Skip to main content
Springer logoLink to Springer
. 2022 May 31;82(5):499. doi: 10.1140/epjc/s10052-022-10315-y

Observation of B0 ψ(2S)KS0π+π- and Bs0 ψ(2S)KS0 decays

A Tumasyan 1, W Adam 2, J W Andrejkovic 2, T Bergauer 2, S Chatterjee 2, K Damanakis 2, M Dragicevic 2, A Escalante Del Valle 2, R Frühwirth 2,194, M Jeitler 2,194, N Krammer 2, L Lechner 2, D Liko 2, I Mikulec 2, P Paulitsch 2, F M Pitters 2, J Schieck 2,194, R Schöfbeck 2, D Schwarz 2, S Templ 2, W Waltenberger 2, C -E Wulz 2,194, V Chekhovsky 3, A Litomin 3, V Makarenko 3, M R Darwish 4,195, E A De Wolf 4, T Janssen 4, T Kello 4,196, A Lelek 4, H Rejeb Sfar 4, P Van Mechelen 4, S Van Putte 4, N Van Remortel 4, E S Bols 5, J D’Hondt 5, A De Moor 5, M Delcourt 5, H El Faham 5, S Lowette 5, S Moortgat 5, A Morton 5, D Müller 5, A R Sahasransu 5, S Tavernier 5, W Van Doninck 5, D Vannerom 5, D Beghin 6, B Bilin 6, B Clerbaux 6, G De Lentdecker 6, L Favart 6, A K Kalsi 6, K Lee 6, M Mahdavikhorrami 6, I Makarenko 6, L Moureaux 6, S Paredes 6, L Pétré 6, A Popov 6, N Postiau 6, E Starling 6, L Thomas 6, M Vanden Bemden 6, C Vander Velde 6, P Vanlaer 6, T Cornelis 7, D Dobur 7, J Knolle 7, L Lambrecht 7, G Mestdach 7, M Niedziela 7, C Rendón 7, C Roskas 7, A Samalan 7, K Skovpen 7, M Tytgat 7, B Vermassen 7, L Wezenbeek 7, A Benecke 8, A Bethani 8, G Bruno 8, F Bury 8, C Caputo 8, P David 8, C Delaere 8, I S Donertas 8, A Giammanco 8, K Jaffel 8, Sa Jain 8, V Lemaitre 8, K Mondal 8, J Prisciandaro 8, A Taliercio 8, M Teklishyn 8, T T Tran 8, P Vischia 8, S Wertz 8, G A Alves 9, C Hensel 9, A Moraes 9, P Rebello Teles 9, W L Aldá Júnior 10, M Alves Gallo Pereira 10, M Barroso Ferreira Filho 10, H Brandao Malbouisson 10, W Carvalho 10, J Chinellato 10,197, E M Da Costa 10, G G Da Silveira 10,198, D De Jesus Damiao 10, V Dos Santos Sousa 10, S Fonseca De Souza 10, C Mora Herrera 10, K Mota Amarilo 10, L Mundim 10, H Nogima 10, A Santoro 10, S M Silva Do Amaral 10, A Sznajder 10, M Thiel 10, F Torres Da Silva De Araujo 10,199, A Vilela Pereira 10, C A Bernardes 11,198, L Calligaris 11, T R Fernandez Perez Tomei 11, E M Gregores 11, D S Lemos 11, P G Mercadante 11, S F Novaes 11, Sandra S Padula 11, A Aleksandrov 12, G Antchev 12, R Hadjiiska 12, P Iaydjiev 12, M Misheva 12, M Rodozov 12, M Shopova 12, G Sultanov 12, A Dimitrov 13, T Ivanov 13, L Litov 13, B Pavlov 13, P Petkov 13, A Petrov 13, T Cheng 14, T Javaid 14,200, M Mittal 14, L Yuan 14, M Ahmad 15, G Bauer 15, C Dozen 15,201, Z Hu 15, J Martins 15,202, Y Wang 15, K Yi 15,203,204, E Chapon 16, G M Chen 16,200, H S Chen 16,200, M Chen 16, F Iemmi 16, A Kapoor 16, D Leggat 16, H Liao 16, Z -A Liu 16,200, V Milosevic 16, F Monti 16, R Sharma 16, J Tao 16, J Thomas-Wilsker 16, J Wang 16, H Zhang 16, J Zhao 16, A Agapitos 17, Y An 17, Y Ban 17, C Chen 17, A Levin 17, Q Li 17, X Lyu 17, Y Mao 17, S J Qian 17, D Wang 17, J Xiao 17, H Yang 17, M Lu 18, Z You 18, X Gao 19,196, H Okawa 19, Y Zhang 19, Z Lin 20, M Xiao 20, C Avila 21, A Cabrera 21, C Florez 21, J Fraga 21, J Mejia Guisao 22, F Ramirez 22, J D Ruiz Alvarez 22, D Giljanovic 23, N Godinovic 23, D Lelas 23, I Puljak 23, Z Antunovic 24, M Kovac 24, T Sculac 24, V Brigljevic 25, D Ferencek 25, D Majumder 25, M Roguljic 25, A Starodumov 25,205, T Susa 25, A Attikis 26, K Christoforou 26, G Kole 26, M Kolosova 26, S Konstantinou 26, J Mousa 26, C Nicolaou 26, F Ptochos 26, P A Razis 26, H Rykaczewski 26, H Saka 26, M Finger 27,206, M Finger Jr 27,206, A Kveton 27, E Ayala 28, E Carrera Jarrin 29, A A Abdelalim 30,207,208, E Salama 30,209,210, M A Mahmoud 31, Y Mohammed 31, S Bhowmik 32, R K Dewanjee 32, K Ehataht 32, M Kadastik 32, S Nandan 32, C Nielsen 32, J Pata 32, M Raidal 32, L Tani 32, C Veelken 32, P Eerola 33, H Kirschenmann 33, K Osterberg 33, M Voutilainen 33, S Bharthuar 34, E Brücken 34, F Garcia 34, J Havukainen 34, M S Kim 34, R Kinnunen 34, T Lampén 34, K Lassila-Perini 34, S Lehti 34, T Lindén 34, M Lotti 34, L Martikainen 34, M Myllymäki 34, J Ott 34, M m Rantanen 34, H Siikonen 34, E Tuominen 34, J Tuominiemi 34, P Luukka 35, H Petrow 35, T Tuuva 35, C Amendola 36, M Besancon 36, F Couderc 36, M Dejardin 36, D Denegri 36, J L Faure 36, F Ferri 36, S Ganjour 36, P Gras 36, G Hamel de Monchenault 36, P Jarry 36, B Lenzi 36, J Malcles 36, J Rander 36, A Rosowsky 36, M Ö Sahin 36, A Savoy-Navarro 36,211, M Titov 36, G B Yu 36, S Ahuja 37, F Beaudette 37, M Bonanomi 37, A Buchot Perraguin 37, P Busson 37, A Cappati 37, C Charlot 37, O Davignon 37, B Diab 37, G Falmagne 37, S Ghosh 37, R Granier de Cassagnac 37, A Hakimi 37, I Kucher 37, J Motta 37, M Nguyen 37, C Ochando 37, P Paganini 37, J Rembser 37, R Salerno 37, U Sarkar 37, J B Sauvan 37, Y Sirois 37, A Tarabini 37, A Zabi 37, A Zghiche 37, J -L Agram 38,212, J Andrea 38, D Apparu 38, D Bloch 38, G Bourgatte 38, J -M Brom 38, E C Chabert 38, C Collard 38, D Darej 38, J -C Fontaine 38,212, U Goerlach 38, C Grimault 38, A -C Le Bihan 38, E Nibigira 38, P Van Hove 38, E Asilar 39, S Beauceron 39, C Bernet 39, G Boudoul 39, C Camen 39, A Carle 39, N Chanon 39, D Contardo 39, P Depasse 39, H El Mamouni 39, J Fay 39, S Gascon 39, M Gouzevitch 39, B Ille 39, I B Laktineh 39, H Lattaud 39, A Lesauvage 39, M Lethuillier 39, L Mirabito 39, S Perries 39, K Shchablo 39, V Sordini 39, L Torterotot 39, G Touquet 39, M Vander Donckt 39, S Viret 39, I Lomidze 40, T Toriashvili 40,213, Z Tsamalaidze 40,206, V Botta 41, L Feld 41, K Klein 41, M Lipinski 41, D Meuser 41, A Pauls 41, N Röwert 41, J Schulz 41, M Teroerde 41, A Dodonova 42, D Eliseev 42, M Erdmann 42, P Fackeldey 42, B Fischer 42, T Hebbeker 42, K Hoepfner 42, F Ivone 42, L Mastrolorenzo 42, M Merschmeyer 42, A Meyer 42, G Mocellin 42, S Mondal 42, S Mukherjee 42, D Noll 42, A Novak 42, A Pozdnyakov 42, Y Rath 42, H Reithler 42, A Schmidt 42, S C Schuler 42, A Sharma 42, L Vigilante 42, S Wiedenbeck 42, S Zaleski 42, C Dziwok 43, G Flügge 43, W Haj Ahmad 43,214, O Hlushchenko 43, T Kress 43, A Nowack 43, O Pooth 43, D Roy 43, A Stahl 43,215, T Ziemons 43, A Zotz 43, H Aarup Petersen 44, M Aldaya Martin 44, P Asmuss 44, S Baxter 44, M Bayatmakou 44, O Behnke 44, A Bermúdez Martínez 44, S Bhattacharya 44, A A Bin Anuar 44, F Blekman 44, K Borras 44,216, D Brunner 44, A Campbell 44, A Cardini 44, C Cheng 44, F Colombina 44, S Consuegra Rodríguez 44, G Correia Silva 44, M De Silva 44, L Didukh 44, G Eckerlin 44, D Eckstein 44, L I Estevez Banos 44, O Filatov 44, E Gallo 44,217, A Geiser 44, A Giraldi 44, A Grohsjean 44, M Guthoff 44, A Jafari 44,218, N Z Jomhari 44, H Jung 44, A Kasem 44,216, M Kasemann 44, H Kaveh 44, C Kleinwort 44, R Kogler 44, D Krücker 44, W Lange 44, K Lipka 44, W Lohmann 44,219, R Mankel 44, I -A Melzer-Pellmann 44, M Mendizabal Morentin 44, J Metwally 44, A B Meyer 44, M Meyer 44, J Mnich 44, A Mussgiller 44, A Nürnberg 44, Y Otarid 44, D Pérez Adán 44, D Pitzl 44, A Raspereza 44, B Ribeiro Lopes 44, J Rübenach 44, A Saggio 44, A Saibel 44, M Savitskyi 44, M Scham 44,220, V Scheurer 44, S Schnake 44, P Schütze 44, C Schwanenberger 44,217, M Shchedrolosiev 44, R E Sosa Ricardo 44, D Stafford 44, N Tonon 44, M Van De Klundert 44, F Vazzoler 44, R Walsh 44, D Walter 44, Q Wang 44, Y Wen 44, K Wichmann 44, L Wiens 44, C Wissing 44, S Wuchterl 44, R Aggleton 45, S Albrecht 45, S Bein 45, L Benato 45, P Connor 45, K De Leo 45, M Eich 45, K El Morabit 45, F Feindt 45, A Fröhlich 45, C Garbers 45, E Garutti 45, P Gunnellini 45, M Hajheidari 45, J Haller 45, A Hinzmann 45, G Kasieczka 45, R Klanner 45, T Kramer 45, V Kutzner 45, J Lange 45, T Lange 45, A Lobanov 45, A Malara 45, C Matthies 45, A Mehta 45, A Nigamova 45, K J Pena Rodriguez 45, M Rieger 45, O Rieger 45, P Schleper 45, M Schröder 45, J Schwandt 45, J Sonneveld 45, H Stadie 45, G Steinbrück 45, A Tews 45, I Zoi 45, J Bechtel 46, S Brommer 46, M Burkart 46, E Butz 46, R Caspart 46, T Chwalek 46, W De Boer 46, A Dierlamm 46, A Droll 46, N Faltermann 46, M Giffels 46, J O Gosewisch 46, A Gottmann 46, F Hartmann 46,215, C Heidecker 46, U Husemann 46, P Keicher 46, R Koppenhöfer 46, S Maier 46, S Mitra 46, Th Müller 46, M Neukum 46, G Quast 46, K Rabbertz 46, J Rauser 46, D Savoiu 46, M Schnepf 46, D Seith 46, I Shvetsov 46, H J Simonis 46, R Ulrich 46, J Van Der Linden 46, R F Von Cube 46, M Wassmer 46, M Weber 46, S Wieland 46, R Wolf 46, S Wozniewski 46, S Wunsch 46, G Anagnostou 47, G Daskalakis 47, A Kyriakis 47, D Loukas 47, A Stakia 47, M Diamantopoulou 48, D Karasavvas 48, P Kontaxakis 48, C K Koraka 48, A Manousakis-Katsikakis 48, A Panagiotou 48, I Papavergou 48, N Saoulidou 48, K Theofilatos 48, E Tziaferi 48, K Vellidis 48, E Vourliotis 48, G Bakas 49, K Kousouris 49, I Papakrivopoulos 49, G Tsipolitis 49, A Zacharopoulou 49, K Adamidis 50, I Bestintzanos 50, I Evangelou 50, C Foudas 50, P Gianneios 50, P Katsoulis 50, P Kokkas 50, N Manthos 50, I Papadopoulos 50, J Strologas 50, M Csanad 51, K Farkas 51, M M A Gadallah 51,221, S Lökös 51,222, P Major 51, K Mandal 51, G Pasztor 51, A J Rádl 51, O Surányi 51, G I Veres 51, M Bartók 52,223, G Bencze 52, C Hajdu 52, D Horvath 52,224,225, F Sikler 52, V Veszpremi 52, S Czellar 53, D Fasanella 53, F Fienga 53, J Karancsi 53,223, J Molnar 53, Z Szillasi 53, D Teyssier 53, P Raics 54, Z L Trocsanyi 54,226, B Ujvari 54,227, T Csorgo 55,228, F Nemes 55,228, T Novak 55, S Bahinipati 56,229, C Kar 56, P Mal 56, T Mishra 56, V K Muraleedharan Nair Bindhu 56,230, A Nayak 56,230, P Saha 56, N Sur 56, S K Swain 56, D Vats 56,230, S Bansal 57, S B Beri 57, V Bhatnagar 57, G Chaudhary 57, S Chauhan 57, N Dhingra 57,231, R Gupta 57, A Kaur 57, H Kaur 57, M Kaur 57, P Kumari 57, M Meena 57, K Sandeep 57, J B Singh 57,232, A K Virdi 57, A Ahmed 58, A Bhardwaj 58, B C Choudhary 58, M Gola 58, S Keshri 58, A Kumar 58, M Naimuddin 58, P Priyanka 58, K Ranjan 58, S Saumya 58, A Shah 58, M Bharti 59,233, R Bhattacharya 59, S Bhattacharya 59, D Bhowmik 59, S Dutta 59, S Dutta 59, B Gomber 59,234, M Maity 59,235, P Palit 59, P K Rout 59, G Saha 59, B Sahu 59, S Sarkar 59, M Sharan 59, P K Behera 60, S C Behera 60, P Kalbhor 60, J R Komaragiri 60,236, D Kumar 60,236, A Muhammad 60, L Panwar 60,236, R Pradhan 60, P R Pujahari 60, A Sharma 60, A K Sikdar 60, P C Tiwari 60,236, K Naskar 61,237, T Aziz 62, S Dugad 62, M Kumar 62, S Banerjee 63, R Chudasama 63, M Guchait 63, S Karmakar 63, S Kumar 63, G Majumder 63, K Mazumdar 63, S Mukherjee 63, A Alpana 64, S Dube 64, B Kansal 64, A Laha 64, S Pandey 64, A Rastogi 64, S Sharma 64, H Bakhshiansohi 65,238,239, E Khazaie 65,239, M Zeinali 65,240, S Chenarani 66,241, S M Etesami 66, M Khakzad 66, M Mohammadi Najafabadi 66, M Grunewald 67, M Abbrescia 68, R Aly 68,242, C Aruta 68, A Colaleo 68, D Creanza 68, N De Filippis 68, M De Palma 68, A Di Florio 68, A Di Pilato 68, W Elmetenawee 68, F Errico 68, L Fiore 68, G Iaselli 68, M Ince 68, S Lezki 68, G Maggi 68, M Maggi 68, I Margjeka 68, V Mastrapasqua 68, S My 68, S Nuzzo 68, A Pellecchia 68, A Pompili 68, G Pugliese 68, D Ramos 68, A Ranieri 68, G Selvaggi 68, L Silvestris 68, F M Simone 68, Ü Sözbilir 68, R Venditti 68, P Verwilligen 68, G Abbiendi 69, C Battilana 69, D Bonacorsi 69, L Borgonovi 69, L Brigliadori 69, R Campanini 69, P Capiluppi 69, A Castro 69, F R Cavallo 69, C Ciocca 69, M Cuffiani 69, G M Dallavalle 69, T Diotalevi 69, F Fabbri 69, A Fanfani 69, P Giacomelli 69, L Giommi 69, C Grandi 69, L Guiducci 69, S Lo Meo 69,243, L Lunerti 69, S Marcellini 69, G Masetti 69, F L Navarria 69, A Perrotta 69, F Primavera 69, A M Rossi 69, T Rovelli 69, G P Siroli 69, S Albergo 70,244, S Costa 70,244, A Di Mattia 70, R Potenza 70, A Tricomi 70,244, C Tuve 70, G Barbagli 71, A Cassese 71, R Ceccarelli 71, V Ciulli 71, C Civinini 71, R D’Alessandro 71, E Focardi 71, G Latino 71, P Lenzi 71, M Lizzo 71, M Meschini 71, S Paoletti 71, R Seidita 71, G Sguazzoni 71, L Viliani 71, L Benussi 72, S Bianco 72, D Piccolo 72, M Bozzo 73, F Ferro 73, R Mulargia 73, E Robutti 73, S Tosi 73, A Benaglia 74, G Boldrini 74, F Brivio 74, F Cetorelli 74, F De Guio 74, M E Dinardo 74, P Dini 74, S Gennai 74, A Ghezzi 74, P Govoni 74, L Guzzi 74, M T Lucchini 74, M Malberti 74, S Malvezzi 74, A Massironi 74, D Menasce 74, L Moroni 74, M Paganoni 74, D Pedrini 74, B S Pinolini 74, S Ragazzi 74, N Redaelli 74, T Tabarelli de Fatis 74, D Valsecchi 74,215, D Zuolo 74, S Buontempo 75, F Carnevali 75, N Cavallo 75, A De Iorio 75, F Fabozzi 75, A O M Iorio 75, L Lista 75,245, S Meola 75,215, P Paolucci 75,215, B Rossi 75, C Sciacca 75, P Azzi 76, N Bacchetta 76, D Bisello 76, P Bortignon 76, A Bragagnolo 76, R Carlin 76, P Checchia 76, T Dorigo 76, U Dosselli 76, F Gasparini 76, U Gasparini 76, G Grosso 76, L Layer 76,246, E Lusiani 76, M Margoni 76, F Marini 76, A T Meneguzzo 76, J Pazzini 76, P Ronchese 76, R Rossin 76, F Simonetto 76, G Strong 76, M Tosi 76, H Yarar 76, M Zanetti 76, P Zotto 76, A Zucchetta 76, G Zumerle 76, C Aimè 77, A Braghieri 77, S Calzaferri 77, D Fiorina 77, P Montagna 77, S P Ratti 77, V Re 77, C Riccardi 77, P Salvini 77, I Vai 77, P Vitulo 77, P Asenov 78,247, G M Bilei 78, D Ciangottini 78, L Fanò 78, M Magherini 78, G Mantovani 78, V Mariani 78, M Menichelli 78, F Moscatelli 78,247, A Piccinelli 78, M Presilla 78, A Rossi 78, A Santocchia 78, D Spiga 78, T Tedeschi 78, P Azzurri 79, G Bagliesi 79, V Bertacchi 79, L Bianchini 79, T Boccali 79, E Bossini 79, R Castaldi 79, M A Ciocci 79, V D’Amante 79, R Dell’Orso 79, M R Di Domenico 79, S Donato 79, A Giassi 79, F Ligabue 79, E Manca 79, G Mandorli 79, D Matos Figueiredo 79, A Messineo 79, M Musich 79, F Palla 79, S Parolia 79, G Ramirez-Sanchez 79, A Rizzi 79, G Rolandi 79, S Roy Chowdhury 79, A Scribano 79, N Shafiei 79, P Spagnolo 79, R Tenchini 79, G Tonelli 79, N Turini 79, A Venturi 79, P G Verdini 79, P Barria 80, M Campana 80, F Cavallari 80, D Del Re 80, E Di Marco 80, M Diemoz 80, E Longo 80, P Meridiani 80, G Organtini 80, F Pandolfi 80, R Paramatti 80, C Quaranta 80, S Rahatlou 80, C Rovelli 80, F Santanastasio 80, L Soffi 80, R Tramontano 80, N Amapane 81, R Arcidiacono 81, S Argiro 81, M Arneodo 81, N Bartosik 81, R Bellan 81, A Bellora 81, J Berenguer Antequera 81, C Biino 81, N Cartiglia 81, M Costa 81, R Covarelli 81, N Demaria 81, M Grippo 81, B Kiani 81, F Legger 81, C Mariotti 81, S Maselli 81, A Mecca 81, E Migliore 81, E Monteil 81, M Monteno 81, M M Obertino 81, G Ortona 81, L Pacher 81, N Pastrone 81, M Pelliccioni 81, M Ruspa 81, K Shchelina 81, F Siviero 81, V Sola 81, A Solano 81, D Soldi 81, A Staiano 81, M Tornago 81, D Trocino 81, G Umoret 81, A Vagnerini 81, S Belforte 82, V Candelise 82, M Casarsa 82, F Cossutti 82, A Da Rold 82, G Della Ricca 82, G Sorrentino 82, S Dogra 83, C Huh 83, B Kim 83, D H Kim 83, G N Kim 83, J Kim 83, J Lee 83, S W Lee 83, C S Moon 83, Y D Oh 83, S I Pak 83, S Sekmen 83, Y C Yang 83, H Kim 84, D H Moon 84, B Francois 85, T J Kim 85, J Park 85, S Cho 86, S Choi 86, B Hong 86, K Lee 86, K S Lee 86, J Lim 86, J Park 86, S K Park 86, J Yoo 86, J Goh 87, A Gurtu 87, H S Kim 88, Y Kim 88, J Almond 89, J H Bhyun 89, J Choi 89, S Jeon 89, J Kim 89, J S Kim 89, S Ko 89, H Kwon 89, H Lee 89, S Lee 89, B H Oh 89, M Oh 89, S B Oh 89, H Seo 89, U K Yang 89, I Yoon 89, W Jang 90, D Y Kang 90, Y Kang 90, S Kim 90, B Ko 90, J S H Lee 90, Y Lee 90, J A Merlin 90, I C Park 90, Y Roh 90, M S Ryu 90, D Song 90, I J Watson 90, S Yang 90, S Ha 91, H D Yoo 91, M Choi 92, H Lee 92, Y Lee 92, I Yu 92, T Beyrouthy 93, Y Maghrbi 93, K Dreimanis 94, V Veckalns 94,248, M Ambrozas 95, A Carvalho Antunes De Oliveira 95, A Juodagalvis 95, A Rinkevicius 95, G Tamulaitis 95, N Bin Norjoharuddeen 96, Z Zolkapli 96, J F Benitez 97, A Castaneda Hernandez 97, H A Encinas Acosta 97, L G Gallegos Maríñez 97, M León Coello 97, J A Murillo Quijada 97, A Sehrawat 97, L Valencia Palomo 97, G Ayala 98, H Castilla-Valdez 98, E De La Cruz-Burelo 98, I Heredia-De La Cruz 98,249, R Lopez-Fernandez 98, C A Mondragon Herrera 98, D A Perez Navarro 98, R Reyes-Almanza 98, A Sánchez Hernández 98, S Carrillo Moreno 99, C Oropeza Barrera 99, F Vazquez Valencia 99, I Pedraza 100, H A Salazar Ibarguen 100, C Uribe Estrada 100, J Mijuskovic 101,250, N Raicevic 101, D Krofcheck 102, P H Butler 103, A Ahmad 104, M I Asghar 104, A Awais 104, M I M Awan 104, M Gul 104, H R Hoorani 104, W A Khan 104, M A Shah 104, M Shoaib 104, M Waqas 104, V Avati 105, L Grzanka 105, M Malawski 105, H Bialkowska 106, M Bluj 106, B Boimska 106, M Górski 106, M Kazana 106, M Szleper 106, P Zalewski 106, K Bunkowski 107, K Doroba 107, A Kalinowski 107, M Konecki 107, J Krolikowski 107, M Araujo 108, P Bargassa 108, D Bastos 108, A Boletti 108, P Faccioli 108, M Gallinaro 108, J Hollar 108, N Leonardo 108, T Niknejad 108, M Pisano 108, J Seixas 108, O Toldaiev 108, J Varela 108, S Afanasiev 109, D Budkouski 109, I Golutvin 109, I Gorbunov 109, V Karjavine 109, V Korenkov 109, A Lanev 109, A Malakhov 109, V Matveev 109,251,252, V Palichik 109, V Perelygin 109, M Savina 109, V Shalaev 109, S Shmatov 109, S Shulha 109, V Smirnov 109, O Teryaev 109, N Voytishin 109, B S Yuldashev 109,253, A Zarubin 109, I Zhizhin 109, G Gavrilov 110, V Golovtcov 110, Y Ivanov 110, V Kim 110,254, E Kuznetsova 110,255, V Murzin 110, V Oreshkin 110, I Smirnov 110, D Sosnov 110, V Sulimov 110, L Uvarov 110, S Volkov 110, A Vorobyev 110, Yu Andreev 111, A Dermenev 111, S Gninenko 111, N Golubev 111, A Karneyeu 111, D Kirpichnikov 111, M Kirsanov 111, N Krasnikov 111, A Pashenkov 111, G Pivovarov 111, A Toropin 111, V Epshteyn 112, V Gavrilov 112, N Lychkovskaya 112, A Nikitenko 112,256, V Popov 112, A Stepennov 112, M Toms 112, E Vlasov 112, A Zhokin 112, T Aushev 113, O Bychkova 114, R Chistov 114,257, M Danilov 114,257, A Oskin 114, P Parygin 114, S Polikarpov 114,257, A Tulupov 114, V Andreev 115, M Azarkin 115, I Dremin 115, M Kirakosyan 115, A Terkulov 115, A Belyaev 116, E Boos 116, M Dubinin 116,258, L Dudko 116, A Ershov 116, A Gribushin 116, V Klyukhin 116, O Kodolova 116, I Lokhtin 116, S Obraztsov 116, S Petrushanko 116, V Savrin 116, A Snigirev 116, V Blinov 117,259, T Dimova 117,259, L Kardapoltsev 117,259, A Kozyrev 117,259, I Ovtin 117,259, O Radchenko 117,259, Y Skovpen 117,259, I Azhgirey 118, I Bayshev 118, D Elumakhov 118, V Kachanov 118, D Konstantinov 118, P Mandrik 118, V Petrov 118, R Ryutin 118, S Slabospitskii 118, A Sobol 118, S Troshin 118, N Tyurin 118, A Uzunian 118, A Volkov 118, A Babaev 119, V Okhotnikov 119, V Borshch 120, V Ivanchenko 120, E Tcherniaev 120, P Adzic 121,260, M Dordevic 121, P Milenovic 121, J Milosevic 121, M Aguilar-Benitez 122, J Alcaraz Maestre 122, A Álvarez Fernández 122, I Bachiller 122, M Barrio Luna 122, Cristina F Bedoya 122, C A Carrillo Montoya 122, M Cepeda 122, M Cerrada 122, N Colino 122, B De La Cruz 122, A Delgado Peris 122, J P Fernández Ramos 122, J Flix 122, M C Fouz 122, O Gonzalez Lopez 122, S Goy Lopez 122, J M Hernandez 122, M I Josa 122, J León Holgado 122, D Moran 122, Á Navarro Tobar 122, C Perez Dengra 122, A Pérez-Calero Yzquierdo 122, J Puerta Pelayo 122, I Redondo 122, L Romero 122, S Sánchez Navas 122, L Urda Gómez 122, C Willmott 122, J F de Trocóniz 123, B Alvarez Gonzalez 124, J Cuevas 124, C Erice 124, J Fernandez Menendez 124, S Folgueras 124, I Gonzalez Caballero 124, J R González Fernández 124, E Palencia Cortezon 124, C Ramón Álvarez 124, V Rodríguez Bouza 124, A Soto Rodríguez 124, A Trapote 124, N Trevisani 124, C Vico Villalba 124, J A Brochero Cifuentes 125, I J Cabrillo 125, A Calderon 125, J Duarte Campderros 125, M Fernandez 125, C Fernandez Madrazo 125, P J Fernández Manteca 125, A García Alonso 125, G Gomez 125, C Martinez Rivero 125, P Martinez Ruiz del Arbol 125, F Matorras 125, P Matorras Cuevas 125, J Piedra Gomez 125, C Prieels 125, A Ruiz-Jimeno 125, L Scodellaro 125, I Vila 125, J M Vizan Garcia 125, M K Jayananda 126, B Kailasapathy 126,261, D U J Sonnadara 126, D D C Wickramarathna 126, W G D Dharmaratna 127, K Liyanage 127, N Perera 127, N Wickramage 127, T K Aarrestad 128, D Abbaneo 128, J Alimena 128, E Auffray 128, G Auzinger 128, J Baechler 128, P Baillon 128, D Barney 128, J Bendavid 128, M Bianco 128, A Bocci 128, C Caillol 128, T Camporesi 128, M Capeans Garrido 128, G Cerminara 128, N Chernyavskaya 128, S S Chhibra 128, S Choudhury 128, M Cipriani 128, L Cristella 128, D d’Enterria 128, A Dabrowski 128, A David 128, A De Roeck 128, M M Defranchis 128, M Deile 128, M Dobson 128, M Dünser 128, N Dupont 128, A Elliott-Peisert 128, F Fallavollita 128,262, A Florent 128, L Forthomme 128, G Franzoni 128, W Funk 128, S Ghosh 128, S Giani 128, D Gigi 128, K Gill 128, F Glege 128, L Gouskos 128, E Govorkova 128, M Haranko 128, J Hegeman 128, V Innocente 128, T James 128, P Janot 128, J Kaspar 128, J Kieseler 128, M Komm 128, N Kratochwil 128, C Lange 128, S Laurila 128, P Lecoq 128, A Lintuluoto 128, K Long 128, C Lourenço 128, B Maier 128, L Malgeri 128, S Mallios 128, M Mannelli 128, A C Marini 128, F Meijers 128, S Mersi 128, E Meschi 128, F Moortgat 128, M Mulders 128, S Orfanelli 128, L Orsini 128, F Pantaleo 128, E Perez 128, M Peruzzi 128, A Petrilli 128, G Petrucciani 128, A Pfeiffer 128, M Pierini 128, D Piparo 128, M Pitt 128, H Qu 128, T Quast 128, D Rabady 128, A Racz 128, G Reales Gutiérrez 128, M Rovere 128, H Sakulin 128, J Salfeld-Nebgen 128, S Scarfi 128, C Schwick 128, M Selvaggi 128, A Sharma 128, P Silva 128, W Snoeys 128, P Sphicas 128,263, S Summers 128, K Tatar 128, V R Tavolaro 128, D Treille 128, P Tropea 128, A Tsirou 128, J Wanczyk 128,264, K A Wozniak 128, W D Zeuner 128, L Caminada 129,265, A Ebrahimi 129, W Erdmann 129, R Horisberger 129, Q Ingram 129, H C Kaestli 129, D Kotlinski 129, U Langenegger 129, M Missiroli 129,265, L Noehte 129,265, T Rohe 129, K Androsov 130,264, M Backhaus 130, P Berger 130, A Calandri 130, A De Cosa 130, G Dissertori 130, M Dittmar 130, M Donegà 130, C Dorfer 130, F Eble 130, K Gedia 130, F Glessgen 130, T A Gómez Espinosa 130, C Grab 130, D Hits 130, W Lustermann 130, A -M Lyon 130, R A Manzoni 130, L Marchese 130, C Martin Perez 130, M T Meinhard 130, F Nessi-Tedaldi 130, J Niedziela 130, F Pauss 130, V Perovic 130, S Pigazzini 130, M G Ratti 130, M Reichmann 130, C Reissel 130, T Reitenspiess 130, B Ristic 130, D Ruini 130, D A Sanz Becerra 130, V Stampf 130, J Steggemann 130,264, R Wallny 130, C Amsler 131,266, P Bärtschi 131, C Botta 131, D Brzhechko 131, M F Canelli 131, K Cormier 131, A De Wit 131, R Del Burgo 131, J K Heikkilä 131, M Huwiler 131, W Jin 131, A Jofrehei 131, B Kilminster 131, S Leontsinis 131, S P Liechti 131, A Macchiolo 131, P Meiring 131, V M Mikuni 131, U Molinatti 131, I Neutelings 131, A Reimers 131, P Robmann 131, S Sanchez Cruz 131, K Schweiger 131, M Senger 131, Y Takahashi 131, C Adloff 132,267, C M Kuo 132, W Lin 132, A Roy 132, T Sarkar 132,235, S S Yu 132, L Ceard 133, Y Chao 133, K F Chen 133, P H Chen 133, P s Chen 133, H Cheng 133, W -S Hou 133, Y y Li 133, R -S Lu 133, E Paganis 133, A Psallidas 133, A Steen 133, H y Wu 133, E Yazgan 133, P r Yu 133, B Asavapibhop 134, C Asawatangtrakuldee 134, N Srimanobhas 134, F Boran 135, S Damarseckin 135,268, Z S Demiroglu 135, F Dolek 135, I Dumanoglu 135,269, E Eskut 135, Y Guler 135,270, E Gurpinar Guler 135,270, C Isik 135, O Kara 135, A Kayis Topaksu 135, U Kiminsu 135, G Onengut 135, K Ozdemir 135,271, A Polatoz 135, A E Simsek 135, B Tali 135,272, U G Tok 135, S Turkcapar 135, I S Zorbakir 135, G Karapinar 136, K Ocalan 136,273, M Yalvac 136,274, B Akgun 137, I O Atakisi 137, E Gulmez 137, M Kaya 137,275, O Kaya 137,276, Ö Özçelik 137, S Tekten 137,277, E A Yetkin 137,278, A Cakir 138, K Cankocak 138,269, Y Komurcu 138, S Sen 138,279, S Cerci 139,272, I Hos 139,280, B Isildak 139,281, B Kaynak 139, S Ozkorucuklu 139, H Sert 139, C Simsek 139, D Sunar Cerci 139,272, C Zorbilmez 139, B Grynyov 140, L Levchuk 141, D Anthony 142, E Bhal 142, S Bologna 142, J J Brooke 142, A Bundock 142, E Clement 142, D Cussans 142, H Flacher 142, M Glowacki 142, J Goldstein 142, G P Heath 142, H F Heath 142, L Kreczko 142, B Krikler 142, S Paramesvaran 142, S Seif El Nasr-Storey 142, V J Smith 142, N Stylianou 142,282, K Walkingshaw Pass 142, R White 142, K W Bell 143, A Belyaev 143,283, C Brew 143, R M Brown 143, D J A Cockerill 143, C Cooke 143, K V Ellis 143, K Harder 143, S Harper 143, M -L Holmberg 143,284, J Linacre 143, K Manolopoulos 143, D M Newbold 143, E Olaiya 143, D Petyt 143, T Reis 143, T Schuh 143, C H Shepherd-Themistocleous 143, I R Tomalin 143, T Williams 143, R Bainbridge 144, P Bloch 144, S Bonomally 144, J Borg 144, S Breeze 144, O Buchmuller 144, V Cepaitis 144, G S Chahal 144,285, D Colling 144, P Dauncey 144, G Davies 144, M Della Negra 144, S Fayer 144, G Fedi 144, G Hall 144, M H Hassanshahi 144, G Iles 144, J Langford 144, L Lyons 144, A -M Magnan 144, S Malik 144, A Martelli 144, D G Monk 144, J Nash 144,286, M Pesaresi 144, B C Radburn-Smith 144, D M Raymond 144, A Richards 144, A Rose 144, E Scott 144, C Seez 144, A Shtipliyski 144, A Tapper 144, K Uchida 144, T Virdee 144,215, M Vojinovic 144, N Wardle 144, S N Webb 144, D Winterbottom 144, K Coldham 145, J E Cole 145, A Khan 145, P Kyberd 145, I D Reid 145, L Teodorescu 145, S Zahid 145, S Abdullin 146, A Brinkerhoff 146, B Caraway 146, J Dittmann 146, K Hatakeyama 146, A R Kanuganti 146, B McMaster 146, M Saunders 146, S Sawant 146, C Sutantawibul 146, J Wilson 146, R Bartek 147, A Dominguez 147, R Uniyal 147, A M Vargas Hernandez 147, A Buccilli 148, S I Cooper 148, D Di Croce 148, S V Gleyzer 148, C Henderson 148, C U Perez 148, P Rumerio 148,287, C West 148, A Akpinar 149, A Albert 149, D Arcaro 149, C Cosby 149, Z Demiragli 149, E Fontanesi 149, D Gastler 149, S May 149, J Rohlf 149, K Salyer 149, D Sperka 149, D Spitzbart 149, I Suarez 149, A Tsatsos 149, S Yuan 149, D Zou 149, G Benelli 150, B Burkle 150, X Coubez 150,216, D Cutts 150, M Hadley 150, U Heintz 150, J M Hogan 150,288, T Kwon 150, G Landsberg 150, K T Lau 150, D Li 150, M Lukasik 150, J Luo 150, M Narain 150, N Pervan 150, S Sagir 150,289, F Simpson 150, E Usai 150, W Y Wong 150, X Yan 150, D Yu 150, W Zhang 150, J Bonilla 151, C Brainerd 151, R Breedon 151, M Calderon De La Barca Sanchez 151, M Chertok 151, J Conway 151, P T Cox 151, R Erbacher 151, G Haza 151, F Jensen 151, O Kukral 151, R Lander 151, M Mulhearn 151, D Pellett 151, B Regnery 151, D Taylor 151, Y Yao 151, F Zhang 151, M Bachtis 152, R Cousins 152, A Datta 152, D Hamilton 152, J Hauser 152, M Ignatenko 152, M A Iqbal 152, T Lam 152, W A Nash 152, S Regnard 152, D Saltzberg 152, B Stone 152, V Valuev 152, Y Chen 153, R Clare 153, J W Gary 153, M Gordon 153, G Hanson 153, G Karapostoli 153, O R Long 153, N Manganelli 153, W Si 153, S Wimpenny 153, Y Zhang 153, J G Branson 154, P Chang 154, S Cittolin 154, S Cooperstein 154, D Diaz 154, J Duarte 154, R Gerosa 154, L Giannini 154, J Guiang 154, R Kansal 154, V Krutelyov 154, R Lee 154, J Letts 154, M Masciovecchio 154, F Mokhtar 154, M Pieri 154, B V Sathia Narayanan 154, V Sharma 154, M Tadel 154, F Würthwein 154, Y Xiang 154, A Yagil 154, N Amin 155, C Campagnari 155, M Citron 155, G Collura 155, A Dorsett 155, V Dutta 155, J Incandela 155, M Kilpatrick 155, J Kim 155, B Marsh 155, H Mei 155, M Oshiro 155, M Quinnan 155, J Richman 155, U Sarica 155, F Setti 155, J Sheplock 155, P Siddireddy 155, D Stuart 155, S Wang 155, A Bornheim 156, O Cerri 156, I Dutta 156, J M Lawhorn 156, N Lu 156, J Mao 156, H B Newman 156, T Q Nguyen 156, M Spiropulu 156, J R Vlimant 156, C Wang 156, S Xie 156, Z Zhang 156, R Y Zhu 156, J Alison 157, S An 157, M B Andrews 157, P Bryant 157, T Ferguson 157, A Harilal 157, C Liu 157, T Mudholkar 157, M Paulini 157, A Sanchez 157, W Terrill 157, J P Cumalat 158, W T Ford 158, A Hassani 158, G Karathanasis 158, E MacDonald 158, R Patel 158, A Perloff 158, C Savard 158, N Schonbeck 158, K Stenson 158, K A Ulmer 158, S R Wagner 158, N Zipper 158, J Alexander 159, S Bright-Thonney 159, X Chen 159, Y Cheng 159, D J Cranshaw 159, S Hogan 159, J Monroy 159, J R Patterson 159, D Quach 159, J Reichert 159, M Reid 159, A Ryd 159, W Sun 159, J Thom 159, P Wittich 159, R Zou 159, M Albrow 160, M Alyari 160, G Apollinari 160, A Apresyan 160, A Apyan 160, L A T Bauerdick 160, D Berry 160, J Berryhill 160, P C Bhat 160, K Burkett 160, J N Butler 160, A Canepa 160, G B Cerati 160, H W K Cheung 160, F Chlebana 160, K F Di Petrillo 160, J Dickinson 160, V D Elvira 160, Y Feng 160, J Freeman 160, Z Gecse 160, L Gray 160, D Green 160, S Grünendahl 160, O Gutsche 160, R M Harris 160, R Heller 160, T C Herwig 160, J Hirschauer 160, B Jayatilaka 160, S Jindariani 160, M Johnson 160, U Joshi 160, T Klijnsma 160, B Klima 160, K H M Kwok 160, S Lammel 160, D Lincoln 160, R Lipton 160, T Liu 160, C Madrid 160, K Maeshima 160, C Mantilla 160, D Mason 160, P McBride 160, P Merkel 160, S Mrenna 160, S Nahn 160, J Ngadiuba 160, V Papadimitriou 160, N Pastika 160, K Pedro 160, C Pena 160,258, F Ravera 160, A Reinsvold Hall 160,290, L Ristori 160, E Sexton-Kennedy 160, N Smith 160, A Soha 160, L Spiegel 160, S Stoynev 160, J Strait 160, L Taylor 160, S Tkaczyk 160, N V Tran 160, L Uplegger 160, E W Vaandering 160, H A Weber 160, P Avery 161, D Bourilkov 161, L Cadamuro 161, V Cherepanov 161, R D Field 161, D Guerrero 161, M Kim 161, E Koenig 161, J Konigsberg 161, A Korytov 161, K H Lo 161, K Matchev 161, N Menendez 161, G Mitselmakher 161, A Muthirakalayil Madhu 161, N Rawal 161, D Rosenzweig 161, S Rosenzweig 161, K Shi 161, J Wang 161, Z Wu 161, E Yigitbasi 161, X Zuo 161, T Adams 162, A Askew 162, R Habibullah 162, V Hagopian 162, K F Johnson 162, R Khurana 162, T Kolberg 162, G Martinez 162, H Prosper 162, C Schiber 162, O Viazlo 162, R Yohay 162, J Zhang 162, M M Baarmand 163, S Butalla 163, T Elkafrawy 163,210, M Hohlmann 163, R Kumar Verma 163, D Noonan 163, M Rahmani 163, F Yumiceva 163, M R Adams 164, H Becerril Gonzalez 164, R Cavanaugh 164, S Dittmer 164, O Evdokimov 164, C E Gerber 164, D J Hofman 164, A H Merrit 164, C Mills 164, G Oh 164, T Roy 164, S Rudrabhatla 164, M B Tonjes 164, N Varelas 164, J Viinikainen 164, X Wang 164, Z Ye 164, M Alhusseini 165, K Dilsiz 165,291, L Emediato 165, R P Gandrajula 165, O K Köseyan 165, J -P Merlo 165, A Mestvirishvili 165,292, J Nachtman 165, H Ogul 165,293, Y Onel 165, A Penzo 165, C Snyder 165, E Tiras 165,294, O Amram 166, B Blumenfeld 166, L Corcodilos 166, J Davis 166, A V Gritsan 166, S Kyriacou 166, P Maksimovic 166, J Roskes 166, M Swartz 166, TÁ Vámi 166, A Abreu 167, J Anguiano 167, C Baldenegro Barrera 167, P Baringer 167, A Bean 167, Z Flowers 167, T Isidori 167, S Khalil 167, J King 167, G Krintiras 167, A Kropivnitskaya 167, M Lazarovits 167, C Le Mahieu 167, C Lindsey 167, J Marquez 167, N Minafra 167, M Murray 167, M Nickel 167, C Rogan 167, C Royon 167, R Salvatico 167, S Sanders 167, E Schmitz 167, C Smith 167, Q Wang 167, Z Warner 167, J Williams 167, G Wilson 167, S Duric 168, A Ivanov 168, K Kaadze 168, D Kim 168, Y Maravin 168, T Mitchell 168, A Modak 168, K Nam 168, F Rebassoo 169, D Wright 169, E Adams 170, A Baden 170, O Baron 170, A Belloni 170, S C Eno 170, N J Hadley 170, S Jabeen 170, R G Kellogg 170, T Koeth 170, Y Lai 170, S Lascio 170, A C Mignerey 170, S Nabili 170, C Palmer 170, M Seidel 170, A Skuja 170, L Wang 170, K Wong 170, D Abercrombie 171, G Andreassi 171, R Bi 171, W Busza 171, I A Cali 171, Y Chen 171, M D’Alfonso 171, J Eysermans 171, C Freer 171, G Gomez Ceballos 171, M Goncharov 171, P Harris 171, M Hu 171, M Klute 171, D Kovalskyi 171, J Krupa 171, Y -J Lee 171, C Mironov 171, C Paus 171, D Rankin 171, C Roland 171, G Roland 171, Z Shi 171, G S F Stephans 171, J Wang 171, Z Wang 171, B Wyslouch 171, R M Chatterjee 172, A Evans 172, J Hiltbrand 172, Sh Jain 172, B M Joshi 172, M Krohn 172, Y Kubota 172, J Mans 172, M Revering 172, R Rusack 172, R Saradhy 172, N Schroeder 172, N Strobbe 172, M A Wadud 172, K Bloom 173, M Bryson 173, S Chauhan 173, D R Claes 173, C Fangmeier 173, L Finco 173, F Golf 173, C Joo 173, I Kravchenko 173, I Reed 173, J E Siado 173, G R Snow 173, W Tabb 173, A Wightman 173, F Yan 173, A G Zecchinelli 173, G Agarwal 174, H Bandyopadhyay 174, L Hay 174, I Iashvili 174, A Kharchilava 174, C McLean 174, D Nguyen 174, J Pekkanen 174, S Rappoccio 174, A Williams 174, G Alverson 175, E Barberis 175, Y Haddad 175, Y Han 175, A Hortiangtham 175, A Krishna 175, J Li 175, J Lidrych 175, G Madigan 175, B Marzocchi 175, D M Morse 175, V Nguyen 175, T Orimoto 175, A Parker 175, L Skinnari 175, A Tishelman-Charny 175, T Wamorkar 175, B Wang 175, A Wisecarver 175, D Wood 175, S Bhattacharya 176, J Bueghly 176, Z Chen 176, A Gilbert 176, T Gunter 176, K A Hahn 176, Y Liu 176, N Odell 176, M H Schmitt 176, M Velasco 176, R Band 177, R Bucci 177, M Cremonesi 177, A Das 177, N Dev 177, R Goldouzian 177, M Hildreth 177, K Hurtado Anampa 177, C Jessop 177, K Lannon 177, J Lawrence 177, N Loukas 177, D Lutton 177, J Mariano 177, N Marinelli 177, I Mcalister 177, T McCauley 177, C Mcgrady 177, K Mohrman 177, C Moore 177, Y Musienko 177,251, R Ruchti 177, A Townsend 177, M Wayne 177, M Zarucki 177, L Zygala 177, B Bylsma 178, L S Durkin 178, B Francis 178, C Hill 178, M Nunez Ornelas 178, K Wei 178, B L Winer 178, B R Yates 178, F M Addesa 179, B Bonham 179, P Das 179, G Dezoort 179, P Elmer 179, A Frankenthal 179, B Greenberg 179, N Haubrich 179, S Higginbotham 179, A Kalogeropoulos 179, G Kopp 179, S Kwan 179, D Lange 179, D Marlow 179, K Mei 179, I Ojalvo 179, J Olsen 179, D Stickland 179, C Tully 179, S Malik 180, S Norberg 180, A S Bakshi 181, V E Barnes 181, R Chawla 181, S Das 181, L Gutay 181, M Jones 181, A W Jung 181, D Kondratyev 181, A M Koshy 181, M Liu 181, G Negro 181, N Neumeister 181, G Paspalaki 181, S Piperov 181, A Purohit 181, J F Schulte 181, M Stojanovic 181,211, J Thieman 181, F Wang 181, R Xiao 181, W Xie 181, J Dolen 182, N Parashar 182, D Acosta 183, A Baty 183, T Carnahan 183, M Decaro 183, S Dildick 183, K M Ecklund 183, S Freed 183, P Gardner 183, F J M Geurts 183, A Kumar 183, W Li 183, B P Padley 183, R Redjimi 183, J Rotter 183, W Shi 183, A G Stahl Leiton 183, S Yang 183, L Zhang 183,295, Y Zhang 183, A Bodek 184, P de Barbaro 184, R Demina 184, J L Dulemba 184, C Fallon 184, T Ferbel 184, M Galanti 184, A Garcia-Bellido 184, O Hindrichs 184, A Khukhunaishvili 184, E Ranken 184, R Taus 184, G P Van Onsem 184, K Goulianos 185, B Chiarito 186, J P Chou 186, A Gandrakota 186, Y Gershtein 186, E Halkiadakis 186, A Hart 186, M Heindl 186, O Karacheban 186,219, I Laflotte 186, A Lath 186, R Montalvo 186, K Nash 186, M Osherson 186, S Salur 186, S Schnetzer 186, S Somalwar 186, R Stone 186, S A Thayil 186, S Thomas 186, H Wang 186, H Acharya 187, A G Delannoy 187, S Fiorendi 187, S Spanier 187, O Bouhali 188,296, M Dalchenko 188, A Delgado 188, R Eusebi 188, J Gilmore 188, T Huang 188, T Kamon 188,297, H Kim 188, S Luo 188, S Malhotra 188, R Mueller 188, D Overton 188, D Rathjens 188, A Safonov 188, N Akchurin 189, J Damgov 189, V Hegde 189, K Lamichhane 189, S W Lee 189, T Mengke 189, S Muthumuni 189, T Peltola 189, I Volobouev 189, Z Wang 189, A Whitbeck 189, E Appelt 190, S Greene 190, A Gurrola 190, W Johns 190, A Melo 190, K Padeken 190, F Romeo 190, P Sheldon 190, S Tuo 190, J Velkovska 190, M W Arenton 191, B Cardwell 191, B Cox 191, G Cummings 191, J Hakala 191, R Hirosky 191, M Joyce 191, A Ledovskoy 191, A Li 191, C Neu 191, C E Perez Lara 191, B Tannenwald 191, S White 191, N Poudyal 192, S Banerjee 193, K Black 193, T Bose 193, S Dasu 193, I De Bruyn 193, P Everaerts 193, C Galloni 193, H He 193, M Herndon 193, A Herve 193, U Hussain 193, A Lanaro 193, A Loeliger 193, R Loveless 193, J Madhusudanan Sreekala 193, A Mallampalli 193, A Mohammadi 193, D Pinna 193, A Savin 193, V Shang 193, V Sharma 193, W H Smith 193, D Teague 193, S Trembath-Reichert 193, W Vetens 193; CMS Collaboration298
PMCID: PMC9156522  PMID: 35666690

Abstract

Using a data sample of s=13TeV proton-proton collisions collected by the CMS experiment at the LHC in 2017 and 2018 with an integrated luminosity of 103fb-1, the Bs0ψ(2S)KS0 and B0ψ(2S)KS0π+π- decays are observed with significances exceeding 5 standard deviations. The resulting branching fraction ratios, measured for the first time, correspond to B(Bs0ψ(2S)KS0)/B(B0ψ(2S)KS0)=(3.33±0.69(stat)±0.11(syst)±0.34(fs/fd))×10-2 and B(B0ψ(2S)KS0π+π-)/B(B0ψ(2S)KS0)=0.480±0.013(stat)±0.032(syst), where the last uncertainty in the first ratio is related to the uncertainty in the ratio of production cross sections of Bs0 and B0 mesons, fs/fd.

Introduction

Decays of neutral Inline graphic mesons into charmonium resonances (Inline graphic , etc.) are well suited to study the flavour sector of the standard model (SM) and to search for indications of new physics beyond the SM. In the last decade, interest in Inline graphic hadron decays to final states containing a charmonium resonance has increased after several exotic hadrons have been observed as intermediate resonances in multibody decays. Starting from the observation of X(3872) [1], many new charmonium-like states have been observed, such as X(4140) [25], Y(4260) [6, 7], and others, with properties (mass, width and decay pattern) not fitting into the landscape of traditional charmonium states. The first charged tetraquark candidate, Z(4430)+ was discovered in the Inline graphic decay as a peak in the Inline graphic mass spectrum [811]. Many other exotic hadrons have been observed in the last 15 years [12, 13], and the nature of most of them is still unclear. Moreover, channels whose final state is accessible both from Inline graphic and Inline graphic can be used to measure time-dependent CP asymmetry [1427] as well.

This paper presents the first measurement of the Inline graphic and Inline graphic decays, using a data sample of proton-proton collisions at s=13TeV collected by the CMS experiment at the CERN LHC in 2017 and 2018 with an integrated luminosity of 103Inline graphic [28, 29]. Both decays can potentially be used for CP asymmetry measurements, and, in addition, the second one can also be used to search for intermediate exotic resonances. The Inline graphic and Inline graphic mesons are reconstructed using their decays into Inline graphic and Inline graphic , respectively. The Inline graphic decay is chosen as the normalization channel for the measurement of the branching fractions, since its probability is precisely known [13], and its topology and kinematic properties are similar to those of the Inline graphic or Inline graphic decays. Therefore, using this normalization reduces the systematic uncertainties related to muon and track reconstruction. The relative branching fractions are measured using the relations

graphic file with name 10052_2022_10315_Equ1_HTML.gif 1

where Inline graphic is the branching fraction, N is the number of reconstructed events in data, ϵ is the total reconstruction efficiency, and fd/fs is the ratio of production cross sections of B0 and Bs0 mesons (also called fragmentation fraction ratio). Charge-conjugate states are implied to be included throughout the paper.

Tabulated results are provided in the HEPData record for this analysis [30].

The CMS detector and simulated event samples

The central feature of the CMS apparatus [31] is a superconducting solenoid of 6m internal diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system [32]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100kHz within a time interval of less than 4μs [33]. The first-level trigger used in this analysis requires at least two muons. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing that reduces the event rate to around 1kHz before data storage. The high-level trigger algorithm used in the analysis requires two opposite-sign muons compatible with the dimuon decay of a Inline graphic meson with transverse momentum (Inline graphic ) larger than 18GeV.

Simulated Monte Carlo samples for the decays of interest are generated for the analysis. The Inline graphic 8.230 package [34] with the CP5 tune [35] is used to simulate the production of the B0 and Bs0 mesons, whose subsequent decays are performed by Inline graphic 1.6.0 [36], where final-state photon radiation is included using Inline graphic 3.61 [37, 38]. The lifetimes of B0 and Bs0 mesons used in the generation are 1.52 and 1.47ps, respectively. The generated events are passed to a detailed GEANT4-based simulation [39] of the CMS detector, and are then processed using the same trigger and reconstruction as used for the collision data. The simulation includes effects from multiple proton-proton interactions in the same or nearby bunch crossings (pileup) with the multiplicity distribution tuned to match those of the data.

Event reconstruction and selection

The reconstruction procedure starts with finding two muons of opposite charges, that must match those that triggered the event readout. The muon candidates are required to have Inline graphic, a pseudorapidity Inline graphic, and to satisfy general identification (soft-muon) criteria [40]. The two muons with a two-prong vertex fit probability Inline graphic are paired to form the Inline graphic candidate, which must have Inline graphic and an invariant mass Inline graphic (the world average Inline graphic meson mass is Inline graphic [13]).

The Inline graphic candidates are formed from displaced two-prong vertices, as described in Ref. [41]. The Inline graphic invariant mass is required to be within ±20MeV of the world average value Inline graphic [13], which corresponds to approximately three times the mass resolution. Selected Inline graphic and Inline graphic tracks are then refitted with their invariant mass constrained to Inline graphic , and the obtained Inline graphic candidate is required to have Inline graphic.

The Inline graphic candidates are obtained through a kinematic vertex fit on the Inline graphic system which constrains the dimuon mass to Inline graphic . The Inline graphic candidates are required to have Inline graphic, a 3D pointing angle between Inline graphic and Inline graphic to satisfy Inline graphic, and a transverse displacement significance for Inline graphic of Inline graphic. Here Inline graphic denotes the vector from the Inline graphic production vertex to the Inline graphic decay vertex, while Inline graphic and Inline graphic correspond to the length of Inline graphic, the transverse component of D, and its uncertainty. To suppress the combinatorial background, additional requirements are applied: Inline graphic, Inline graphic, and Inline graphic, where the Inline graphic meson transverse displacement Inline graphic is calculated with respect to the primary vertex (PV). From all reconstructed proton-proton collision points, the PV is chosen as the one with the smallest Inline graphic pointing angle, as in Refs. [4244]. The pointing angle is the angle formed by the Inline graphic candidate momentum and the vector from the PV to the reconstructed Inline graphic candidate vertex. Furthermore, if in this procedure any of the tracks used in the Inline graphic candidate reconstruction is included in the fit of the chosen PV, the track is removed, and the PV is refitted.

For the Inline graphic candidates, two additional, oppositely charged, high-purity [45] tracks, assumed to be pions and having Inline graphic, are included in the Inline graphic meson vertex fit, while the rest of the selection criteria are the same.

Observation of the Bs0ψ(2S)KS0 decay

The measured Inline graphic invariant mass distribution is presented in Fig. 1 (Inline graphic ). The B0 signal (left peak) is described with a double Gaussian function with common mean, whose parameters are free to vary in an unbinned maximum-likelihood fit. It is found in simulation that the Inline graphic signal (right peak) has the same shape as the Inline graphic signal, but it is about 10% wider, because of the larger energy release in the decay. Therefore, the Bs0 signal is modelled with a double Gaussian function of the same shape as the B0 signal, with the resolution parameters scaled by the ratio of the widths found in the simulation. The background is modelled with an exponential function. The good quality of the fit is verified by calculating the χ2 between the binned distribution and the fit function, resulting in χ2=83 for 91 degrees of freedom.

Fig. 1.

Fig. 1

Measured invariant mass distributions of Inline graphic (upper) and Inline graphic (lower) candidates. The overlaid results from the fit are described in the text

The ratio of signal yields Inline graphic is extracted from the fit. Its uncertainty is calculated by taking into account the correlation between the uncertainties in Bs0 and B0 yields, which are found to be 113±23 and 16660±140, respectively, where the uncertainties are statistical only.

The statistical significance of the Inline graphic signal is evaluated with the likelihood ratio technique, comparing the background-only and signal-plus-background hypotheses, with the standard asymptotic formula [46], assuming that the conditions to apply Wilks’ theorem [47] are satisfied. For a significance estimation, the mass difference between the Bs0 and B0 signals is fixed to the known value of 83.78MeV [13]. The obtained significance is 5.2 standard deviations and varies in the range 5.1–5.4 standard deviations when accounting for the systematic uncertainties due to the choice of the fit model, discussed in Sect. 7.

Observation of the B0ψ(2S)KS0π+π- decay

As shown in Fig. 1 (Inline graphic ), the measured Inline graphic mass distribution presents a clear Inline graphic signal peak on top of a relatively small background. The B0 signal is modelled with a double Gaussian function with common mean with all parameters free to vary, and the combinatorial background is described by an exponential function.

Studies of simulated events show that the Inline graphic decay contributes to the reconstructed Inline graphic mass distribution when the charged kaon is reconstructed as a pion. This relevant background contribution is accounted for in the fit to data by including a dedicated component with a freely varying normalization and a fixed shape that is obtained from simulation (Fig. 1, Inline graphic ).

The signal yield Inline graphic is found to be 3498±87, where the uncertainty is statistical only. The χ2 between the binned distribution and the fit function is 75 for 92 degrees of freedom, demonstrating the good quality of the fit. The significance of the Inline graphic signal, evaluated as described in Sect. 4, exceeds 30 standard deviations.

The intermediate invariant mass distributions, corresponding to the four-body Inline graphic decay, are produced using the Inline graphic [48] technique to subtract the non-B0 background, using the Inline graphic distribution fit described above. The correlations between the intermediate invariant masses and Inline graphic have been checked to be below 10%. Figures 2 and 3 show the 2- and 3-body invariant mass distributions. Overlaid are the predictions of the 4-body phase space simulations, which provide poor description of the data since the simulations do not account for the intermediate resonance structure. The simulation after application of the reweighting procedure described in Sect. 7 is also shown. The mass distributions of Inline graphic and one or two light mesons (Inline graphic, Inline graphic, Inline graphic, Inline graphic) do not present any significant narrow peak that could indicate a contribution from an exotic charmonium state. The small excess at about 4.3Inline graphic in the Inline graphic distribution (Fig. 2, bottom left) is not significant, and there is no similar excess in the Inline graphic distribution (Fig. 2, middle left). Moreover, exotic states previously found in this mass range are known to have large natural widths [12, 13]. Signs of the Inline graphic (Fig. 2, middle and bottom right), Inline graphic (Fig. 2, top left), and Inline graphic (Fig. 3, top right) resonances are seen in the mass distributions of Inline graphic, Inline graphic , and Inline graphic, respectively.

Fig. 2.

Fig. 2

Distributions of 2-body intermediate invariant masses from the Inline graphic decay. The data distributions (black dots) are background subtracted. Overlaid are the predictions of phase space simulations (red triangles), as well as the predictions after applying the reweighting procedure described in Sect. 7 (grey squares)

Fig. 3.

Fig. 3

Distributions of 3-body intermediate invariant masses from the Inline graphic decay. Data distributions (black dots) are background subtracted. Overlaid are the predictions of phase space simulations (red triangles), as well as the predictions after applying the reweighting procedure described in Sect. 7 (grey squares)

Efficiencies

The total reconstruction efficiency for each decay channel is evaluated using samples of simulated events. It is calculated as the number of reconstructed events divided by the number of generated events, and includes the detector acceptance, trigger, and candidate reconstruction efficiencies. Only the ratios of such efficiencies are needed to measure the ratios Rs and Inline graphic , thus reducing the systematic uncertainties associated with muon and track reconstruction.

The obtained efficiency ratios are found to be

graphic file with name 10052_2022_10315_Equ2_HTML.gif

where the uncertainties are statistical only and are related to the size of the simulated event samples. The first ratio is close to unity, as expected, while the second ratio is significantly greater than unity because of the presence of two additional tracks in the denominator. The lifetimes of heavy and light Bs0 meson eigenstates differ by about 0.2ps [13], which can have an impact on the efficiency Inline graphic. It was verified that the corresponding variations of Bs0 lifetime result in negligible changes in the efficiency.

The validation of Monte Carlo samples is performed by comparing distributions of variables used in the event selection between simulation and background-subtracted data. No significant deviation is found, and thus no systematic uncertainties in the efficiency ratio are assigned related to data-simulation discrepancies in those variables.

Systematic uncertainties

Many systematic uncertainties, related to the efficiency of the trigger as well as the reconstruction and identification of the muons, cancel out in the measured ratios Rs and Inline graphic . Since the Inline graphic and Inline graphic decays have the same number of tracks in the final state, uncertainties related to the track reconstruction are of the same size and correlated, and therefore cancel out when propagated to the measured ratio Rs. For the ratio Inline graphic , we consider an additional uncertainty of 4.2% from the uncertainty in the tracking efficiency of two additional pions [49].

The systematic uncertainty related to the choice of the fit model is evaluated by testing different models. The largest deviation in the measured ratio from its baseline value is taken as a systematic uncertainty, separately for the variations of the signal and background models. Several alternative signal models were considered. One is a double Gaussian function for B0 and Bs0 signals with the resolution shape fixed to the expectations taken from simulation with only the resolution scaling parameter being free in the fit. Another signal model is a Student’s t-distribution [50] with the value of the n parameter fixed to the one measured in simulation. Alternative background models include polynomials of the second and third degrees, an exponential multiplied by a polynomial, and a power function multiplied by an exponential, where in all cases the background shape parameters are free to vary in the fits.

The uncertainty related to the finite size of the simulation samples (used to measure the efficiencies in Sect. 6) is also considered as a systematic uncertainty.

The uncertainty associated with the shape of the Inline graphic contribution to the Inline graphic invariant mass distribution is estimated by varying the shape parameters within their uncertainties. The largest deviation of Inline graphic from the baseline value is 0.5% which is taken as a systematic uncertainty.

As discussed in Sect. 5, the simulation for the Inline graphic decay does not take into account the intermediate resonance structure, leading to a significant disagreement between data and simulation in the 2- and 3-body mass distributions. This results in a potential bias in the efficiency reported in Sect. 6. To estimate the corresponding systematic uncertainty, the simulated sample is reweighted to be consistent with the data, and the difference between the baseline efficiency and the efficiency obtained on the weighted sample is taken as a systematic uncertainty. Due to the limited number of events, it is impossible to assign weights taking the ratio of data to simulation in bins of multi-dimensional phase space of the considered 4-body decay. An iterative procedure has been developed that operates with one-dimensional weights corresponding to each 2- and 3-body invariant mass, gradually making the mass distributions on weighted simulation sample closer and closer to data, until a satisfactory agreement in all intermediate invariant mass distributions is achieved. The distributions of invariant masses obtained with the weighted simulation sample are presented in Figs. 2 and 3. The efficiency obtained on the weighted simulation sample deviates from the baseline value by 5%, which is taken as a systematic uncertainty due to the intermediate resonance structure. This efficiency correction procedure with iterative reweighting is verified using a dedicated simulation sample instead of data, in which the contributions from Inline graphic and Inline graphic resonances are included with arbitrary magnitudes.

All uncertainties described above, excluding the one related to fs/fd for the ratio Rs, are summarized in Table 1 together with a total systematic uncertainty, calculated as a sum in quadrature of the individual sources.

Table 1.

Systematic uncertainties (in %) of the measured branching fraction ratios

Source Rs graphic file with name 10052_2022_10315_Figbo_HTML.gif
Background model 2.5 0.8
Signal model 1.5 0.8
Shape of Inline graphic contribution 0.5
Finite size of simulation samples 1.3 1.1
Intermediate resonances 5.0
Tracking efficiency 4.2
Total 3.2 6.7

A measurement of the ratio of the Bs0 and B0 fragmentation fractions, fs/fd, in proton-proton collisions at the LHC has been recently reported by the LHCb Collaboration [51]: Inline graphic, where Inline graphic in GeV is the transverse momentum of a Inline graphic meson produced in 13TeV proton-proton collisions. The ratio was found to be independent of the rapidity of the Inline graphic meson, but with a significant dependence on the transverse momentum of the Inline graphic candidate. The Inline graphic distribution used in this analysis is shown in Fig. 4, where the background is subtracted using Inline graphic . Using the LHCb result and the average Inline graphic in our events of 31.2GeV, the fs/fd value for the kinematic range of this analysis is obtained to be fs/fd=0.208±0.007. The LHCb fs/fd measurement is mostly dependent on the events with Inline graphic, while the majority of the events in this analysis have Inline graphic. Therefore, we assign an additional systematic uncertainty on fs/fd as the difference between 0.208 and the value obtained under the assumption that fs/fd becomes constant (0.2278) in the region Inline graphic. This additional uncertainty is estimated to be 0.020, and the total uncertainty on fs/fd is obtained by summing it in quadrature with the uncertainty of 0.007 obtained above. The resulting fragmentation fraction ratio used in the Rs measurement is fs/fd=0.208±0.021, with a relative uncertainty of 10%.

Fig. 4.

Fig. 4

Background-subtracted Inline graphic distribution in data for the Inline graphic signal. The last bin includes the overflow

Measured branching fractions

The branching fraction ratio of the Inline graphic decay relative to the Inline graphic one is measured using Eq. (1) to be

graphic file with name 10052_2022_10315_Equ3_HTML.gif

where the last uncertainty is related to the used value fs/fd=0.208±0.021. Since the knowledge of fs/fd at large Inline graphic can be updated with future measurements, allowing to improve the Rs evaluation, we also provide the measurement of the product

graphic file with name 10052_2022_10315_Equ4_HTML.gif

In addition, the transverse momentum distribution of the measured Inline graphic candidates is presented in Fig. 4 and in the HEPData record for this analysis [30].

The branching fraction ratio of the Inline graphic decay with respect to the Inline graphic one is measured to be

graphic file with name 10052_2022_10315_Equ5_HTML.gif

This ratio is very close to the similar ratio measured with Inline graphic instead of Inline graphic [52].

Using the world average value Inline graphic [13], the branching fractions of the two newly observed decays are evaluated:

graphic file with name 10052_2022_10315_Equ6_HTML.gif

where the last uncertainties are from the uncertainty in Inline graphic.

Summary

The Inline graphic and Inline graphic decays are observed using proton-proton collision data collected by the CMS experiment at 13TeV with an integrated luminosity of 103Inline graphic . Their branching fractions are measured with respect to the Inline graphic decay to be Inline graphic, and Inline graphic, where the last uncertainty in the first ratio corresponds to the uncertainty in the ratio of production cross sections of Bs0 and B0 mesons. The 2- and 3-body invariant mass distributions of the Inline graphic decay products do not show significant exotic narrow structures in addition to the known light meson resonances. Further studies with more data will be needed to investigate more precisely the internal dynamics of the Inline graphic decay, and to perform CP asymmetry measurements in the two observed decays in the future.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Rachada-pisek Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256-GRK2497; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 0723-2020-0041 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No.19-42-703014 (Russia); MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgibin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2).”]

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • 1.Belle Collaboration, Observation of a narrow charmoniumlike state in exclusive B±K±π+π-J/ψ decays. Phys. Rev. Lett. 91, 262001 (2003). 10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032 [DOI] [PubMed]
  • 2.CDF Collaboration, Evidence for a narrow near-threshold structure in the J/ψϕ mass spectrum in B+J/ψϕK+ decays. Phys. Rev. Lett. 102, 242002 (2009). 10.1103/PhysRevLett.102.242002. arXiv:0903.2229 [DOI] [PubMed]
  • 3.CDF Collaboration, Observation of the Y(4140) structure in the J/ψϕ mass spectrum in B±J/ψϕK± decays. Mod. Phys. Lett. A 32, 1750139 (2017). 10.1142/S0217732317501395. arXiv:1101.6058
  • 4.CMS Collaboration, Observation of a peaking structure in the J/ψϕ mass spectrum from B±J/ψϕK± decays. Phys. Lett. B 734, 261 (2014). 10.1016/j.physletb.2014.05.055. arXiv:1309.6920
  • 5.LHCb Collaboration, Amplitude analysis of B+J/ψϕK+ decays. Phys. Rev. D 95, 012002 (2017). 10.1103/PhysRevD.95.012002. arXiv:1606.07898
  • 6.BaBar Collaboration, Observation of a broad structure in the π+π-J/ψ mass spectrum around 4.26 GeV/c2. Phys. Rev. Lett 95, 142001 (2005). 10.1103/PhysRevLett.95.142001. arXiv:hep-ex/0506081 [DOI] [PubMed]
  • 7.BESIII Collaboration, Precise measurement of the e+e-π+π-J/ψ cross section at center-of-mass energies from 3.77 to 4.60 GeV. Phys. Rev. Lett 118, 092001 (2017). 10.1103/PhysRevLett.118.092001. arXiv:1611.01317 [DOI] [PubMed]
  • 8.Belle Collaboration, Observation of a resonancelike structure in the π±ψ mass distribution in exclusive BKπ±ψ decays. Phys. Rev. Lett. 100, 142001 (2008). 10.1103/PhysRevLett.100.142001. arXiv:0708.1790 [DOI] [PubMed]
  • 9.Belle Collaboration, Dalitz analysis of BKπ+ψ decays and the Z(4430)+. Phys. Rev. D 80, 031104 (2009). 10.1103/PhysRevD.80.031104. arXiv:0905.2869
  • 10.Belle Collaboration, Experimental constraints on the spin and parity of the Z(4430)+. Phys. Rev. D 88, 074026 (2013). 10.1103/PhysRevD.88.074026. arXiv:1306.4894
  • 11.LHCb Collaboration, Observation of the resonant character of the Z(4430)- state. Phys. Rev. Lett 112, 222002 (2014). 10.1103/PhysRevLett.112.222002. arXiv:1404.1903 [DOI] [PubMed]
  • 12.A. Hosaka et al., Exotic hadrons with heavy flavors: X, Y, Z, and related states. Prog. Theor. Exp. Phys 2016, 062C01 (2016). 10.1093/ptep/ptw045. arXiv:1603.09229
  • 13.Particle Data Group, P.A. Zyla et al., Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020). 10.1093/ptep/ptaa104
  • 14.Cabibbo N. Unitary symmetry and leptonic decays. Phys. Rev. Lett. 1963;10:531. doi: 10.1103/PhysRevLett.10.531. [DOI] [Google Scholar]
  • 15.Belle Collaboration, Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett. 87, 091802 (2001). 10.1103/PhysRevLett.87.091802. arXiv:hep-ex/0107061 [DOI] [PubMed]
  • 16.BaBar Collaboration, Observation of CP violation in the B0 meson system. Phys. Rev. Lett. 87, 091801 (2001). 10.1103/PhysRevLett.87.091801. arXiv:hep-ex/0107013 [DOI] [PubMed]
  • 17.BaBar Collaboration, Evidence for CP violation in B0J/ψπ0 decays. Phys. Rev. Lett. 101, 021801 (2008). 10.1103/PhysRevLett.101.021801. arXiv:0804.0896 [DOI] [PubMed]
  • 18.BaBar Collaboration, Measurement of time-dependent CP asymmetry in B0cc¯K()0 decays. Phys. Rev. D 79, 072009 (2009). 10.1103/PhysRevD.79.072009. arXiv:0902.1708
  • 19.Belle Collaboration, Precise measurement of the CP violation parameter sin2ϕ1 in B0(cc¯)K0 decays. Phys. Rev. Lett. 108, 171802 (2012). 10.1103/PhysRevLett.108.171802. arXiv:1201.4643 [DOI] [PubMed]
  • 20.LHCb Collaboration, Measurement of the CP-violating phase β in B0J/ψπ+π- decays and limits on penguin effects. Phys. Lett. B 742, 38 (2015). 10.1016/j.physletb.2015.01.008. arXiv:1411.1634
  • 21.LHCb Collaboration, Measurement of CP violation in B0J/ψKS0 decays. Phys. Rev. Lett 115, 031601 (2015). 10.1103/PhysRevLett.115.031601. arXiv:1503.07089 [DOI] [PubMed]
  • 22.LHCb Collaboration, Measurement of the time-dependent CP asymmetries in Bs0J/ψKS0. JHEP 06, 131 (2015). 10.1007/JHEP06(2015)131. arXiv:1503.07055
  • 23.LHCb Collaboration, Measurement of CP violation in B0J/ψKS0 and B0ψ(2S)KS0 decays. JHEP 11, 170 (2017). 10.1007/JHEP11(2017)170. arXiv:1709.03944
  • 24.Belle Collaboration, Measurement of the branching fraction and time-dependent CP asymmetry for B0J/ψπ0 decays. Phys. Rev. D 98, 112008 (2018). 10.1103/PhysRevD.98.112008. arXiv:1810.01356
  • 25.LHCb Collaboration, Updated measurement of time-dependent CP-violating observables in Bs0J/ψK+K- decays. Eur. Phys. J. C 79, 706 (2019). 10.1140/epjc/s10052-019-7159-8. arXiv:1906.08356 [Erratum: 10.1140/epjc/s10052-020-7875-0]
  • 26.CMS Collaboration, Measurement of the CP-violating phase ϕs in the Bs0J/ψϕ(1020)μ+μ-K+K- channel in proton–proton collisions at s= 13 TeV. Phys. Lett. B 816, 136188 (2021). 10.1016/j.physletb.2021.136188. arXiv:2007.02434
  • 27.ATLAS Collaboration, Measurement of the CP-violating phase ϕs in BS0J/ψϕ decays in ATLAS at 13 TeV. Eur. Phys. J. C 81, 342 (2021). 10.1140/epjc/s10052-021-09011-0. arXiv:2001.07115
  • 28.CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at s=13 TeV, CMS Physics Analysis Summary CMS-PAS-LUM-17-004 (2018)
  • 29.CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at s=13 TeV, CMS Physics Analysis Summary CMS-PAS-LUM-18-002 (2019)
  • 30.HEPData record for this analysis (2021). 10.17182/hepdata.114370
  • 31.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004
  • 32.CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). 10.1088/1748-0221/12/01/P01020. arXiv:1609.02366
  • 33.CMS Collaboration, Performance of the CMS Level-1 trigger in proton-proton collisions at s=13 TeV. JINST 15, P10017 (2020). 10.1088/1748-0221/15/10/P10017. arXiv:2006.10165
  • 34.T. Sjöstrand et al., An introduction to PYTHIA 82. Comput. Phys. Commun. 191, 159 (2015). 10.1016/j.cpc.2015.01.024. arXiv:1410.3012
  • 35.CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements. Eur. Phys. J. C 80 (2020). 10.1140/epjc/s10052-019-7499-4. arXiv:1903.12179 [DOI] [PMC free article] [PubMed]
  • 36.Lange DJ. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A. 2001;462:152. doi: 10.1016/S0168-9002(01)00089-4. [DOI] [Google Scholar]
  • 37.E. Barberio, B. van Eijk, Z. Wa̧s, PHOTOS—a universal Monte Carlo for QED radiative corrections in decays. Comput. Phys. Commun. 66, 115 (1991). 10.1016/0010-4655(91)90012-A
  • 38.E. Barberio, Z. Wa̧s, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0. Comput. Phys. Commun 79, 291 (1994). 10.1016/0010-4655(94)90074-4
  • 39.GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8
  • 40.CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13 TeV. JINST 13, P06015 (2018). 10.1088/1748-0221/13/06/P06015. arXiv:1804.04528
  • 41.CMS Collaboration, CMS tracking performance results from early LHC operation. Eur. Phys. J. C 70, 1165 (2010). 10.1140/epjc/s10052-010-1491-3. arXiv:1007.1988
  • 42.CMS Collaboration, Search for the X(5568) state decaying into BS0π± in proton-proton collisions at s= 8 TeV. Phys. Rev. Lett 120, 202005 (2018). 10.1103/PhysRevLett.120.202005. arXiv:1712.06144 [DOI] [PubMed]
  • 43.CMS Collaboration, Study of the B+J/ψΛ¯p decay in proton-proton collisions at s = 8 TeV. JHEP 12, 100 (2019). 10.1007/JHEP12(2019)100. arXiv:1907.05461
  • 44.CMS Collaboration, Observation of the Λb0J/ψΛϕ decay in proton-proton collisions at s= 13 TeV. Phys. Lett. B 802, 135203 (2020). 10.1016/j.physletb.2020.135203. arXiv:1911.03789
  • 45.CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). 10.1088/1748-0221/9/10/P10009. arXiv:1405.6569
  • 46.G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). 10.1140/epjc/s10052-011-1554-0. arXiv:1007.1727 [Erratum: 10.1140/epjc/s10052-013-2501-z]
  • 47.Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938;9:60. doi: 10.1214/aoms/1177732360. [DOI] [Google Scholar]
  • 48.M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Meth. A 555, 356 (2005). 10.1016/j.nima.2005.08.106. arXiv:physics/0402083
  • 49.CMS Collaboration, Tracking POG results for pion efficiency with the D meson using data from 2016 and 2017, CMS Detector Performance Note CMS-DP-2018-050 (2018)
  • 50.S. Jackman, Bayesian analysis for the social sciences. Wiley, New Jersey (2009). 10.1002/9780470686621
  • 51.LHCb Collaboration, Precise measurement of the fs/fd ratio of fragmentation fractions and of Bs0 decay branching fractions. Phys. Rev. D 104, 032005 (2021). 10.1103/PhysRevD.104.032005. arXiv:2103.06810
  • 52.LHCb Collaboration, Observation of the BS0J/ψKs0K±π decay. JHEP 07, 140 (2014). 10.1007/JHEP07(2014)140. arXiv:1405.3219

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgibin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2).”]


Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES