Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Feb 16;38(3):621225. doi: 10.1007/s10409-021-09045-x

Coordinated motion of molecular motors on DNA chains with branch topology

分支拓扑DNA链上分子马达的协调运动

Di Lu 1, Bin Chen 1,2,
PMCID: PMC9109741  PMID: 35601132

Abstract

To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsKC on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsKC motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsKC motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsKC motors. We further suggest the potential application of motors of FtsKC, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.

Keywords: DNA, Molecular motor, Coordinated motion, Branch topology, Strain sensor

Footnotes

This work was supported by the National Natural Science Foundation of China (Grant No. 11872334).

References

  • 1.Hong C A, Park J C, Na H, Jeon H, Nam Y S. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens. Bioelectron. 2021;182:113110. doi: 10.1016/j.bios.2021.113110. [DOI] [PubMed] [Google Scholar]
  • 2.Zhang Q, Liu X, Duan L, Gao G. A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior. J. Mater. Chem. A. 2021;9:1835. doi: 10.1039/D0TA11437E. [DOI] [Google Scholar]
  • 3.Kim H S, Abbas N, Shin S. A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores. Biosens. Bioelectron. 2021;177:113005. doi: 10.1016/j.bios.2021.113005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliver. Rev. 2021;168:79. doi: 10.1016/j.addr.2020.07.018. [DOI] [PubMed] [Google Scholar]
  • 5.Khajouei S, Ravan H, Ebrahimi A. Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly. Anal. Chim. Acta. 2020;1137:1. doi: 10.1016/j.aca.2020.08.059. [DOI] [PubMed] [Google Scholar]
  • 6.Bi Y, Du X, He P, Wang C, Liu C, Guo W. Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations. Small. 2020;16:1906998. doi: 10.1002/smll.201906998. [DOI] [PubMed] [Google Scholar]
  • 7.Zhao M L, Zeng W J, Chai Y Q, Yuan R, Zhuo Y. An affinity-enhanced DNA intercalator with intense ECL embedded in DNA hydrogel for biosensing applications. Anal. Chem. 2020;92:11044. doi: 10.1021/acs.analchem.0c00152. [DOI] [PubMed] [Google Scholar]
  • 8.Xu N, Ma N, Yang X, Ling G, Yu J, Zhang P. Preparation of intelligent DNA hydrogel and its applications in biosensing. Eur. Polym. J. 2020;137:109951. doi: 10.1016/j.eurpolymj.2020.109951. [DOI] [Google Scholar]
  • 9.Gao X, Li X, Sun X, Zhang J, Zhao Y, Liu X, Li F. DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter. Anal. Chem. 2020;92:4592. doi: 10.1021/acs.analchem.0c00018. [DOI] [PubMed] [Google Scholar]
  • 10.Wang J Y, Guo Q Y, Yao Z Y, Yin N, Ren S Y, Li Y, Li S, Peng Y, Bai J L, Ning B A, Liang J, Gao Z X. A low-field nuclear magnetic resonance DNA-hydrogel nanoprobe for bisphenol A determination in drinking water. Microchim. Acta. 2020;187:333. doi: 10.1007/s00604-020-04307-6. [DOI] [PubMed] [Google Scholar]
  • 11.Urtel G, Estevez-Torres A, Galas J C. DNA-based long-lived reaction-diffusion patterning in a host hydrogel. Soft Matter. 2019;15:9343. doi: 10.1039/C9SM01786K. [DOI] [PubMed] [Google Scholar]
  • 12.Ke Y, Liu Y, Zhang J, Yan H. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 2015;128:4414. doi: 10.1021/ja058145z. [DOI] [PubMed] [Google Scholar]
  • 13.Lin Y, Wang X, Sun Y, Dai Y, Sun W, Zhu X, Liu H, Han R, Gao D, Luo C. A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation. Sens. Actuat. B-Chem. 2019;289:56. doi: 10.1016/j.snb.2019.03.075. [DOI] [Google Scholar]
  • 14.Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog. Polym. Sci. 2019;98:101163. doi: 10.1016/j.progpolymsci.2019.101163. [DOI] [Google Scholar]
  • 15.Song H, Zhang Y, Cheng P, Chen X, Luo Y, Xu W. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products. Chem. Commun. 2019;55:5375. doi: 10.1039/C9CC01022J. [DOI] [PubMed] [Google Scholar]
  • 16.Xing Z, Caciagli A, Cao T, Stoev I, Zupkauskas M, O’Neill T, Wenzel T, Lamboll R, Liu D, Eiser E. Microrheology of DNA hydrogels. Proc. Natl. Acad. Sci. 2018;115:8137. doi: 10.1073/pnas.1722206115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhou X, Li C, Shao Y, Chen C, Yang Z, Liu D. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem. Commun. 2016;52:10668. doi: 10.1039/C6CC04724F. [DOI] [PubMed] [Google Scholar]
  • 18.Lee J B, Peng S, Yang D, Roh Y H, Funabashi H, Park N, Rice E J, Chen L, Long R, Wu M, Luo D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotech. 2012;7:816. doi: 10.1038/nnano.2012.211. [DOI] [PubMed] [Google Scholar]
  • 19.Qi H, Ghodousi M, Du Y, Grun C, Bae H, Yin P, Khademhosseini A. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 2013;4:2275. doi: 10.1038/ncomms3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bertrand O J N, Fygenson D K, Saleh O A. Active motor-driven mechanics in a DNA gel. Proc. Natl. Acad. Sci. 2012;109:17342. doi: 10.1073/pnas.1208732109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Sherratt D J, Arciszewska L K, Crozat E, Graham J E, Grainge I. The Escherichia coli DNA translocase FtsK. Biochem. Soc. Trans. 2010;38:395. doi: 10.1042/BST0380395. [DOI] [PubMed] [Google Scholar]
  • 22.Graham J E, Sherratt D J, Szczelkun M D. Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA. Proc. Natl. Acad. Sci. 2010;107:20263. doi: 10.1073/pnas.1007518107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Bigot S, Saleh O A, Cornet F, Allemand J F, Barre F X. Oriented loading of FtsK on KOPS. Nat. Struct. Mol. Biol. 2006;13:1026. doi: 10.1038/nsmb1159. [DOI] [PubMed] [Google Scholar]
  • 24.Bigot S, Saleh O A, Lesterlin C, Pages C, El Karoui M, Dennis C, Grigoriev M, Allemand J F, Barre F X, Cornet F. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J. 2005;24:3770. doi: 10.1038/sj.emboj.7600835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Saleh O A, Pérals C, Barre F X, Allemand J F. Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J. 2004;23:2430. doi: 10.1038/sj.emboj.7600242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ptacin J L, Nöllmann M, Bustamante C, Cozzarelli N R. Identification of the FtsK sequence-recognition domain. Nat Struct Mol Biol. 2006;13:1023. doi: 10.1038/nsmb1157. [DOI] [PubMed] [Google Scholar]
  • 27.Bigot S, Sivanathan V, Possoz C, Barre F X, Cornet F. FtsK, a literate chromosome segregation machine. Mol. Microbiol. 2007;64:1434. doi: 10.1111/j.1365-2958.2007.05755.x. [DOI] [PubMed] [Google Scholar]
  • 28.Chowdhury D. Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist’s perspective. Phys. Rep. 2013;529:1. doi: 10.1016/j.physrep.2013.03.005. [DOI] [Google Scholar]
  • 29.Crozat E, Meglio A, Allemand J F, Chivers C E, Howarth M, Vénien-Bryan C, Grainge I, Sherratt D J. Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO J. 2010;29:1423. doi: 10.1038/emboj.2010.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Graham J E, Sivanathan V, Sherratt D J, Arciszewska L K. FtsK translocation on DNA stops at XerCD-dif. Nucleic Acids Res. 2010;38:72. doi: 10.1093/nar/gkp843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pease P J, Levy O, Cost G J, Gore J, Ptacin J L, Sherratt D, Bustamante C, Cozzarelli N R. Sequence-directed DNA translocation by purified FtsK. Science. 2005;307:586. doi: 10.1126/science.1104885. [DOI] [PubMed] [Google Scholar]
  • 32.Kunwar A, Mogilner A. Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing. Phys. Biol. 2010;7:016012. doi: 10.1088/1478-3975/7/1/016012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gross P, Laurens N, Oddershede L B, Bockelmann U, Peterman E J G, Wuite G J L. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 2011;7:731. doi: 10.1038/nphys2002. [DOI] [Google Scholar]
  • 34.Kuimova M K. Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 2012;14:12671. doi: 10.1039/c2cp41674c. [DOI] [PubMed] [Google Scholar]
  • 35.Fieller E C, Hartley H O, Pearson E S. Tests for rank correlation coefficients. I. Biometrika. 1957;44:470. doi: 10.1093/biomet/44.3-4.470. [DOI] [Google Scholar]
  • 36.Marko J F. Stretching must twist DNA. Europhys. Lett. 1997;38:183. doi: 10.1209/epl/i1997-00223-5. [DOI] [Google Scholar]
  • 37.Duke T A J. Molecular model of muscle contraction. Proc. Natl. Acad. Sci. 1999;96:2770. doi: 10.1073/pnas.96.6.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Lee J Y, Finkelstein I J, Arciszewska L K, Sherratt D J, Greene E C. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Mol. Cell. 2014;54:832. doi: 10.1016/j.molcel.2014.03.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.McLeish T C B. Tube theory of entangled polymer dynamics. Adv. Phys. 2002;51:1379. doi: 10.1080/00018730210153216. [DOI] [Google Scholar]
  • 40.Weerakoon S, Fernando T G I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000;13:87. doi: 10.1016/S0893-9659(00)00100-2. [DOI] [Google Scholar]
  • 41.Chen B. Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction. J. Appl. Mech. 2013;80:051013. doi: 10.1115/1.4023680. [DOI] [Google Scholar]
  • 42.Chen B, Dong C. Modeling Deoxyribose Nucleic Acid as an elastic rod inlaid with fibrils. J. Appl. Mech. 2014;81:071005. doi: 10.1115/1.4026988. [DOI] [Google Scholar]
  • 43.Dong C, Chen B. Coupling of bond breaking with state transition leads to high apparent detachment rates of a single Myosin. J. Appl. Mech. 2016;83:051011. doi: 10.1115/1.4032860. [DOI] [Google Scholar]
  • 44.Chen X, Chen B. Simplified analysis for the association of a constrained receptor to an oscillating ligand. J. Appl. Mech. 2016;83:091006. doi: 10.1115/1.4033891. [DOI] [Google Scholar]

Articles from Acta Mechanica Sinica = Li Xue Xue Bao are provided here courtesy of Nature Publishing Group

RESOURCES