Abstract
A design for a CMOS-compatible active waveguide is proposed in which the epsilon-near-zero (ENZ) property of the indium-tin-oxide (ITO) is used to induce large variations in the real and imaginary parts of the waveguide effective index. The proposed waveguide comprises a TiN/HfO2/ITO metal–oxide–semiconductor (MOS) structure where the speed and power consumption are significantly improved by the application of the TiN and realization of double accumulation layers in the ITO. Simulations show the insertion loss (IL) of 0.38 dB/μm, extinction ratio (ER) of 11 dB/μm, the energy consumption of 11.87fJ/bit and electrical bandwidth of 280 GHz when the designed waveguide is used as an electro-absorption modulator. The waveguide is then used in an MZI structure to design binary and quadrature-amplitude-modulator (QAM) modulators. For binary modulator, the IL, ER, and VπLπ figures of merit are found to be 1.24 dB, 54 dB, and 6.4 V μm, respectively, which show substantial improvement over previous ITO-based designs. In the QAM design, the symmetry in the real and imaginary parts of the waveguide effective index is employed to obviate the need for additional phase shift elements. This considerably reduces the overall length of the proposed QAM modulator and improves efficiency. Simulations show the energy consumption and bit rate, of 2fJ/bit and 560 Gbps, respectively in a 4-QAM modulator with the overall length of 6.2 μm. The symmetry properties of the proposed waveguide can be further exploited to realize quadrature-phase-shift-keying (QPSK) modulators which here is used in combination with the 4-QAM to propose a design for the more advanced modulation scheme of 16-QAM. The design of ITO-based QAM modulators is here reported for the first time and the abovementioned performance parameters show the unique properties of these modulators in terms of footprint, energy consumption and modulation-speed.
Subject terms: Applied optics, Integrated optics
Introduction
CMOS-compatible optical modulators are the principal devices of the silicon-based optical interconnects. Besides compatibility with the CMOS fabrication process flow, these optical modulators should also be compact, high speed, energy-efficient, and have extinction ratio and low insertion loss. All these constraints cannot be completely satisfied in a specific modulator structure and therefore, different platforms have been studied for the realization of optical modulators.
The most important light modulation mechanism in silicon (Si) is the free carrier dispersion (FCD) effect1 which has been employed to realize energy-efficient and high-speed optical modulators2–5. However, the FCD in Si is weak and to achieve a large extinction ratio the length of the active region should be relatively large1. This limits the integration density and increases the overall cost. To resolve this issue, a variety of CMOS-compatible materials such as vanadium dioxide (VO2)6, barium titanate (BTO)7, germanium antimony telluride (GST)8, and indium-tin-oxide (ITO)9–20, have been studied as the active material of optical modulators. Among these materials, ITO has drawn considerable attention because of its fast and widely tunable FCD effect and epsilon near zero (ENZ) property10,21. Electrically induced charge concentration variation in ITO has usually been realized in metal–oxide–semiconductor (MOS) capacitor structures (where the ITO is used as the semiconductor material)9–17.
Variation of the ITO carrier concentration changes both the real and imaginary parts of its refractive index which respectively, has been used to design electro-refraction and electro-absorption optical modulators9–20,22,23. Even some studies have proposed schemes for complex modulations such a quadrature phase-shift keying (QPSK) to increase the bitrate10,20. Application of the voltage induced variations in both real and imaginary parts of the ITO refractive index in an interferometer structure such as Mach–Zehnder interferometer (MZI) or ring resonator; increases the modulator design parameters and can be used to improve its performance. To pursue this idea, we first design an ITO-based active waveguide and adjust its geometrical parameters to increase the variations in both real and imaginary parts of the effective index. The designed active waveguide will be then used as the two arms of an MZI to realize optical modulation. In the active waveguide, a TiN/HfO2/ITO/HfO2/TiN MOS structure is sandwiched between two Si layers. Application of TiN instead of doped Si (as in9,11) as the metallic layer, eliminates the parasitic depletion capacitance of doped Si and increases the overall capacitance of the MOS. This decreases the required bias voltage for inducing an adequate amount of charge in the ITO layer. Noting that the power consumption is linearly related to the capacitance while depends quadratically on the bias voltage (P = 1/2CV2), the application of the TiN reduces the power consumption of the waveguide22. The previous studies consider the MOS structure as a parallel plate capacitor and assume uniform charge distribution in the ITO layer which is nonrealistic. Here electrostatic simulations are carried out to calculate carrier density of the ITO accumulation layer; NAcc and the electrical permittivity of the ITO under different bias voltages. The extracted electrical properties of the MOS are then used in Finite-difference-time-domain (FDTD) simulation to calculate the optical properties of the active waveguide.
The optimized waveguide is then used in an MZI structure to realize two-state (binary) and also quadrature amplitude modulation (QAM). The overall length of the proposed binary and QAM modulators are 7.4 μm and 6.2 μm, respectively, and FDTD simulations show the extinction ratio (ER) of 54.04 and insertion loss (IL) of 1.24 for the binary modulator (at the design wavelength of 1.55 μm) while its energy consumption is estimated to be 111fJ/bit. In ITO-based QAM modulators, which to the best of our knowledge had not been reported previously, the simultaneous variations in the real and imaginary parts of the ITO refractive index are employed to improve the modulator performance. For a 4-QAM modulator the IL, energy consumption, and the bit rate are estimated to be 3.9 dB, 2fJ/bit, and 560 Gbps, respectively. A comparison against the previously reported ITO-based modulators shows the superior properties of the proposed modulators in terms of footprint, energy consumption and bit rate.
In what follows we first present the design of the active waveguide. The optical and electrical properties of the designed waveguide will be compared against the properties of the previous designs. The waveguide is then used to design two kinds of MZI based optical modulators; binary and QAM modulators. The characteristics of these modulators are then calculated through simulations and compared against those of the previously reported ITO-based modulators.
Results
A cross-section view of the proposed active waveguide is shown in Fig. 1. Compared to the previous vertical MOS waveguides, our waveguide has only one ITO layer and as a result, supports only one interface mode while the presence of more than one interface modes increases the chance of undesired power transfer between optical modes. Also, the application of two-conductor/insulator layers (instead of a single conductor layer used in9,24,25) on both sides of the ITO layer enhances the efficiency of the charge accumulation in this layer at the expense of increasing the insertion loss.
Setting W and H respectively, to 220 nm and 450 nm results in the single transverse magnetic (TM) mode operation in the wavelength range of 1.4 μm < λ < 1. The thickness of the HfO2 has a less significant effect on the active waveguide properties and is usually set to dHfO2 = 5 nm in previous works10,24,25. With this thickness, the HfO2 is thick enough to prevent the dielectric breakdown while it is not too thick to decrease the capacitance of the MOS structure and degrade the charge accumulation efficiency. The ITO layer can be considered as a degenerate doped n-type semiconductor26 and can be formed by tin (Sn) doping of In2O3 with a concentration of27 1020 cm−3. TiN, HfO2, and ITO layers can be deposited on the Si waveguide by the atomic layer deposition (ALD) process19,28–30. The thickness of the ITO and TiN layers (dITO, and dTiN, respectively) will be calculated in the following subsections. First, electrostatic simulations are carried out to analyze the accumulation process in the ITO and estimate the complex permittivity of this layer by calculating the thickness and carrier density of the accumulation layer (tAcc and NAcc, respectively). In the last design step, the thickness of the TiN layer is calculated in a way to achieve large variations in the real and imaginary parts of the active waveguide effective and keep the propagation loss at a low level.
In the MOS structure of Fig. 1 applying a positive voltage to the TiN layer while the ITO is grounded; VS > 0, results in negative charge accumulation in the ITO region and at the ITO/HfO2 interfaces. According to the Drude-Lorentz model the change in the ITO carrier concentration demonstrates itself as complex permittivity variations31,32:
1 |
where ε∞ = 3.9 is the high-frequency permittivity of ITO, ω is the angular frequency, Γ = 1.8 × 1014 rad/s is electron relaxation frequency, mn* = 0.35m0 is the electron effective mass (m0 = 9.109 × 10−31 kg is the mass of free electrons), q = 1.6 × 10−19C and ε0 = 8.85 × 10−12 F/m are electron charge and vacuum permittivity, respectively, and NAcc is the electron concentration in the accumulation layer.
To estimate the complex permittivity of ITO, we should calculate the carrier distribution by numerical solution of the charge continuity equation and Poisson’s equation in the multilayer structure of Fig. 1. The material properties of ITO, TiN, and HfO2 used in these simulations are extracted from33–43.
According to an approximate method based on the Thomas–Fermi screening theory, the thickness of the accumulation layer can be estimated to be44 tAcc ~ 1 nm. Using this approximate value, we set the thickness of the ITO layer to dITO = 3 nm in the following electrostatic simulations. Figure 2 shows the electron concentration in the depth of the ITO layer as a function of the bias voltage. As can be seen, for VS < 1 V the electron density in the ITO is smaller than the doing concentration (1020 cm−3) and for VS = 1 V electron density is equal to the doping concentration everywhere in the ITO layer. This condition is known as the flat-band condition and the corresponding bias voltage is called flat-band voltage; VFB = 1 V. The electron density reaches its maximum value at the ITO/HfO2 interfaces for VS > VFB, and it decays exponentially to the doping concentration of 1020 cm−3. To show the effect of the bias voltage on the carrier density, the electron density of the ITO layer for V = 0.1 V, 1 V, and 3 V are plotted in the inset of Fig. 2.
According to Fig. 2, for the bias voltage of 1 V < VS < 7 V the thickness of the accumulation layer changes from 1 nm to 1.2 nm therefore, using a 3 nm-thick ITO layer is enough to ensure the formation of two accumulation layers. The average electron density of the accumulation layers (Navg) for different VS values is plotted in Fig. 3a. For VS > VFB, Navg increases linearly by increasing the bias voltage with the slope of; dNavg/dVS ≈ 2.4 × 1020 cm−3/V. Therefore, the capacitance of the MOS structure Ceq can be calculated as:
2 |
where W and L are the width and length of the active waveguide, respectively. Substituting the geometrical parameters of the waveguide in (2), the unit length capacitance of the structure Ceq/L is calculated as 18.58 fF/μm.
Using the simulated accumulation charge density in Eq. (1) the real and imaginary parts of the ITO permittivity at λ = 1550 nm are also calculated and plotted in Fig. 3b. As VS increases, the real part of the ITO permittivity decreases till it eventually becomes negative for VS > 3.1 V which can be interpreted as ITO phase transition from semiconductor to metal. The ITO relative permittivity reaches its minimum value of εITO,min = 0.6, at VS ≈ 3.1 V and it is corresponding to accumulation density of NAcc ≈ 6.3 × 1020 cm−3. This permittivity is smaller than the permittivity of the free space and therefore, the ITO can be considered as an epsilon-near-zero (ENZ) material around this bias voltage35 which we denote with VENZ = 3.1 V.
Using voltage induced variations in both real and imaginary parts of εITO in an MZI can improve the modulator performance. To do so, we optimize the remaining geometrical parameter of the active waveguide, i.e. dTiN in way to increase the variations in both real and imaginary parts of εITO, when the MOS structure is biased in accumulation regime; VS > VFB (waveguide on-state), and also keep the propagation loss of the waveguide as low as possible when; VS ≤ VFB (waveguide off-state).
For dTiN < 22 nm, the active waveguide supports only one TM and for dTiN > 22 nm, the waveguide also supports a higher TM mode whose electric field is mainly localized in the Si region and its properties are rarely influenced by the variation of εITO. The field profile of these two modes for dTiN = 25 nm and at λ = 1550 nm are presented in Fig. 4a. In the following, we have changed the thickness of TiN in the range of 1 nm < dTiN < 22 nm, and for each value of dTiN calculated the effective index of the waveguide mode for the bias voltage of; 0 V < VS < 7 V. Figure 4b,c respectively show the real part of effective index; neff, and the propagation loss; α, for different values of the TiN thickness of and bias voltage. From these simulations, the maximum and minimum values of the neff and α are found for each value of the dTiN and then used to define the following figure of merit (FOM) for the proposed waveguide;
3 |
The first term of (3) evaluates the variations of the real part of the waveguide effective index and neff,max and neff,min respectively represent the maximum and minimum of neff for 0 < VS < 7 V. The second term evaluates the variation in the propagation loss of the active waveguide and also provides an estimation of the ER to the IL ratio. This term has been used as the main FOM of ITO-based modulators in some references10,25. Here, αmax and αmin respectively represent the maximum and minimum of α for 0 < VS < 7 V. The last term is included to take into account the effect of TiN thickness on the electrical properties of the active waveguide. For example, the electrical 3 dB bandwidth of the active waveguide depends on the resistive-capacitive (RC) time constant of the structure. The equivalent capacitance (Ceq) depends on the thickness of the HfO2 layer and the carrier density in the ITO layer. The equivalent resistance, on the other hand, is mostly the resistance of the TiN layer and it is inversely proportional to dTiN. Therefore, the thickness of the TiN layer is also included in the evaluation of the waveguide FOM. Using the simulation results of Fig. 4b,c, the FOM of the proposed waveguide is calculated for different values of dTiN and plotted in Fig. 4d. For dTiN < 7 nm, increasing the thickness of the TiN layers leads to a slightly better FOM. This can be attributed to the enhancement of the light confinement in the ITO and at the ITO/HfO2 interface. At dTiN = 7 nm, the FOM reaches its maximum value and for dTiN > 7 nm, thicker TiN layers will be accompanied with larger insertion loss (i.e. larger αmin) which degrades the FOM. Therefore, we choose dTiN = 7 nm as the optimum value for the thickness of the TiN layer. This completes the design steps of the proposed waveguide with the following geometrical dimensions; H = 450 nm, W = 220 nm, dITO = 3 nm, dHfO2 = 5 nm, and dTiN = 7 nm.
Figure 5a shows neff and α at the wavelength of 1550 nm for different values of VS. As expected, for VS < VFB = 1 V, there is no considerable voltage-induced variation in the effective index and the maximum optical loss is obtained for VS = VENZ = 3.1 V which are respectively, corresponding to the complex effective indices of Neff,OFF = 2.1988 + i0.0157 and Neff,ON = 2.2252 + i0.3105. To provide an estimation of the electro-optical characteristics of the designed waveguide the transmission spectrum of the 1 μm long active waveguide in the wavelength range of 1400-1700 nm and for the bias voltages, 1 V and 3.1 V are calculated by 3D-FDTD simulation and plotted in Fig. 5b. The ER is also calculated and depicted in this figure and the inset shows the electric field profiles for two bias voltages. According to these simulations, at λ = 1550 nm the IL and ER of the modulator are 0.38 dB/μm and 11 dB/μm, respectively.
In all FDTD simulations, we have used perfectly matched layer (PML) to truncate the simulation domain in x, y, and z dimensions. Also, to minimize the effect of the absorbing PML layers on the optical modes, these layers are placed at least 2 μm from the end of the active simulation domain. Also, the mesh sizes are refined to minimize the effect of the numerical dispersion. The mesh sizes in x, y, and z dimensions for the strip waveguides are respectively, Δx = 4 nm, Δy = 5 nm, and Δz = 7 nm. In the active waveguide region, on the other hand, very thin layers with very different optical properties are used. Therefore, different mesh sizes should be used in each layer. The x and z mesh sizes in three layers are set to Δx = 2 nm, and Δz = 5.5 nm, respectively and the y meshes for ITO, HfO2, and TiN are set to Δy = 0.1 nm, Δy = 0.2 nm, and Δy = 0.25 nm, respectively.
With the applied bias voltage of Voff = VFB = 1 V and Von = VENZ = 3.1 V, the 1 μm long waveguide of Fig. 5b can be considered as a single bit (on–off) modulator. The electrical and optical properties of this modulator are compared against those of the previously proposed transparent conductive oxide (TCO)-based on–off modulators in Table 1. In this table, L3B represents the required waveguide length for exerting 3 dB loss (when the active waveguide is biased in its high propagation loss), and the electrical bandwidth of the modulator is mentioned as f3dB. Since the FCD process in ITO is very fast the electrical bandwidth of the ITO-based modulators is usually estimated by calculating the RC time delay of the waveguide actuation structure15. Using this assumption, the 3 dB bandwidth of the modulator can be approximated as; f3dB = 1/(2π Req Ceq) where Req and Ceq are the equivalent resistance and capacitance of the active waveguide, respectively. The Ceq was previously calculated to be 18.58fF/μm and using the same simulation parameters the equivalent resistance is found to be Req = 30Ω μm, which results in f3dB = 280 GHz. It should be mentioned that the lower resistivity of the proposed waveguide compared to the waveguides of16,17, is because of using TiN electrodes instead of heavily doped silicon.
Table 1.
References | IL (dB/μm) | ER (dB/μm) | Energy/bit (fJ) | f3dB (GHz) | L3dB (μm) |
---|---|---|---|---|---|
Nanowire12 | 0.003 | 0.11 | 1300 | – | 27.28 |
Hybrid-plasmonic13 b | 0.04 | 1 | 28 | 300 | 3 |
Au slot14 b | 0.45 | 2.71 | 4 | 100 | 1.107 |
Si-rib waveguide15 | 2.6 | 4.3 | 22.5 | 40 | 0.7 |
Hybrid-plasmonic10 | 0.03 | 4.83 | 14.8 | 363 | 0.622 |
Tri-coupled waveguide16 | 0.003/0.048 | 0.3/0.33 | 67.1/22.7 | 47.5/140 | 10/9.1 |
Dual-Polarization17 a | 0.01 | 0.2 | 2115 | 58.7/65.9 | 15 |
Photonic neuron46 b | 0.2 | 1 | 60 | 25 | 3 |
Stub-resonator47 | 2.14 | 7.14 | 90.2 | 78 | 0.42 |
Si waveguide48 b | 2.5 | 1.62 | 2100 | 2.5 | 1.14 |
Plasmonic slot-waveguide49 b | 0.58 | 2.62 | 30 | 250 | 3 |
Cadmium oxide50 | – | 5 | – | – | 1 |
Photonic memristor51 b | 0.44 | 1.2 | 106 | 0.03 | 2.5 |
This work | 0.38 | 11 | 11.87 | 280 | 0.272 |
aThe energy consumption is not reported and it is calculated using the information provided in the paper. The f3dB is different for TE and TM polarizations.
bThese references present measurement results.
The energy consumption of the active waveguide for every bit modulation can be estimated as22:
4 |
where ΔV =|Von − Voff |= 2.1 V is the bias voltage difference between the waveguide on- and off-states. The energy per bit modulation is calculated to be 20.48fJ/bit.μm. Values reported in Table 1 show that while the energy consumption and the electrical bandwidth of the proposed waveguide are comparable to the best-reported values, it can provide a much higher extinction ratio in the length 1 μm and has much smaller L3dB length. In the next section, the proposed active waveguide will be used to design MZI based optical modulators. It worth mentioning that, the breakdown electric field of thin-film HfO2 is reported to be 12.7MV/cm which45 is corresponding to the breakdown voltage of ~ 6.35 V for a 5 nm HfO2 film. Since in all proposed devices of this manuscript the applied voltages for switching of the active waveguides are below 4.0 V (i.e. electric field in the HfO2 layers will be EHfO2 = 8MV/cm < 12.7MV/cm) and the breakdown of the HfO2 will not happen.
Figure 5b shows an interesting property of the proposed waveguide: the real part of the effective index neff, and propagation loss α, are respectively anti-symmetric and symmetric functions of the bias voltage with respect to the VS = VENZ = 3.1 V point. This feature of the proposed waveguide -when combined with the interference properties of photonic elements such as MZI- can be used to design binary, 4-QAM and more advanced modulation schemes such as 16-QAM. In the following subsection, the active waveguide is used to design a binary and a 4-QAM modulator. The optical and electrical properties of these modulators are calculated and compared against the previous ITO-based modulators. Furthermore, a design scheme for a 16-QAM optical modulator is suggested.
Binary MZI modulator
A perspective view of the binary MZI modulator is presented in Fig. 6a. Because of the symmetry of neff and α it is possible to choose a pair of bias voltages for upper and lower MZI arms; VU,on and VD,on to reach the same propagation loss and different effective index (as shown in Fig. 6b). This way their propagating waves experience different phase shifts and the same loss and the output intensity can be controlled by adjusting the phase shift difference between two arms. The active waveguide bias point is presented on neff-α map in Fig. 6b. At low bias voltage, two active waveguides are in the same point and the required voltage can be any value below flat-band point; VU,off = VD,off ≤ VFB. The high bias points on the other hand, should be selected in a way to result in maximum neff difference between two waveguides and the same α.
Here, instead of Y-junction the MZI is formed by three-waveguide-coupler splitter/combiners to reduce the total footprint of the device. If Ein and Eout, respectively represent the input and output electric fields of the MZI, the transmission coefficient of the MZI can be written as52:
5 |
where τ1 = exp(− α1LM) and τ2 = exp(− α2LM), respectively, are the power transmission of the MZI upper and lower arms, Δϕ = ϕ1 − ϕ2 = (2π neff,1/λ)LM − (2π neff,2/λ)LM is the phase difference between two arms, αi, and neff,i (i = 1, 2) are the propagation loss and the effective index of active waveguides, respectively, and LM is the length of active waveguides.
To maximize the ER of the modulator, the propagation loss of two arms should be the same; α1 = α2 and Δϕ should be equal to “π” and “0” in on- and off-states, respectively. Also, to minimize the total length of the device and reduce its equivalent capacitor and energy consumption, the bias points should be selected in a way to maximize; Δneff = neff,1 − neff,2. According to Fig. 5b, setting the bias voltages to; VU,off = VU,off = VFB = 1 V, VU,on = 2.8 V and VD,on = 3.37 V, result in Δneff = 0.2886 and α1 = α2 = 7.09 dB/μm. This is equivalent to the active waveguide length of; LM = (2λ/Δneff) = 2.7 μm at λ = 1.55 μm.
The coupling region of the three-waveguide-coupler supports three super-modes; even-symmetric super-mode (ESM), antisymmetric super-mode (ASM), and odd-symmetric super-mode (OSM) whose electric field profiles are shown in the inset of Fig. 7a. We use the coupled-mode theory (CMT) to find the approximate length of the coupling region LC and then use FDTD simulations to fine-tune this value for optimum coupling. We denote the effective indices of the abovementioned super-modes with nESM, nASM, and nOSM, respectively. For efficient power transfer the effective index of the super modes should satisfy the condition of53; nASM = (nESM + nOSM)/2. The effective indices of the supper modes can be adjusted by changing the coupling gap between the waveguides; g (see Fig. 6a). According to our calculations, for the coupling gap of g = 170 nm the super mode effective indices are nESM = 2.408, nASM = 2.245, and nOSM = 2.082, which satisfy the required condition. Therefore, the coupling gap is set to 170 nm and the overall width of the MZI structure will be Wtot = 1 μm.
Based on the CMT formulation the length of the coupling region (at the design wavelength of λ) can be calculated as53:
6 |
which results in LC = 2.37 μm for the design wavelength of λ = 1.55 μm.
To verify this result and also evaluate the coupling loss, we changed the length of the coupling region in the range of 1.5 μm < LC < 3.5 μm and calculated the total optical transmitted power at λ = 1.55 μm (using 3D-FDTD). The results presented in Fig. 7a, shows that the maximum power transfer can be achieved for LC = 2.35 μm that is corresponding to the coupling loss of 0.2 dB. Considering the active waveguide length of LM = 2.7 μm the overall length of the MZI modulator will be (2LC + LM) = 7.4 μm. Using these dimensions, we have simulated the MZI modulator and calculated the power transmission for the on- and off-states for the wavelength range of 1.5 μm < λ < 1.6 μm. Figure 7b shows the transmitted power in on- and off-states and also the ER of the modulator. At the wavelength of λ = 1.55 μm, the ER and IL of the modulator respectively, are calculated to be 54.04 and 1.24 dB and in the wavelength range of 1.5–1.6 μm and the modulator ER is above 20 dB and its IL is lower than 1.35 dB. Electric field distribution in the MZI modulator in off- and on-states are also depicted in Fig. 7c,d, respectively.
An important FOM of the MZI based binary modulator is the product of the half-wave voltage and the length of the modulator’s active waveguide segments; VπLπ. For the proposed push–pull MZI modulator the FOM can be calculated as:
7 |
where ΔV1 and ΔV2 is the difference between the on and off bias voltages of the modulator arms. Using; ΔV1 = VU,on − VU,off = 1.8 V, ΔV2 = VD,on − VD,off = 2.37 V, and LM = 2.7 μm in the above formula, VπLπ is calculated to be 6.4 V μm. Furthermore, the energy consumption for every bit modulation can be estimated as19:
8 |
where Carm = Ceq × LM = 50.16fF is the equivalent capacitor of each MZI arm. Equation (10) results in the energy consumption of 111fJ/Bit. A comparison between the parameters of the proposed modulator and some of the most compact MZI-based modulators is provided in Table 2.
Table 2.
Device type | Active length (μm) | IL (dB) | Energy (fJ/bit) | VπLπ (V μm) | Overall footprinta (μm)2 | Bit rate | Optical bandwidth (nm) |
---|---|---|---|---|---|---|---|
ITO based19 c | 32 | ~ 6 | 11,000 | 520 | > 32 | – | – |
All plasmonic48 c | 10 | 7–9 | 25 | 60 | ~ 24 | 1.1 THz | 100 |
Photonic Crystal based49 c | 5.78 | 1.08 | 6000 | 5.78 | > 13.82 | ~ THz | 3–5 |
This work | 2.7 | 1.24 | 111 | 6.4 | 7.4 | 280 GHz | > 100b |
aRequired electrical contacts are not considered in the estimation of the overall footprint.
bHere optical bandwidth refers to the wavelength range where the ER of the proposed modulator is above 20 dB and its IL is below 1.4 dB.
cThese references present measurement (experimental) results.
Compared to the previous MZI-based modulators the proposed modulator consumes relatively low energy, has very low IL and VπLπ, and has the smallest active waveguide length and overall footprint. The very low Vπ Lπ FOM, active length and footprint of the proposed MZI modulator can be attributed to the fact that the MOS structures are biased around the ENZ point where very large variations the waveguide effective index can be achieved with relatively small changes in the bias voltage. The optical bandwidth of the modulator is also ultra-wide and is limited by the splitter/combiner’s spectral response.
In what follows we will use large variations in both effective index and propagation loss of the MOS active waveguide to design an ultra-compact and high-speed 4-QAM optical modulator.
QAM modulator with integrated phase shifter
A QAM modulator comprises two distinct amplitude modulators with the same carrier frequency (ωc in Fig. 8a) where the carrier wave of one modulator experiences a phase shift of π/2 with respect to the other. The output QAM modulated signal is formed by combining these two orthogonal waves. Optical QAM modulation can be realized by an MZI structure with two active waveguides in its arms and an integrated π/2-phase shifter in one arm50,54–57. The modulating signal of the arm with phase shifter is called Quadrature signal (Q-signal) and the other is called In-phase signal (I-signal). The required π/2-phase shift can be realized through a delay line which significantly increases the length and overall footprint of the modulator. Instead, we can use the anti-symmetric behavior of the active waveguide effective index to the bias voltage variations (around VS = VENZ point) and realize the phase shift by selecting proper bias point for the MZI arms. It should be mentioned that ITO-based QAM modulators have not been proposed previously. Also, as is going to be shown, elimination of the delay line substantially reduces the length of the proposed QAM modulators compared to the previously reported optical QAMs.
A perspective view of the proposed 4-QAM modulator along with the I- and Q-modulating signals, and the formula for the input/output signals of each MZI arm is shown in Fig. 8a. The geometrical parameters of the active waveguide and the three-waveguide-couplers are the same as the binary MZI modulator, and the QAM modulator design parameters include the length of the MZI arms; LM and the bias points of these waveguides; VD,on, VD,off, VU,on, and VU,off. To produce the phase shift of π/2 between the MZI arms (see Fig. 8a), the two arms should have different neff values. Also, neff of each arm should remain the same for both bias voltage levels while its propagation loss varies. Furthermore, to balance the QAM constellation points, the amplitude of the output signals of the two MZI arms should be the same in both on and off modulation states. In other words, as depicted in Fig. 8b the bias point of the MZI arms should be located at the vertices of a square in neff − α map or equivalently the modulating signals should be located on the same pattern in I − Q constellation map. According to our calculations, the minimum active waveguide length can be achieved by setting the bias points of the upper and lower MZI arms to; (VU,off, VU,on) = (2.44 V, 2.91 V), and (VD,on, VD,off) = (3.26 V, 3.85 V), respectively. The bias point of the MZI arms and their corresponding neff, and α values are shown in Fig. 8c. With these bias voltages the (neff, α) values of the upper MZI arm in on- and off-states will be (2.1, 8.47 dB/μm) and (2.1, 2.6 dB/μm), respectively and the values for the lower arm in on- and off-states will be (2.36, 8.47 dB/μm) and (2.36, 2.6 dB/μm), respectively. The above values result in the effective index difference of Δneff = 0.26 between two arms and therefore, the required active waveguide length for the π/2 phase difference is LM = 1.5 μm (at the wavelength of 1.55 μm). Adding the length of the three-waveguide couplers results in the overall modulator length of 6.2 μm. The optical power transmission of the structure in off- and on-states at λ = 1.55 μm are calculated to be − 3.9 dB and − 12.7 dB, respectively and energy consumption per bit is estimated to be ~ 2fJ/bit. This value is estimated by dividing the energy consumption for every state change for an active waveguide length of LM by the number bits per symbol55. Also, because of the QAM operation, the electro-optical bandwidth of the device can be calculated by multiplying the speed of active waveguide neff-a state change by the corresponding number of bit for every state change; 280 GHz × 2 = 560Gbit/sec.
As mentioned, the proposed structure can also be used to realize more complex modulation schemes such as 16-QAM. A schematic view of a possible design for a 16-QAM modulator based on the proposed 4-QAM is depicted in Fig. 9a. The 16-QAM is principally realized by introducing controlled phase shifts on the output of a 4-QAM modulator. This method was proposed in57 where an MZI structure had been used as the phase-shifting modulator (i.e. QPSK modulator). Here, instead of using an MZI as the QPSK element we have used the symmetry properties of the active waveguide to design a binary-weighted digital-to-analog-converter (DAC)-less QPSK modulator20. Considering the required phase shift of π and π/2 for the first and the second phase shifter (see Fig. 9a) the on- and off-state bias voltages of both active waveguide segments of the QPSK modulator are set to be VP,off = 2.15 V and VP,on = 4.21 V which are corresponding to the same propagation loss value of 1.76 dB/μm and effective index different of Δneff = neff,on − neff,off = 0.2. The constellation map of the 4-QAM and 16-QAM modulators are presented in Fig. 9b. As can be seen, the constellation map of the 16-QAM modulator can be generated by introducing π/2, π, and 3π/2 phase shifts in the constellation map of the 4-QAM modulator. For this design, the IL and the energy consumption of the 16-QAM modulator are estimated to be 14 dB and 29fJ/bit, respectively. Using the sharp variations of the waveguide propagation loss to VS (around the ENZ point), one can reduce the power consumption at the cost of a higher amount of IL. For example by choosing VP,off = 2.8 V and VP,on = 3.37 V the 16-QAM energy consumption will be ~ 2.5fJ/bit while its IL will be increased to 32 dB. Although this amount of loss is high in comparison to the 3.9 dB insertion loss of the proposed 4-QAM but is not too far from the IL of 16-QAM modulators proposed in58 and55.
A comparison between the performance parameters of the proposed 4-QAM and 16-QAM modulators and some of the previously reported QPSK and QAM modulators are provided in Table 3. As mentioned, ITO-based QAM modulators have not been reported previously and QAMs listed in this table are design in silicon-organic-hybrid (SOH) plasmonic waveguides55,58. According to this table, the proposed 4-QAM modulator is highly compact and therefore, its IL and power consumption is lower than the QPSK modulators of10,20. The 16-QAM modulator also is smaller than its SOH counterparts and its predicted bit rate is at least an order of magnitude larger than the others. The modulator power consumption is much lower than55 but is slightly higher than what reported for58. As mentioned, to reduce the power consumption and reach the lowest energy dissipation, one can sacrifice the IL which according to our estimation can result in energy consumption of 2.5fJ/bit at the expense of 32 dB insertion loss.
Table 3.
Device type | Length (μm) | IL (dB) | Energy/bit (fJ) | Bit per symbol | Bit rate (Gbit/s) |
---|---|---|---|---|---|
ITO-QPSK10 a | 17.78 | 5.7 | – | 2 | 726 |
ITO-QPSK20 | 384.2/130.9 | 5.3/4.8 | 4000/1500 | 2 | 100 |
SOH-QAM50 | 1000 | 20b | 18 | 4 | 52 |
SOH-QAM55 | 1500 | 30b | 640 | 4 | 112 |
ITO-4-QAM (this work) | 1.5 | 3.9 | 2 | 2 | 560 |
ITO-16-QAM (this work) | 7.31/5.55 | 14/32 | 29/2.5 | 4 | 1120 |
aEnergy consumption is not reported but the overall modulation system requires a DAC which substantially increases energy consumption.
bThese references present measurement results.
Discussion
An ITO-based active waveguide was proposed and its geometrical parameters were optimized to achieve widely tunable effective index and propagation loss variations for a range of applied bias voltages. The symmetry properties of the effective index and propagation loss of the waveguide around the ENZ bias point of the ITO were then used to design optical modulators in the MZI structure. A binary modulator and also a QAM modulator (without the use of any additional phase shift element) were proposed and simulated. For binary modulator, the IL, ER, and VπLπ FOM were found to be 1.24 dB, 54 dB, and 6.4 V.μm, respectively, and for the 4-QAM modulator the overall length, energy consumption, and bit rate, respectively, were estimated to be 6.2 μm, 2fJ/bit and 560Gbps. Then the symmetry properties of the proposed waveguide were further exploited to design a 16-QAM modulator by cascading the designed 4-QAM with a QPSK modulator formed by two active waveguide sections. The design of ITO-based QAM modulators was here reported for the first time and the abovementioned performance parameters show the unique properties of these modulators in terms of footprint, energy consumption and modulation-speed.
Methods
To simulate the operation of the proposed structure as a QAM modulator we have used the INTERCONNECT module of the Lumerical software. The block diagram of the simulation setup is presented in Fig. 10a. The “PRBS” generates a pseudo-random bit sequence of 280Gbit/sec. The estimated IL and rise/fall times of the designed QAM4 modulator is used in “QAM Modulator” element and “Amplifier” and “Low-pass Filter” elements are included to simulate the practical situation59,60.
The constellation map is shown in Fig. 10b and eye-diagram for I- and Q-Signal are shown in Fig. 10c,d, respectively. As it is apparent, the constellation points of the modulation system are separated and our proposed device works properly. Also, both of the I- and Q-Signal eye diagrams are open in both amplitude and time directions for a bitstream of 280Gbit/sec.
Based on the previous experimental works a process flow for the fabrication of the proposed active waveguide is presented in Fig. 11. In the fabrication steps of the active waveguide, the definition of different patterns should be carried out using high-resolution lithography methods such as electron-beam-lithography (EBL) in combination with selective etching techniques such as plasma or deep reactive ion etching (DRIE)13,14. The TiN, HfO2 and ITO layers can be deposited through RF magnetron sputtering or atomic layer deposition (ALD), where the carrier concentration of deposited ITO can be controlled by tuning the oxygen concentration during deposition14. Moreover, the top silicon stripe can be formed by the epitaxial growth of silicon on top of the MOS structure or deposition of hydrogenated amorphous polysilicon via low temperature-PECVD. To reduce the impact of metal contacts on the optical mode, they should be placed a few microns away from the modulator. Starting from an SOI wafer the lower silicon stripe can be formed by EBL lithography and etching. The rest of the steps are presented in Fig. 11. Following different steps of Fig. 11a–l, the process fellow for fabrication of the proposed waveguide can be listed as (a) Starting with an SOI wafer and formation of the lower silicon stripe, (b) TiN deposition using ALD or RF Sputtering, (c) TiN patterning through EBL and Plasma or DRIE etching, (d) HfO2 deposition using ALD, (e) HfO2 patterning through EBL and Plasma or DRIE etching, (f) ITO deposition using ALD or RF Sputtering (doping level of ITO should be controlled through adjusting the oxygen concentration), (g) ITO patterning through EBL and Plasma or DRIE etching, (h) HfO2 deposition using ALD, (i) HfO2 patterning through EBL and Plasma or DRIE etching, (j) TiN deposition using ALD or RF Sputtering, (k) TiN patterning through EBL and Plasma or DRIE etching, (l) SiO2 deposition through sputtering, (m) SiO2 patterning through EBL and Plasma or DRIE etching, (o) Top silicon strip deposition using PECVD or epitaxial growth.
Abovementioned fabrication process results in an active waveguide with a small difference with the original waveguide of Fig. 1. Here a thin SiO2 layer is deposited between the upper TiN layer and silicon. The thin SiO2 film is used as sacrificial layer between TiN and silicon because successful grown of silicon on TiN has not been reported in the literature. To study the effect of SiO2 layer and find the proper thickness for this layer we have calculated the effective index for different values of applied voltage with SiO2 thickness of 3 nm and 5 nm and 10 nm. The real and imaginary parts of neff is plotted in part (a) and (b) of Fig. 12, respectively. As can be seen, presence of the SiO2 layer decreases the variations in the imaginary part of the neff in response to the applied voltage and shift the real part of the effective index to lower values.
In order to each maximum variations in real and imaginary parts of neff and minimize the effect of SiO2 layer on field profile we select the thickness of 3 nm for this layer. The real and imaginary parts of neff of the active waveguide with SiO2 thickness of 3 nm is plotted in Fig. 12c. Effective index variations have the same symmetry properties as the original waveguide and addition of the SiO2 layer does not change the modulator designs significantly. Since the effective index variations is a result of the ENZ in ITO the peak value of imaginary part of neff and maximum variations in real part of neff appears around the value of 3.1 V. Therefore, the bias voltages in design of different modulators can be kept the same as the original design. However, since the inclusion of a 3 nm SiO2 layer decreases peak value of the imaginary part of the neff by 15%, the active waveguide length in absorption modulator (Fig. 5) should be increased from 1.0 mm to 1.15 mm to reach the same results. Also, since the MOS structure is formed by the TiN/HfO2/ITO/HfO2/TiN stack, addition of the SiO2 does not change the capacitance of the structure and therefore, speed and power consumption calculations remain the same as the original designs.
Acknowledgements
We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript in advance.
Author contributions
S.M.P. and M.M.: software, data curation. M.M.: methodology, investigation. S.M.P., M.M., and M.H.S.: conceptualization, methodology, writing—review and editing. All authors discussed the results and contributed to the final manuscript.
Data availability
The calculated results during the current study are available from the corresponding author on reasonable request.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat. Photonics. 2010;4:518–526. doi: 10.1038/nphoton.2010.179. [DOI] [Google Scholar]
- 2.Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature. 2005;435:325–327. doi: 10.1038/nature03569. [DOI] [PubMed] [Google Scholar]
- 3.Liao L, et al. 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 2007;43:1196–1197. doi: 10.1049/el_20072253. [DOI] [Google Scholar]
- 4.Gardes FY, Reed GT, Emerson NG, Png CE. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express. 2005;13:8845–8854. doi: 10.1364/OPEX.13.008845. [DOI] [PubMed] [Google Scholar]
- 5.Liao L, et al. High speed silicon Mach-Zehnder modulator. Opt. Express. 2005;13:3129–3135. doi: 10.1364/OPEX.13.003129. [DOI] [PubMed] [Google Scholar]
- 6.Wong HMK, Helmy AS. Performance enhancement of nanoscale VO2 modulators using hybrid plasmonics. J. Lightwave Technol. 2018;36:797–808. doi: 10.1109/JLT.2017.2782707. [DOI] [Google Scholar]
- 7.Pernice WHP, Xiong C, Walker FJ, Tang HX. Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films. IEEE Photonics Technol. Lett. 2014;26:1344–1347. doi: 10.1109/LPT.2014.2322501. [DOI] [Google Scholar]
- 8.Shadmani A, Miri M, Mohammadi PS. Ultra-wideband multi-level optical modulation in a Ge2Sb2Te5-based waveguide with low power consumption and small footprint. Opt. Commun. 2019;439:53–60. doi: 10.1016/j.optcom.2019.01.046. [DOI] [Google Scholar]
- 9.Zhao H, Wang Y, Capretti A, Negro LD, Klamkin J. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE J. Sel. Top. Quantum Electron. 2015;21:192–198. doi: 10.1109/JSTQE.2014.2375153. [DOI] [Google Scholar]
- 10.Lin C, Helmy AS. Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics. Sci. Rep. 2015;5:12313. doi: 10.1038/srep12313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Baek J, You J-B, Yu K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt. Express. 2015;23:15863–15876. doi: 10.1364/OE.23.015863. [DOI] [PubMed] [Google Scholar]
- 12.Vasudev AP, Kang J-H, Park J, Liu X, Brongersma ML. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express. 2013;21:26387–26397. doi: 10.1364/OE.21.026387. [DOI] [PubMed] [Google Scholar]
- 13.Sorger VJ, Lanzillotti-Kimura ND, Ma R-M, Zhang X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics. 2012;1:17–22. doi: 10.1515/nanoph-2012-0009. [DOI] [Google Scholar]
- 14.Lee HW, et al. Nanoscale conducting oxide PlasMOStor. Nano Lett. 2014;14:6463–6468. doi: 10.1021/nl502998z. [DOI] [PubMed] [Google Scholar]
- 15.Ayata M, Nakano Y, Tanemura T. Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer. Jpn. J. Appl. Phys. 2016;55:042201–042201. doi: 10.7567/JJAP.55.042201. [DOI] [Google Scholar]
- 16.Abdelatty MY, Badr MM, Swillam MA. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides. J. Lightwave Technol. 2018;36:4198–4204. doi: 10.1109/JLT.2018.2863571. [DOI] [Google Scholar]
- 17.Qiu X, Ruan X, Li Y, Zhang F. Indium tin oxide based dual-polarization electro-optic intensity modulator on a single silicon waveguide. J. Lightwave Technol. 2018;36:2563–2571. doi: 10.1109/JLT.2018.2810244. [DOI] [Google Scholar]
- 18.Reines IC, Wood MG, Luk TS, Serkland DK, Campione S. Compact epsilon-near-zero silicon photonic phase modulators. Opt. Express. 2018;26:21594–21605. doi: 10.1364/OE.26.021594. [DOI] [PubMed] [Google Scholar]
- 19.Amin R, et al. 052 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics. 2018;3:126104. doi: 10.1063/1.5052635. [DOI] [Google Scholar]
- 20.Sinatkas G, Kriezis E. Silicon-photonic electro-optic phase modulators integrating transparent conducting oxides. IEEE J. Quantum Electron. 2018 doi: 10.1109/JQE.2018.2852144. [DOI] [Google Scholar]
- 21.Wu J, Xie ZT, Sha Y, Fu HY, Li Q. Epsilon-near-zero photonics: Infinite potentials. Photon. Res. 2021;9:1616–1644. doi: 10.1364/PRJ.427246. [DOI] [Google Scholar]
- 22.Miller DAB. Energy consumption in optical modulators for interconnects. Opt. Express. 2012;20:A293–A308. doi: 10.1364/OE.20.00A293. [DOI] [PubMed] [Google Scholar]
- 23.Plummer, J. D., Deal, M. D. & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice, and Modeling/James D. Plummer, Michael Deal, Peter B. Griffin (Prentice Hall, 2000).
- 24.Koch U, Hoessbacher C, Niegemann J, Hafner C, Leuthold J. Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides. IEEE Photonics J. 2016;8:1–13. doi: 10.1109/JPHOT.2016.2518861. [DOI] [Google Scholar]
- 25.Shah MK, Lu R, Liu Y. Enhanced performance of ITO-assisted electro-absorption optical modulator using sidewall angled silicon waveguide. IEEE Trans. Nanotechnol. 2018;17:412–418. doi: 10.1109/TNANO.2018.2804485. [DOI] [Google Scholar]
- 26.Edwards PP, Porch A, Jones MO, Morgan DV, Perks RM. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004 doi: 10.1039/B408864F. [DOI] [PubMed] [Google Scholar]
- 27.Qiu X, Ruan X, Li Y, Zhang F. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. Opt. Express. 2018;26:13902–13914. doi: 10.1364/OE.26.013902. [DOI] [PubMed] [Google Scholar]
- 28.Stevens E, et al. Area-selective atomic layer deposition of TiN, TiO2, and HfO2 on silicon nitride with inhibition on amorphous carbon. Chem. Mater. 2018;30:3223–3232. doi: 10.1021/acs.chemmater.8b00017. [DOI] [Google Scholar]
- 29.Zhang, W., Cai, J., Wang, D., Wang, Q. & Wang, S. Properties of TiN films deposited by atomic layer deposition for through silicon via applications. In 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, 7–11 (2010).
- 30.Salami H, et al. Atomic layer deposition of ultrathin indium oxide and indium tin oxide films using a trimethylindium, tetrakis(dimethylamino)tin, and ozone precursor system. J. Vac. Sci. Technol. A. 2019;37:010905. doi: 10.1116/1.5058171. [DOI] [Google Scholar]
- 31.Melikyan A, et al. Surface plasmon polariton absorption modulator. Opt. Express. 2011;19:8855–8869. doi: 10.1364/OE.19.008855. [DOI] [PubMed] [Google Scholar]
- 32.Feigenbaum E, Diest K, Atwater HA. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 2010;10:2111–2116. doi: 10.1021/nl1006307. [DOI] [PubMed] [Google Scholar]
- 33.Betz U, Kharrazi Olsson M, Marthy J, Escolá MF, Atamny F. Thin films engineering of indium tin oxide: Large area flat panel displays application. Surf. Coat. Technol. 2006;200:5751–5759. doi: 10.1016/j.surfcoat.2005.08.144. [DOI] [Google Scholar]
- 34.Hamberg I, Granqvist CG. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 1986;60:R123–R160. doi: 10.1063/1.337534. [DOI] [Google Scholar]
- 35.Park Y, Choong V, Gao Y, Hsieh BR, Tang CW. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996;68:2699–2701. doi: 10.1063/1.116313. [DOI] [Google Scholar]
- 36.Pethuraja GG, et al. Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces. Adv. Mater. Phys. Chem. 2012 doi: 10.4236/ampc.2012.22010. [DOI] [Google Scholar]
- 37.Kim H, et al. Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 1999;74:3444–3446. doi: 10.1063/1.124122. [DOI] [Google Scholar]
- 38.Pierson HO. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Noyes Publication; 1997. [Google Scholar]
- 39.Vitale SA, Kedzierski J, Healey P, Wyatt PW, Keast CL. Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation. IEEE Trans. Electron Dev. 2011;58:419–426. doi: 10.1109/TED.2010.2092779. [DOI] [Google Scholar]
- 40.Pandey RK, Sathiyanarayanan R, Kwon U, Narayanan V, Murali KVRM. Role of point defects and HfO2/TiN interface stoichiometry on effective work function modulation in ultra-scaled complementary metal–oxide–semiconductor devices. J. Appl. Phys. 2013;114:034505. doi: 10.1063/1.4816090. [DOI] [Google Scholar]
- 41.Li FM, et al. High-k (k=30) amorphous hafnium oxide films from high rate room temperature deposition. Appl. Phys. Lett. 2011;98:252903. doi: 10.1063/1.3601487. [DOI] [Google Scholar]
- 42.Zheng W, Bowen KH, Li J. Electronic structure differences in ZrO2 vs HfO2. J. Phys. Chem. A. 2005;109:11521–11525. doi: 10.1021/jp053593e. [DOI] [PubMed] [Google Scholar]
- 43.Bersch E, Rangan S, Bartynski RA, Garfunkel E, Vescovo E. Band offsets of ultrathin high- oxide films with Si. Phys. Rev. B. 2008;78:085114. doi: 10.1103/PhysRevB.78.085114. [DOI] [Google Scholar]
- 44.Krasavin AV, Zayats AV. Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator. Phys. Rev. Lett. 2012;1095:053901. doi: 10.1103/PhysRevLett.109.053901. [DOI] [PubMed] [Google Scholar]
- 45.Chang CH, Hwu JG. Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide. IEEE Trans. Dev. Mater. Reliab. 2009;9:215–221. doi: 10.1109/TDMR.2008.2012057. [DOI] [Google Scholar]
- 46.Amin R, et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 2019;7:081112. doi: 10.1063/1.5109039. [DOI] [Google Scholar]
- 47.Tao L, Anopchenko A, Gurung S, Zhang J, Lee HWH. Gate-tunable plasmon-induced transparency modulator based on stub-resonator waveguide with epsilon-near-zero materials. Sci. Rep. 2019;9:2789. doi: 10.1038/s41598-019-39047-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Wood MG, et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica. 2018;5:233–236. doi: 10.1364/OPTICA.5.000233. [DOI] [Google Scholar]
- 49.Gao Q, Li E, Wang AX. Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photon. Res. 2018;6:277–281. doi: 10.1364/PRJ.6.000277. [DOI] [Google Scholar]
- 50.Campione S, et al. Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide. IEEE Photonics J. 2017;9:1–7. doi: 10.1109/JPHOT.2017.2723299. [DOI] [Google Scholar]
- 51.Hoessbacher C, et al. The plasmonic memristor: A latching optical switch. Optica. 2014;1:198–202. doi: 10.1364/OPTICA.1.000198. [DOI] [Google Scholar]
- 52.Liu, A., Izhaky, N. & Liao, L. In Silicon Photonics 229–267 (2008).
- 53.Donnelly J. Limitations on power-transfer efficiency in three-guide optical couplers. IEEE J. Quantum Electron. 1986;22:610–616. doi: 10.1109/JQE.1986.1073010. [DOI] [Google Scholar]
- 54.Hoang T, et al. Enabling high-capacity long-reach direct detection transmission with QAM-PAM stokes vector modulation. J. Lightwave Technol. 2018;36:460–467. doi: 10.1109/JLT.2017.2768163. [DOI] [Google Scholar]
- 55.Korn D, et al. Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. Opt. Express. 2013;21:13219–13227. doi: 10.1364/OE.21.013219. [DOI] [PubMed] [Google Scholar]
- 56.Lauermann M, et al. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. Opt. Express. 2014;22:29927–29936. doi: 10.1364/OE.22.029927. [DOI] [PubMed] [Google Scholar]
- 57.Lu G-W, et al. 40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals. Opt. Express. 2010;18:23062–23069. doi: 10.1364/OE.18.023062. [DOI] [PubMed] [Google Scholar]
- 58.Wolf S, et al. DAC-less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators. J. Lightwave Technol. 2015;33:1425–1432. doi: 10.1109/JLT.2015.2394511. [DOI] [Google Scholar]
- 59.Zhang S, et al. Calibration-free measurement of high-speed Mach-Zehnder modulator based on low-frequency detection. Opt. Lett. 2016;41:460–463. doi: 10.1364/ol.41.000460. [DOI] [PubMed] [Google Scholar]
- 60.Zhang Z, et al. Numerical demonstration of 800 Gbps WDM silicon photonic transmitter with sub-decibel surface-normal optical interfaces. Micromachines. 2022;13:251. doi: 10.3390/mi13020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The calculated results during the current study are available from the corresponding author on reasonable request.