Abstract
Little is known about how to precisely promote the selective production of either colloidal semiconductor metal chalcogenide (ME), magic-size clusters (MSCs), or quantum dots (QDs). Recently, a two-pathway model has been proposed to comprehend their evolution; here, we reveal for the first time that the size of precursors plays a decisive role in the selected evolution pathway of MSCs and QDs. With the reaction of cadmium myristate (Cd(MA)2) and tri-n-octylphosphine selenide (SeTOP) in 1-octadecene (ODE) as a model system, the size of Cd precursors was manipulated by the steric hindrance of carboxylic acid (RCOOH) additive. Without RCOOH, the reaction produced both CdSe MSCs and QDs (from 100 to 240 °C). With RCOOH, the reaction produced MSCs or QDs when R was small (such as CH3−) or large (such as C6H5−), respectively. According to the two-pathway model, the selective evolution is attributed to the promotion and suppression of the self-assembly of Cd and Se precursors, respectively. We propose that the addition of carboxylic acid may occur ligand exchange with Cd(MA)2, causing the different sizes of Cd precursor. The results suggest that the size of Cd precursors regulates the self-assemble behavior of the precursors, which dictates the directed evolution of either MSCs or QDs. The present findings bring insights into the two-pathway model, as the size of M and E precursors determine the evolution pathways of MSCs or QDs, the understanding of which is of great fundamental significance toward mechanism-enabled design and predictive synthesis of functional nanomaterials.

Electronic Supplementary Material
Supplementary material (additional optical absorption spectra, TEM, NMR, FT-IR, and XRD) is available in the online version of this article at 10.1007/s12274-022-4421-4.
Keywords: cadmium selenide (CdSe), magic-size clusters (MSCs), quantum dots (QDs), self-assembly, steric hindrance
Electronic Supplementary Material
Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots
Acknowledgements
K. Y. thanks the National Natural Science Foundation of China (NSFC, No. 21773162), the Fundamental Research Funds for the Central Universities, the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (No, 2020YJ0326), the State Key Laboratory of Polymer Materials Engineering of Sichuan University respectively for No. sklpme2020-2-09, and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University for No. SKLSSM 2021030. M. Z. is grateful to National Natural Science Foundation of China ((NSFC, No. 22002099), China Postdoctoral Science Foundation (No. 2020T130441), Sichuan University postdoctoral interdisciplinary Innovation Fund and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University (No. SKLSSM 2021032). C. R. L. is grateful to the COVID-19 Science and Technology Emergency Project of Sichuan Province of China (No. 2021YFS0408). We thank the Analytical & Testing Center of Sichuan University for TEM.
Contributor Information
Chaoran Luan, Email: luanc@scu.edu.cn.
Kui Yu, Email: kuiyu@scu.edu.cn.
References
- [1].Bootharaju M S, Baek W, Lee S, Chang H, Kim J, Hyeon T. Magic-sized stoichiometric II–VI nanoclusters. Small. 2021;17:2002067. doi: 10.1002/smll.202002067. [DOI] [PubMed] [Google Scholar]
- [2].Pan D C, Ji X L, An L J, Lu Y F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008;20:3560–3566. doi: 10.1021/cm7023718. [DOI] [Google Scholar]
- [3].Ouyang J Y, Kuijper J, Brot S, Kingston D, Wu X H, Leek D M, Hu M Z, Ripmeester J A, Yu K. Photoluminescent colloidal CdS nanocrystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C. 2009;113:7579–7593. doi: 10.1021/jp900252e. [DOI] [Google Scholar]
- [4].Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002;124:3343–3353. doi: 10.1021/ja0173167. [DOI] [PubMed] [Google Scholar]
- [5].Kudera S, Zanella M, Giannini C, Rizzo A, Li Y, Gigli G, Cingolani R, Ciccarella G, Spahl W, Parak W J, et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007;19:548–552. doi: 10.1002/adma.200601015. [DOI] [Google Scholar]
- [6].Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004;3:99–102. doi: 10.1038/nmat1056. [DOI] [PubMed] [Google Scholar]
- [7].Wang R B, Ouyang J Y, Nikolaus S, Brestaz L, Zaman B, Wu X H, Leek D, Ratcliffe C I, Yu K. Chem. Commun. 2000. Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence; pp. 962–964. [DOI] [PubMed] [Google Scholar]
- [8].Wang Y Y, Zhou Y, Zhang Y, Buhro W E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015;54:1165–1177. doi: 10.1021/ic502637q. [DOI] [PubMed] [Google Scholar]
- [9].Dukes A D, III, McBride J R, Rosenthal S J. Synthesis of magic-sized CdSe and CdTe nanocrystals with diisooctylphosphinic acid. Chem. Mater. 2010;22:6402–6408. doi: 10.1021/cm102370a. [DOI] [Google Scholar]
- [10].Hsieh T E, Yang T W, Hsieh C Y, Huang S J, Yeh Y Q, Chen C H, Li E Y, Liu Y H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018;30:5468–5477. doi: 10.1021/acs.chemmater.8b02468. [DOI] [Google Scholar]
- [11].Nevers D R, Williamson C B, Savitzky B H, Hadar I, Banin U, Kourkoutis L F, Hanrath T, Robinson R D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018;140:3652–3662. doi: 10.1021/jacs.7b12175. [DOI] [PubMed] [Google Scholar]
- [12].Mule A S, Mazzotti S, Rossinelli A A, Aellen M, Prins P T, van der Bok J C, Solari S F, Glauser Y M, Kumar P V, Riedinger A, et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 2021;143:2037–2048. doi: 10.1021/jacs.0c12185. [DOI] [PubMed] [Google Scholar]
- [13].Wang P, Yang Q Q, Xu C, Wang B, Wang H, Zhang J D, Jin Y D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 2022;15:3106–3113. doi: 10.1007/s12274-021-3983-x. [DOI] [Google Scholar]
- [14].Dagtepe P, Chikan V, Jasinski J, Leppert V J. Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C. 2007;111:14977–14983. doi: 10.1021/jp072516b. [DOI] [Google Scholar]
- [15].Yu K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012;24:1123–1132. doi: 10.1002/adma.201104081. [DOI] [PubMed] [Google Scholar]
- [16].Friedfeld M R, Johnson D A, Cossairt B M. Conversion of InP clusters to quantum dots. Inorg. Chem. 2010;58:803–810. doi: 10.1021/acs.inorgchem.8b02945. [DOI] [PubMed] [Google Scholar]
- [17].Gary D C, Terban M W, Billinge S J L, Cossairt B M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015;27:1432–1441. doi: 10.1021/acs.chemmater.5b00286. [DOI] [Google Scholar]
- [18].Jiang Z J, Kelley D F. Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano. 2010;4:1561–1572. doi: 10.1021/nn100076f. [DOI] [PubMed] [Google Scholar]
- [19].Liu X M, Jiang Y, Guo W M, Lan X Z, Fu F M, Huang W Y, Li L J. One-pot synthesis of CdSe magic-sized nanocrystals using selenium dioxide as the selenium source compound. Chem. Eng. J. 2013;230:466–474. doi: 10.1016/j.cej.2013.06.116. [DOI] [Google Scholar]
- [20].Newton J C, Ramasamy K, Mandal M, Joshi G K, Kumbhar A, Sardar R. Low-temperature synthesis of magic-sized CdSe nanoclusters: Influence of ligands on nanocluster growth and photophysical properties. J. Phys. Chem. C. 2012;116:4380–4389. doi: 10.1021/jp2086818. [DOI] [Google Scholar]
- [21].Ithurria S, Bousquet G, Dubertret B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011;133:3070–3077. doi: 10.1021/ja110046d. [DOI] [PubMed] [Google Scholar]
- [22].Singh S, Tomar R, Brinck S T, Roo J, Geiregat P, Martins J C, Infante I, Hens Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018;140:13292–13300. doi: 10.1021/jacs.8b07566. [DOI] [PubMed] [Google Scholar]
- [23].Chen M, Luan C R, Zhang M, Rowell N, Willis M, Zhang C C, Wang S L, Zhu X H, Fan H S, Huang W, et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett. 2020;11:2230–2240. doi: 10.1021/acs.jpclett.0c00258. [DOI] [PubMed] [Google Scholar]
- [24].Wang Z, Wang T H, Zhang C C, Zhang M, Chen X Q, Fan H S, Huang W, Luan C R, Yu K. Evolution of two types of ZnTe magic-size clusters displaying sharp doublets in optical absorption. J. Phys. Chem. Lett. 2021;12:4762–4768. doi: 10.1021/acs.jpclett.1c00856. [DOI] [PubMed] [Google Scholar]
- [25].He Z T, Wang D Q, Yu Q Y, Zhang M, Wang S L, Huang W, Luan C R, Yu K. Evolution of photoluminescent CdS magic-size clusters assisted by adding small molecules with carboxylic group. ACS Omega. 2021;6:14458–14466. doi: 10.1021/acsomega.1c01362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Liu Y Y, Willis M, Rowell N, Luo W Z, Fan H S, Han S, Yu K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018;9:6356–6363. doi: 10.1021/acs.jpclett.8b03016. [DOI] [PubMed] [Google Scholar]
- [27].Abe S, Capek R K, De Geyter B, Hens Z. Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano. 2013;7:943–949. doi: 10.1021/nn3059168. [DOI] [PubMed] [Google Scholar]
- [28].Dai Q Q, Kan S H, Li D M, Jiang S, Chen H Y, Zhang M Z, Gao S Y, Nie Y G, Lu H L, Qu Q L, et al. Effect of ligands and growth temperature on the growth kinetics and crystal size of colloidal CdSe nanocrystals. Mater. Lett. 2006;60:2925–2928. doi: 10.1016/j.matlet.2006.02.015. [DOI] [Google Scholar]
- [29].Zhang Q, Zhang A Y, Yang P, Shen J X. Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer. J. Nanosci. Nanotechnol. 2013;13:4235–4241. doi: 10.1166/jnn.2013.7433. [DOI] [PubMed] [Google Scholar]
- [30].Choi H, Ko J H, Kim Y H, Jeong S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013;135:5278–5281. doi: 10.1021/ja400948t. [DOI] [PubMed] [Google Scholar]
- [31].Yu W W, Peng X G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002;41:2368–2371. doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- [32].Green P B, Wang Z B, Sohn P, Imperiale C J, Voznyy O, Wilson M W B. Glycol ether additives control the size of PbS nanocrystals at reaction completion. J. Mater. Chem. C. 2020;8:12068–12074. doi: 10.1039/D0TC03252B. [DOI] [Google Scholar]
- [33].Zhang J, Hao X Y, Rowell N, Kreouzis T, Han S, Fan H S, Zhang C C, Hu C W, Zhang M, Yu K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018;9:3660–3666. doi: 10.1021/acs.jpclett.8b01520. [DOI] [PubMed] [Google Scholar]
- [34].Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters. ACS Nano. 2020;14:1227–1235. doi: 10.1021/acsnano.0c00040. [DOI] [PubMed] [Google Scholar]
- [35].Li, Y.; Rowell, N.; Luan, C. R.; Zhang, M.; Chen, X. Q.; Yu, K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters. Adv. Mater., in press, 10.1002/adma.202107940. [DOI] [PubMed]
- [36].Liu M Y, Wang K, Wang L X, Han S, Fan H S, Rowell N, Ripmeester J A, Renoud R, Bian F G, Zeng J R, et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017;8:15467. doi: 10.1038/ncomms15467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Zhu T T, Zhang B W, Zhang J, Lu J, Fan H S, Rowell N, Ripmeester J A, Han S, Yu K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017;29:5727–5735. doi: 10.1021/acs.chemmater.7b02014. [DOI] [Google Scholar]
- [38].Zhu D K, Hui J, Rowell N, Liu Y Y, Chen Q Y, Steegemans T, Fan H S, Zhang M, Yu K. Interpreting the ultraviolet absorption in the spectrum of 415 nm bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018;9:2818–2824. doi: 10.1021/acs.jpclett.8b01109. [DOI] [PubMed] [Google Scholar]
- [39].Luan C R, Gökçinar Ö Ö Ö, Rowell N, Kreouzis T, Han S, Zhang M, Fan H S, Yu K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett. 2018;9:5288–5295. doi: 10.1021/acs.jpclett.8b02334. [DOI] [PubMed] [Google Scholar]
- [40].He L, Luan C R, Rowell N, Zhang M, Chen X Q, Yu K. Transformations among colloidal semiconductor magic-size clusters. Acc. Chem. Res. 2021;54:776–786. doi: 10.1021/acs.accounts.0c00702. [DOI] [PubMed] [Google Scholar]
- [41].Zhao M, Chen Q Y, Zhu Y C, Liu Y H, Zhang C C, Jiang G, Zhang M, Yu K. Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature. Nano Res. 2022;15:2634–2642. doi: 10.1007/s12274-021-3858-1. [DOI] [Google Scholar]
- [42].LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950;72:4847–4854. doi: 10.1021/ja01167a001. [DOI] [Google Scholar]
- [43].García-Rodríguez R, Hendricks M P, Cossairt B M, Liu H T, Owen J S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013;25:1233–1249. doi: 10.1021/cm3035642. [DOI] [Google Scholar]
- [44].Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014;14:7610–7630. doi: 10.1021/cr400544s. [DOI] [PubMed] [Google Scholar]
- [45].Bai G Y, Gao D, Liu Z, Zhou X, Wang J J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature. 2019;576:437–441. doi: 10.1038/s41586-019-1827-6. [DOI] [PubMed] [Google Scholar]
- [46].Li L J, Zhang J, Zhang M, Rowell N, Zhang C C, Wang S L, Lu J, Fan H S, Huang W, Chen X Q, et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020;59:12013–12021. doi: 10.1002/anie.202001608. [DOI] [PubMed] [Google Scholar]
- [47].Service R F. How far can we push chemical self-assembly. Science. 2005;309:95. doi: 10.1126/science.309.5731.95. [DOI] [PubMed] [Google Scholar]
- [48].Busatto, S.; de Mello Donega, C. Magic-size semiconductor nanostructures: Where does the magic come from? ACS Mater. Au, in press,DOI: 10.1021/acsmaterialsau.1c00075. [DOI] [PMC free article] [PubMed]
- [49].Ithurria S, Dubertret B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008;130:16504–16505. doi: 10.1021/ja807724e. [DOI] [PubMed] [Google Scholar]
- [50].Cossairt B M, Owen J S. CdSe clusters: At the interface of small molecules and quantum dots. Chem. Mater. 2011;23:3114–3119. doi: 10.1021/cm2008686. [DOI] [Google Scholar]
- [51].Riedinger A, Ott F D, Mule A, Mazzotti S, Knüsel P N, Kress S J P, Prins F, Erwin S C, Norris D J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017;16:743–748. doi: 10.1038/nmat4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Pun A B, Mazzotti S, Mule A S, Norris D J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021;54:1545–1554. doi: 10.1021/acs.accounts.0c00859. [DOI] [PubMed] [Google Scholar]
- [53].Zhu J M, Cao Z P, Zhu Y C, Rowell N, Li Y, Wang S L, Zhang C C, Jiang G, Zhang M, Zeng J R, et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed. 2021;60:20358–20365. doi: 10.1002/anie.202104986. [DOI] [PubMed] [Google Scholar]
- [54].Prins P T, Montanarella F, Dümbgen K, Justo Y, van der Bok J C, Hinterding S O M, Geuchies J J, Maes J, De Nolf K, Deelen S, et al. Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis. Nano Lett. 2021;21:2487–2496. doi: 10.1021/acs.nanolett.0c04813. [DOI] [PubMed] [Google Scholar]
- [55].Liu Y Y, Rowell N, Willis M, Zhang M, Wang S L, Fan H S, Huang W, Chen X Q, Yu K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019;10:2794–2801. doi: 10.1021/acs.jpclett.9b00838. [DOI] [PubMed] [Google Scholar]
- [56].Yu K, Ouyang J Y, Zaman M B, Johnston D, Yan F J, Li G, Ratcliffe C I, Leek D M, Wu X H, Stupak J, et al. Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach. J. Phys. Chem. C. 2009;113:3390–3401. doi: 10.1021/jp809990a. [DOI] [Google Scholar]
- [57].Calvin J J, Brewer A S, Alivisatos A P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022;1:127–137. doi: 10.1038/s44160-022-00025-4. [DOI] [Google Scholar]
- [58].Ouyang J Y, Zaman M B, Yan F J, Johnston D, Li G, Wu X H, Leek D, Ratcliffe C I, Ripmeester J A, Yu K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C. 2008;112:13805–13811. doi: 10.1021/jp803845n. [DOI] [Google Scholar]
- [59].Ghosh S, Ray A, Pramanik N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys. Chem. 2020;265:106429. doi: 10.1016/j.bpc.2020.106429. [DOI] [PubMed] [Google Scholar]
- [60].Zhang J, Li L J, Rowell N, Kreouzis T, Willis M, Fan H S, Zhang C C, Huang W, Zhang M, Yu K. One-step approach to single-ensemble CdS magic-size clusters with enhanced production yields. J. Phys. Chem. Lett. 2019;10:2725–2732. doi: 10.1021/acs.jpclett.9b01005. [DOI] [PubMed] [Google Scholar]
- [61].Liu S P, Yu Q Y, Zhang C C, Zhang M, Rowell N, Fan H S, Huang W, Yu K, Liang B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett. 2020;11:75–82. doi: 10.1021/acs.jpclett.9b02999. [DOI] [PubMed] [Google Scholar]
- [62].Van Embden J, Mulvaney P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir. 2005;21:10226–10233. doi: 10.1021/la051081l. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots
