Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 May 16;39(10):1623–1636. doi: 10.1007/s00376-022-1393-y

Observational Subseasonal Variability of the PM2.5 Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming

Qian Lu 1,2, Jian Rao 1,, Chunhua Shi 1, Dong Guo 1, Ji Wang 3, Zhuoqi Liang 1, Tian Wang 1
PMCID: PMC9109736  PMID: 35601397

Abstract

It is still not well understood if subseasonal variability of the local PM2.5 in the Beijing-Tianjin-Hebei (BTH) region is affected by the stratospheric state. Using PM2.5 observations and the ERA5 reanalysis, the evolution of the air quality in BTH during the January 2021 sudden stratospheric warming (SSW) is explored. The subseasonal variability of the PM2.5 concentration after the SSW onset is evidently enhanced. Stratospheric circumpolar easterly anomalies lasted for 53 days during the January–February 2021 SSW with two evident stratospheric pulses arriving at the ground. During the tropospheric wave weakening period and the intermittent period of dormant stratospheric pulses, the East Asian winter monsoon weakened, anomalous temperature inversion developed in the lower troposphere, anomalous surface southerlies prevailed, atmospheric moisture increased, and the boundary layer top height lowered, all of which favor the accumulation of pollutant particulates, leading to two periods of pollution processes in the BTH region. In the phase of strengthened East Asian winter monsoon around the very beginning of the SSW and another two periods when stratospheric pulses had reached the near surface, opposite-signed circulation patterns and meteorological conditions were observed, which helped to dilute and diffuse air pollutants in the BTH region. As a result, the air quality was excellent during the two periods when the stratospheric pulse had reached the near surface. The increased subseasonal variation of the regional pollutant particulates after the SSW onset highlights the important role of the stratosphere in the regional environment and provides implications for the environmental prediction.

Key words: sudden stratospheric warming (SSW), PM2.5, Beijing-Tianjin-Hebei (BTH), East Asian winter monsoon, boundary layer meteorological conditions

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42088101 and 42175069), and the National Key R&D Program of China (Grant No. 2018YFC1505602).

Data availability statement. The ECMWF provides the ERA5 reanalysis (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). The PM2.5 observations in the BTH region are compiled by the Ministry of Environmental Protection of China (https://www.aqistudy.cn/historydata/).

Footnotes

Article Highlights

A sudden stratospheric warming (SSW) occurred in January–February 2021 with the circumpolar easterly anomalies persisting for nearly two months.

• The subseasonal variability of the PM2.5 after the sudden stratospheric warming (SSW) onset is evidently enhanced.

• The sudden stratospheric warming (SSW) does not mark the fast improvement of the regional air quality until stratospheric signals reach the near surface.

References

  1. Baldwin M P, Dunkerton T J. Stratospheric harbingers of anomalous weather regimes. Science. 2001;294:581–584. doi: 10.1126/science.1063315. [DOI] [PubMed] [Google Scholar]
  2. Baldwin M P. Sudden stratospheric warmings. Rev. Geophys. 2021;59:e2020RG000708. doi: 10.1029/2020RG000708. [DOI] [Google Scholar]
  3. Bu X, Xie Z L, Liu J, Wei L Y, Wang X Q, Chen M W, Ren H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021;197:111123. doi: 10.1016/j.envres.2021.111123. [DOI] [PubMed] [Google Scholar]
  4. Butler A H, Seidel D J, Hardiman S C, Butchart N, Birner T, Match A. Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. 2015;96:1913–1928. doi: 10.1175/BAMS-D-13-00173.1. [DOI] [Google Scholar]
  5. Cao C, Chen Y H, Rao J, Liu S M, Li S Y, Ma M H, Wang Y B. Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: A comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere. 2019;10:519. doi: 10.3390/atmos10090519. [DOI] [Google Scholar]
  6. Chang L Y, Wu Z W, Xu J M. Potential impacts of the Southern Hemisphere polar vortices on central-eastern China haze pollution during boreal early winter. Climate Dyn. 2020;55:771–787. doi: 10.1007/s00382-020-05294-3. [DOI] [Google Scholar]
  7. Charlton A J, Polvani L M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007;20:449–469. doi: 10.1175/JCLI3996.1. [DOI] [Google Scholar]
  8. Chen H P, Wang H J, Sun J Q, Xu Y Y, Yin Z C. Anthropogenic fine particulate matter pollution will be exacerbated in eastern China due to 21st century GHG warming. Atmospheric Chemistry and Physics. 2019;19:233–243. doi: 10.5194/acp-19-233-2019. [DOI] [Google Scholar]
  9. Chen T M, Li Z Q, Kahn R A, Zhao C F, Rosenfeld D, Guo J P, Han W C, Chen D D. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmospheric Chemistry and Physics. 2021;21:6199–6220. doi: 10.5194/acp-21-6199-2021. [DOI] [Google Scholar]
  10. Chen Y Y, Zhao C F, Ming Y. Potential impacts of Arctic warming on Northern Hemisphere mid-latitude aerosol optical depth. Climate Dyn. 2019;53:1637–1651. doi: 10.1007/s00382-019-04706-3. [DOI] [Google Scholar]
  11. Dang R J, Liao H. Severe winter haze days in the Beijing-Tianjin-Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics. 2019;19:10 801–10 816. doi: 10.5194/acp-19-10801-2019. [DOI] [Google Scholar]
  12. Ding A J. Significant reduction of PM2.5 in eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018. Atmospheric Chemistry and Physics. 2019;19:11 791–11 801. doi: 10.5194/acp-19-11791-2019. [DOI] [Google Scholar]
  13. Fan H, Zhao C F, Yang Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020;220:117066. doi: 10.1016/j.atmosenv.2019.117066. [DOI] [Google Scholar]
  14. Fan H, Wang Y, Zhao C F, Yang Y K, Yang X C, Sun Y, Jiang S Y. The role of primary emission and transboundary transport in the air quality changes during and after the COVID-19 lockdown in China. Geophys. Res. Lett. 2021;48:e2020GL091065. doi: 10.1029/2020GL091065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fan H, Zhao C F, Yang Y K, Yang X C. Spatiotemporal variations of the PM2.5/PM10 ratios and its application to air pollution type classification in China. Frontiers in Environmental Science. 2021;9:692440. doi: 10.3389/fenvs.2021.692440. [DOI] [Google Scholar]
  16. Feng J, Quan J N, Liao H, Li Y J, Zhao X J. An air stagnation index to qualify extreme haze events in northern China. J. Atmos. Sci. 2018;75:3489–3505. doi: 10.1175/JAS-D-17-0354.1. [DOI] [Google Scholar]
  17. Garfinkel C I, Son S-W, Song K, Aquila V, Oman L D. Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett. 2017;44:374–382. doi: 10.1002/2016GL072035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gong H N, Wang L, Chen W, Wu R G, Zhou W, Liu L, Nath D, Lan X Q. Diversity of the wintertime Arctic oscillation pattern among CMIP5 models: Role of the stratospheric polar vortex. J. Climate. 2019;32:5235–5250. doi: 10.1175/JCLI-D-18-0603.1. [DOI] [Google Scholar]
  19. Hersbach H. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 2020;146:1999–2049. doi: 10.1002/qj.3803. [DOI] [Google Scholar]
  20. Hu J G, Ren R C, Xu H M. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci. 2014;71:2319–2334. doi: 10.1175/JAS-D-13-0349.1. [DOI] [Google Scholar]
  21. Huang R J. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2015;514:218–222. doi: 10.1038/nature13774. [DOI] [PubMed] [Google Scholar]
  22. Huang W, Yu Y Y, Yin Z C, Chen H S, Gao M. Appreciable role of stratospheric polar vortex in the abnormal diffusion of air pollutant in North China in 2015/2016 winter and implications for prediction. Atmos. Environ. 2021;259:118549. doi: 10.1016/j.atmosenv.2021.118549. [DOI] [Google Scholar]
  23. Huang X, Wang Z L, Ding A J. Impact of aerosol-PBL interaction on haze pollution: Multiyear observational evidences in North China. Geophys. Res. Lett. 2018;45:8596–8603. doi: 10.1029/2018GL079239. [DOI] [Google Scholar]
  24. Huang X, Ding A J, Wang Z L, Ding K, Gao J, Chai F H, Fu C B. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nature Geoscience. 2020;13:428–434. doi: 10.1038/s41561-020-0583-4. [DOI] [Google Scholar]
  25. Karpechko A Y, Charlton-Perez A, Balmaseda M, Tyrrell N, Vitart F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett. 2018;45:13 538–13 546. doi: 10.1029/2018GL081091. [DOI] [Google Scholar]
  26. Kolstad E W, Breiteig T, T., Scaife A A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc. 2010;136:886–893. doi: 10.1002/qj.620. [DOI] [Google Scholar]
  27. Li K, Liao H, Cai W J, Yang Y. Attribution of anthropogenic influence on atmospheric patterns conducive to recent most severe haze over eastern China. Geophys. Res. Lett. 2018;45:2072–2081. doi: 10.1002/2017GL076570. [DOI] [Google Scholar]
  28. Li Z Q. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016;54:866–929. doi: 10.1002/2015RG000500. [DOI] [Google Scholar]
  29. Li Z Q. East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC) J. Geophys. Res. Atmos. 2019;124:13 026–13 054. doi: 10.1029/2019JD030758. [DOI] [Google Scholar]
  30. Liu S-M, Chen Y-H, Rao J, Cao C, Li S-Y, Ma M-H, Wang Y-B. Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere. 2019;10:679. doi: 10.3390/atmos10110679. [DOI] [Google Scholar]
  31. Liu Y Y, Wang L, Zhou W, Chen W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn. 2014;42:2817–2839. doi: 10.1007/s00382-014-2163-z. [DOI] [Google Scholar]
  32. Lu Q, Rao J, Guo D, Yu M, Yu Y Y. Downward propagation of sudden stratospheric warming signals and the local environment in the Beijing-Tianjin-Hebei region: A comparative study of the 2018 and 2019 winter cases. Atmospheric Research. 2021;254:105514. doi: 10.1016/j.atmosres.2021.105514. [DOI] [Google Scholar]
  33. Lu Q, Rao J, Liang Z Q, Guo D, Luo J J, Liu S M, Wang C, Wang T. The sudden stratospheric warming in January 2021. Environmental Research Letters. 2021;16:084029. doi: 10.1088/1748-9326/ac12f4. [DOI] [Google Scholar]
  34. Rao J, Garfinkel C I. CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environmental Research Letters. 2021;16:034024. doi: 10.1088/1748-9326/abd4fe. [DOI] [Google Scholar]
  35. Rao J, Ren R C, Chen H S, Yu Y Y, Zhou Y. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res. Atmos. 2018;123:13 332–13 345. [Google Scholar]
  36. Rao J, Garfinkel C I, Chen H S, White I P. The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J. Geophys. Res. Atmos. 2019;124:11 155–11 174. doi: 10.1029/2019JD030826. [DOI] [Google Scholar]
  37. Rao J, Ren R C, Chen H S, Liu X W, Yu Y Y, Hu J G, Zhou Y. Predictability of stratospheric sudden warmings in the Beijing Climate Center forecast system with statistical error corrections. J. Geophys. Res. Atmos. 2019;124:8385–8400. doi: 10.1029/2019JD030900. [DOI] [Google Scholar]
  38. Rao J, Garfinkel C I, White I P. Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res. Atmos. 2020;125:e2019JD031919. doi: 10.1029/2019JD031919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rao J, Liu S M, Chen Y H. Northern Hemisphere sudden stratospheric warming and its downward impact in four Chinese CMIP6 models. Adv. Atmos. Sci. 2021;38:187–202. doi: 10.1007/s00376-020-0250-0. [DOI] [Google Scholar]
  40. Rao J, Garfinkel C I, Wu T W, Lu Y X, Lu Q, Liang Z Q. The January 2021 sudden stratospheric warming and its prediction in Subseasonal to Seasonal models. J. Geophys. Res. Atmos. 2021;126:e2021JD035057. [Google Scholar]
  41. Ren R-C, Cai M. Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett. 2007;34:L07704. doi: 10.1029/2006GL027927. [DOI] [Google Scholar]
  42. Sun Y, Zhao C F, Su Y F, Ma Z S, Li J M, Letu H, Yang Y K, Fan H. Distinct impacts of light and heavy precipitation on PM2.5 mass concentration in Beijing. Earth and Space Science. 2019;6:1915–1925. doi: 10.1029/2019EA000717. [DOI] [Google Scholar]
  43. Sun Z B. Oscillation of surface PM2.5 concentration resulting from an alternation of easterly and southerly winds in Beijing: Mechanisms and implications. Journal of Meteorological Research. 2018;32:288–301. doi: 10.1007/s13351-018-7064-3. [DOI] [Google Scholar]
  44. Wang H-J, Chen H-P, Liu J-P. Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Ocean. Sci. Lett. 2015;8:1–9. [Google Scholar]
  45. Wang H-J, Chen H-P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmospheric Chemistry and Physics. 2016;16:4205–4211. doi: 10.5194/acp-16-4205-2016. [DOI] [Google Scholar]
  46. Wang N, Zhang Y-C. Connections between the Eurasian teleconnection and concurrent variation of upper-level jets over East Asia. Adv. Atmos. Sci. 2015;32:336–348. doi: 10.1007/s00376-014-4088-1. [DOI] [Google Scholar]
  47. Wei K, Cai Z L, Chen W, Xu L Y. The effect of a well-resolved stratosphere on East Asian winter climate. Climate Dyn. 2018;51:4015–4028. doi: 10.1007/s00382-016-3419-6. [DOI] [Google Scholar]
  48. Wu P, Ding Y H, Liu Y J. Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing-Tianjin-Hebei region. Adv. Atmos. Sci. 2017;34:429–440. doi: 10.1007/s00376-016-6158-z. [DOI] [Google Scholar]
  49. Xia Y, Hu Y Y, Huang Y, Zhao C F, Xie F, Yang Y K. Significant contribution of severe ozone loss to the Siberian-Arctic surface warming in spring 2020. Geophys. Res. Lett. 2021;48:e2021GL092509. [Google Scholar]
  50. Yang X C, Wang Y, Zhao C F, Fan H, Yang Y K, Chi Y L, Shen L X, Yan X. Health risk and disease burden attributable to long-term global fine-mode particles. Chemosphere. 2022;287:132435. doi: 10.1016/j.chemosphere.2021.132435. [DOI] [PubMed] [Google Scholar]
  51. Yang Y, Liao H, Lou S J. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos. 2016;121:13 050–13 065. doi: 10.1002/2016JD025136. [DOI] [Google Scholar]
  52. Ye W-F, Ma Z-Y, Ha X-Z. Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities. Science of The Total Environment. 2018;631–632:524–533. doi: 10.1016/j.scitotenv.2018.03.057. [DOI] [PubMed] [Google Scholar]
  53. Yin Z C, Wang H J. The relationship between the subtropical Western Pacific SST and haze over North-Central North China Plain. International Journal of Climatology. 2016;36:3479–3491. doi: 10.1002/joc.4570. [DOI] [Google Scholar]
  54. Yin Z C, Zhang Y J, Wang H J, Li Y Y. Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February. Atmospheric Chemistry and Physics. 2021;21:1581–1592. doi: 10.5194/acp-21-1581-2021. [DOI] [Google Scholar]
  55. Yu Y Y, Ren R C, Cai M. Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci. 2015;72:3214–3232. doi: 10.1175/JAS-D-14-0390.1. [DOI] [Google Scholar]
  56. Zhai S X. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics. 2019;19:11 031–11 041. doi: 10.5194/acp-19-11031-2019. [DOI] [Google Scholar]
  57. Zhang Y J, Yin Z C, Wang H. Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010. Atmospheric Chemistry and Physics. 2020;20:12 211–12 221. doi: 10.5194/acp-20-12211-2020. [DOI] [Google Scholar]
  58. Zhao C F, Wang Y, Shi X Q, Zhang D Z, Wang C Y, Jiang J H, Zhang Q, Fan H. Estimating the contribution of local primary emissions to particulate pollution using high-density station observations. J. Geophys. Res. Atmos. 2019;124:1648–1661. doi: 10.1029/2018JD028888. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data availability statement. The ECMWF provides the ERA5 reanalysis (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). The PM2.5 observations in the BTH region are compiled by the Ministry of Environmental Protection of China (https://www.aqistudy.cn/historydata/).


Articles from Advances in Atmospheric Sciences are provided here courtesy of Nature Publishing Group

RESOURCES