cai H, Wei L, et al. Chitosan oligosaccharides alleviate acute heat stress-induced oxidative damage by activating ERK1/2-mediated HO-1 and GSH-Px gene expression in breast muscle of broilers. Poult Sci, 2022, 101(1): 101515. doi: 10.1016/j.psj.2021.101515.
  • 26.Zhang Y, Ahmad KA, Khan FU, et al Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem Biol Interact. 2019;305:54–65. doi: 10.1016/j.cbi.2019.03.027. [DOI] [PubMed] [Google Scholar]
  • 27.Wang G, An Y, Zhang X, et al Chondrocyte spheroids laden in GelMA/HAMA hybrid hydrogel for tissue-engineered cartilage with enhanced proliferation, better phenotype maintenance, and natural morphological structure. Gels. 2021;7(4):247. doi: 10.3390/gels7040247. doi: 10.3390/gels7040247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Duchi S, Onofrillo C, O’Connell C, et al Bioprinting stem cells in hydrogel for in situ surgical application: A case for articular cartilage . Methods Mol Biol. 2020;2140:145–157. doi: 10.1007/978-1-0716-0520-2_9. [DOI] [PubMed] [Google Scholar]
  • 29.Lam T, Dehne T, Krüger JP, et al Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res B Appl Biomater. 2019;107(8):2649–2657. doi: 10.1002/jbm.b.34354. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES