Skip to main content
PLOS One logoLink to PLOS One
. 2022 Jun 3;17(6):e0269446. doi: 10.1371/journal.pone.0269446

Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate

Giuseppe Di Miceli 1, Nicolò Iacuzzi 1, Mario Licata 1,*, Salvatore La Bella 1, Teresa Tuttolomondo 1, Simona Aprile 2
Editor: Sajid Ali3
PMCID: PMC9165813  PMID: 35657910

Abstract

Green roof systems, aimed at reducing anthropic impact on the environment, are considered environmental mitigation technologies and adopted by many countries across the world to strengthen urban ecosystem services. This study evaluates two mixtures of succulent: one of Crassulaceae and the other of Aizoaceae, used in the creation of a continuous and homogenous plant groundcover in Mediterranean environments. To assess the species mixtures, the parameters plant height, growth index, cover percentage and flowering were observed. Hydrological observations were also carried out to evaluate the rainfall retained by the test system in any given month. All data were subjected to analysis of variance. Growth indicators in the study showed trends characteristic of xeric plants, which tend to slow down in dry, summer climate conditions to the point of halting plant vertical growth and ground cover development completely. The Aizocaeae mix, during the initial stage, showed prevalent horizontal growth, confirmed by greater a greater growth index (13,21) and cover percentage (45%) compared to Sedum (Growth index: 3,61; Cover: 36%). In contrast, the Sedum mix recorded greater vertical growth at the beginning (Sedum mixture: 7.53 cm; Aizoaceae mixture: 6,11 cm). During the final stages of observations, however, greater vertical growth in the Aizoaceae (7,88 cm) became apparent together with a recovery in horizontal growth in the Sedum (79%), albeit not sufficient to outperform the Aizoaceae mixture (87%). Flowering in the two mixtures occurred between late spring and late summer. The Sedum mixture guaranteed a longer flowering period (130 days) compared to the Aizoaceae (93 days), with a gradual start followed by steady flower emission. Regarding rainfall water retention, a comparison of the mixtures in late winter/early spring revealed that the Sedum performed best (44.9 L m2 vs 37.4 L m2), whilst the Aizoaceae outperformed the Sedum in Autumn (63 L m2 vs 55 L m2), in conjunction with favorable growth rates in both species mixtures. Both mixtures demonstrated satisfying results and are considered suited to a Mediterranean environment. Furthermore, based on the different growth rates of the species in the two test mixtures, this study suggests that new combinations of Sedum and Aizoaceae together might prove more resilient in Mediterranean environments.

Introduction

Over the last decade, practices and government actions in many countries have been directed towards environmental sustainability, aiming to reduce anthropic impact on the environment [16]. This has led to the development of environmental mitigation technologies either to reduce CO2 emissions, heat output, air and water pollution or to improve rainwater management. ‘Green roofs’ or ‘living roofs’, comprising roofs which are partially or wholly covered by vegetation [79], can be considered one such technology. The ability of a green roof to reduce the effects of the urban heat island (with energy saving benefits), to improve the quality of the air, to manage stormwater runoff and to help increase urban biodiversity is widely recognized [1021]. The effectiveness of a green roof on the environment strongly depends on the local climate, the design of the green roof and the characteristics of the building. In the Mediterranean, in particular, a great deal of attention has been given, over the last ten years or so, to research and development in green roof systems in urban areas [8,2226]. This is mainly linked to high performance levels obtained by these systems in arid climates, benefitting greatly from the transfer of heat through latent heat processes [27].

The Mediterranean climate is typically characterized by hot, dry summers and cool, humid winters. Annual rainfall generally ranges from 300 to 900 mm/year, with rainfall concentrated mostly in the winter months [28]. Winter temperatures in the Mediterranean Area are generally mild (7–13°C) with rare occurrences of frost, whilst the summers are typically hot, with average temperatures between 14–25°C [29]. In general, regions with a Mediterranean climate are positioned along a climate gradient stretching between temperate regions and desert climate regions [30], with conditions which can vary (within specific areas) between mesic and xeric.

Plant species used in the creation of green roof systems need to be particularly adapted, as they play a crucial role in determining the efficiency of the whole system; more so than other components, such as the substrate, particularly in terms of water retention and use [31]. In this regard, further investigation into how green roofs perform seasonally over the long term in a Mediterranean climate [32] is of extreme interest, also as they are considered a tool for rainwater management in urbanized areas [3336].

In regard to plants which adapt to the abovementioned environmental conditions, succulents are known to perform well in extensive green roof systems in hot-arid climates, both in summer and winter [37]. These plants tolerate cold and drought, including the extreme conditions (high temperatures, high wind, aridity) experienced on a wall or roof [38]; they are efficient plants [39], they have a strong survival capacity and are highly adapted to agamic propagation [4042]. Finally, they are also considered a good contribution to expanding urban biodiversity [43].

Succulents include over 12500 species, as reported by Nyffeler and Eggli [44], and the Crassulaceae and Aizoaceae families, with 690 species, are amongst the most widespread and cosmopolitan. These plants are cultivated and distributed worldwide in all types of habitats [45]. They are used not only for ornamental purposes but also due to their beneficial effects on the environmental and health [46].

In various parts of the world, Sedum have been used successfully in green roofs to create a thin plant layer which is homogenous and drought resistant [4749]. Aizoaceae, with various species of the genera Carpobrothus and Aptenia, have been found to provide good groundcover with satisfactory resistance to hot and dry climate conditions in Australia [50,51], and, in tests conducted in Tel Aviv, they provided the best results for cooling [52].

Based on knowledge gained, this research sought to assess two mixtures of succulents, one mixture of Crassulaceae and the other of Aizoaceae, to create two continuous and homogenous plant ground cover systems suited to the Mediterranean environment. More specifically, two ‘fine-scale’ multi-species mixtures were used: four species of the genus Sedum were compared with three species of Aizoaceae. In these designs, individual plants are typically surrounded by neighbors from different species [53].

The following parameters were observed in order to assess the mixtures: plant height, growth index, cover and flowering. Furthermore, taking into consideration the months in which rainfall events occurred, hydrological observations were also carried out to determine the amount of water retained by the systems in a month.

Materials and methods

Test site

Tests were carried out from 2011 to 2012 at the CREA-DC Research farm in Bagheria (Sicily, Italy) (38°05’00” N– 13°30’00” E, 78 m a.s.l.). This town is located on the north coast of Sicily in the province of Palermo. The climate in Bagheria is characterized by mild winters and warm, dry summers, and can be considered as representative of Mediterranean coastal areas: the primary focus of this study. (Winter begins in December and ends in March. The winter months are: December, January, February and March. The average maximum temperature of the winter period is 14.9°C, while the average minimum temperature is 9. 4°C. The average rainfall of the winter season is 234 mm. Summer starts here at the end of June and ends in September. The summer months are: June, July, August, September. Average maximum summer temperatures are 28,4°C, the average minimum temperature is 20.9°C while the average rainfall in the summer season is: 26 mm)

Description of the test roof system

Tests were carried out in the open air on several pilot roofs using 6 zinc-coated (galvanized) iron platforms, designed and built specifically for the study. The platforms were insulated with 3-cm extruded polystyrene panels. Each platform was 2.2 m2 and a height of 100 cm from the ground in size and supported a lightweight extensive green roof system consisting of:

  1. A water drainage layer: a horizontal and vertical ECODREN SD5 layer was used, consisting of a 5.0 mm-thick geonet heat-bonded nonwoven geotextile with a filtering action. This directed water towards a drainage hole positioned at the base of the platform. Each platform was equipped with a leachate collection and measurement system.

  2. A water accumulation layer: 5.0 cm-thick calendared non-woven geotextile bags were used containing expanded perlite (AGRILIT®) with grain size of 0.1–1.0 mm.

  3. A growth medium for light, large-scale, intensive cover (AgriTERRAM® TVS): this consisted of a mix of peat, lapillus, pumice, zeolites and slow-release fertilizers, weed-seed free with a grain size of 0.0–10 mm and a flat bag thickness of 5.0 cm.

  4. Plant-layer types: these consisted of two different types of succulent plant mixtures included in the two study treatments.

Treatment

The tests compared two succulent plant mixtures sourced from mother plants obtained by the agamic propagation of wild plants (S12 Table). The two mixtures were named Sedum mixture and Aizoaceae mixture. Sedum mixture was a mixture of four Sedum species (S. sediforme, S. ochrolecum, S. album, S. hispanicum) and Aizoaceae mixture was a mixture of three species belonging to the Aizoaceae Family (Drosanthemum floribundum, Aptenia cordifolia, Carpobrotus edulis (Table 1). The plant m-2 investment for each treatment was determined by plant species size and habitus.

Table 1. Comparison of the plant species used in the two mixtures.

Sedum mixture
Crassulaceae
Aizoaceae mixture
Aizoaceae
Species Plant-life form %
in mixture
Species Plant-life form %
in mixture
Sedum sediforme Ch succ 24% Drosanthemum floribundum Ch succ 60%
Sedum ochroleucum Ch succ 20% Aptenia cordifolia Ch suffr 20%
Sedum album Ch succ 28% Carpobrotus edulis Ch suffr 20%
Sedum hispanicum T scap 28%
Plants m-2: 23 Plants m-2: 12

The chamaephites are woody perennials at the base, with wintering buds placed at a height of the ground between 2 and 30 cm. Therophytes are annual herbaceous plants and survive the adverse season in seed form. Ch succ = Camephyte succulent (plants with specialized stems and / or leaves for storing water); T scap = Terophyte scapose (plants with an erect flower axis and often without leaves); Ch suffr = Camephyte suffruticose (plants in which the herbaceous portions dry annually and only the woody parts remain alive). From: Ellenberg and Muller [54].

Cultivation practices

Immediately following transplanting, all treatment plots were irrigated with 20 L m-2 of tap water using a scale-marked measuring jug. Over the two years of observations, supplementary irrigation events were applied during the dry season (from May to September), providing a total of approx. 80 L m-2 of water/year for each plot.

Plant performances

To compare the two mixtures, a randomized plot design was adopted with 3 replications. The observation sample for the measured parameters of each treatment consisted of the total number of plants. Plants performance was assessed by various indicators (plant height, growth index, cover and flowering) used during the first year (2011). The coverage percentage was recorded starting from 2011 and ended in 2012. During the rainy months of 2012, monthly hydrological observations were also made to assess the capacity of the various mixtures to retain rainfall.

Plant height

Plant height was used as an index of vertical growth and measurements were made on a monthly basis during the first year of testing (Feb-Nov 2011). Height, expressed in cm, was defined as the distance from the bottom of the plant to the highest leaf apex [55].

Growth index

Growth Index (G.I.) was determined during the first stage (Feb-Nov 2011) to evaluate plant growth. Initial plant growth rates were calculated measuring the height and width of each plant in both directions every 30 days for 10 months. The G.I of each plant was then calculated, as reported by Monterusso et al. [56] and Schaefer et al. [57], by taking the average of 3 measurements, using the following equation: H+W1+W22 where H is the plant height, W1 is the transversal diameter of the plant, W2 is the longitudinal diameter of the plant.

Cover

Cover was used as an index of horizontal plant growth and expressed as a percentage. Plant ground cover was measured twice a month starting from month 6 after transplanting and finishing at month 22 (years 2011–2012), to determine ‘mixed plant’ ground cover. For this calculation, all plots were photographed with a digital camera located at a distance of 150 cm from the cultivated plain. Shutter speeds were set to ‘twilight’ to avoid shadow and unify contrast. Flash photography was not used. The area of plant ground cover in each plot was calculated by digital image processing. Adobe Photoshop 5.0 version was used to convert the images into grey scale where black was the plant ground cover area and white was the substrate. Cover percentage were calculated using ImageJ software version 1.38, which provides plant ground cover percentages based on the pixels identified in the photographs [58]. 22 months after planting, cover percentage were evaluated as a function of the factors considered.

Flowering

Plants were monitored at least three times each week and the dates of “first bloom” and “full bloom” recorded. “First bloom” is defined as the date on which the first flower bud on the plant opens revealing pistils and/or stamens, and “full bloom” as the date on which 95% of the flower buds have opened (i.e., one bud out of twenty has yet to open) [59]. For each treatment, a bloom calendar was completed and the percentage duration of each bloom determined.

Hydrological observations

During the second year, to coincide with the rainy months, the volume of water retained by the two succulent plant mixtures was calculated. This was then compared to monthly rainfall volumes to acquire useful data on the water retaining capacity of the two systems.

Rainfall water from the systems was drained off and collected on a monthly basis in scale-marked containers located under the structure. This quantity of water was then subtracted from the known monthly rainfall levels.

Climatic data

During the test period, rainfall levels and temperatures were recorded using a Stevenson screen located at the CREA Research Center in Bagheria. The Stevenson screen was a white wooden box with a double-louvered design, located a 1.60 m a.s.l. The screen contained thermometers (ordinary, maximum/minimum), a hygrometer, a psychrometer, a dew cell, a barometer, and a thermograph. In this study, this equipment provided data on average daily air temperatures (°C) and total daily rainfall (mm).

Statistical analyses

All data were subjected to analysis of variance using the statistical software "Past" (Hammer & Harper–Oslo, Norway) V. 3.16 for Windows. Data on plant height, growth index, cover percentage and total retained water for Sedum and for Aizoaceae mixture regarding the whole test period were subjected to a repeated measures analysis of the variance (ANOVA). However, data relating to single dates of observations were subjected to a one-way analysis of variance (ANOVA). Both analyses were followed by the Tukey test (p< 0.05). Before performing analysis of variance, all percentages were analysed using arcsine transformation. A linear regression analysis was also performed between height and growth index.

Results

Climatic data

Over the test period, temperature and rainfall averages were consistent with averages for the Mediterranean climate already defined by several authors [28,29]. Fig 1 shows that, both in 2011 and 2012, the maximum average air temperature was recorded in August.

Fig 1. Rainfall and temperature trends over the test period 2011–2012.

Fig 1

In 2011, the maximum average air temperature was recorded during the first 10-day period of August (32.2°C) and in the 2012, during the third 10-day period of the same month (34.5°C).

During both years, minimum average temperatures (below 8°C) were recorded in the months of January, February and March. Air temperature increased from the beginning of April to the month of August and decreased up to the end of March. The average number of daylight hours recorded during the test period varied over the months, with a minimum of 3.5 to 4.5 hours in December-January and maximum of 10 to 11 hours in June-July. Total rainfall was 568.6 mm in 2011 and 556.8 in 2012. Rainfall was concentrated in the months of February (134 mm) and October (105 mm) in 2011, and in February-March (248 mm) and November (92 mm) in 2012. In both years, the summer period (June-August) was the driest. Average rainfall for the three summer months was 1.26 mm in 2011 and 2.8 mm in 2012.

Plant height

Fig 2 shows plant height relative to the two succulent mixtures over the first growing season (2011). For this parameter, analysis of the variance (repeated measures ANOVA) for the period February-November 2011, did not reveal any statistically significant differences between the two treatments in the test, with average plant height ranging from 5.70 cm in Sedum mixture to 6.03 cm in Aizoaceae mixture (Fig 2). As regards one-way ANOVA, however, significant differences were found between the two treatments for some observation dates in the test. More specifically, differences were found for one month after planting (February), with an average plant height for Aizoaceae mixture (5.21 cm) which was greater than Sedum mixture (3.48 cm); for five months after planting (June), however, this time with Sedum mixture (7.53 cm) found to be greater than Aizoaceae mixture (6.11 cm); and for the months of September (Sedum mixture: 4.96 cm; Aizoaceae mixture: 6.79 cm), October (Sedum mixture: 5.91 cm; Aizoaceae mixture: 7.31 cm) and November (Sedum mixture: 6.71 cm; Aizoaceae mixture: 7.88 cm), where significantly higher plants were found in Aizoaceae mixture. No significant variations were found between observations in the first and fifth month after planting and between observations in the fifth and eighth month after planting.

Fig 2. Plant heights for the two succulent mixtures (Feb-Nov 2011).

Fig 2

Values are means ± SE. For each data, histograms with different letters are significantly different at p≤ 0.05.

Growth index

Fig 3 shows growth index for the two succulent mixtures during the first growing season (February-November 2011). With average growth index for the period found to be 11.80 in Sedum mixture and 20.10 in Aizoaceae mixture, significant differences were found between the 2 mixtures (repeated measures ANOVA). Regarding single observations, growth index was consistently significantly higher in Aizoaceae mixture for all dates in the test compared to those in Sedum mixture.

Fig 3. Plant Growth Index for two succulent mixtures (Feb-Nov 2011).

Fig 3

Values are means ± SE. For each data, histograms with different letters are significantly different at p≤ 0.05.

The Aizoaceae mixture, just one month after planting, recorded growth index of 13.21, rising to 26.40 eleven months after planting. In contrast, growth index of 3.81 and 15.90 were found for the two observations (February and November, respectively) for the Sedum mixture.

From the second observation date (Sedum mixture: 10.31; Aizoaceae mixture: 17.81), for both treatments, Growth Index increased up to June (Sedum mixture: 13.11; Aizoaceae mixture: 20.21), but, at times, with extremely modest growth. From July (Sedum mixture: 12.40; Aizoaceae mixture: 20.10) to September (Sedum mixture: 12.31; Aizoaceae mixture: 20.31), growth was negligible, even registering a slight decrease (in Sedum mixture in particular) compared to June. In October, however, the growth index increased in both test mixtures (Sedum mixture: 15.21; Aizoaceae mixture: 23.61), reaching 15.90 in Sedum mixture and 26.40 in Aizoaceae mixture in November.

Cover

Cover percentage (Fig 4), recorded from month-6 after transplanting (June 2011) up to the end of the second growth season (October 2012), showed significant variations between the two succulent mixtures, with averages of Sedum mixture 54.5% and Aizoaceae mixture 66.4% (repeated measures ANOVA).

Fig 4. Cover percentage from 6 months to 22 months after transplanting.

Fig 4

Values are means ± SE. For each data, histograms with different letters are significantly different at p≤ 0.05.

The Aizoaceae (Aizoaceae mixture) mixtures also produced significantly higher and increasing values for all the observation dates in the study (one-way ANOVA) compared to the Sedum (Sedum mixture). Regarding the first observation date, Aizoaceae mixture had reached a ground cover rate of 45% whilst Sedum mixture lagged at approx. 36%, reaching 87% (Aizoaceae mixture) and 79% (Sedum mixture) by the last observation date.

Relationship between growth index and plant height

For a more detailed analysis of the relationship between growth index and plant height, linear regression analysis was carried out (Figs 5 and 6). In the two mixtures, growth index increased significantly as plant height increased (Sedum mixture: R2 = 0.61, p = 0.007; Aizoaceae mixture: R2 = 0.70, p = 0.003). Furthermore, most sensitivity in fluctuations of the two parameters was recorded for mixture Aizoaceae mixture, as is clear from the regression line equations (Figs 5 and 6).

Fig 5. Relationship between growth index and plant height in Sedum mixture.

Fig 5

Fig 6. Relationship between growth index and plant height in Aizoaceae mixture.

Fig 6

Flowering

Flowering (Fig 7), observed over the course of the first year (2011), began in May for both treatments, with Aizoaceae mixture flowering approx. 15 days earlier than Sedum mixture. End of flowering was established as mid-September for Sedum mixture, whilst Aizoaceae mixture had already stopped flowering at the end of July. Observations also showed that flowering onset in Sedum mixture was more gradual, with values 15–30% of open flowers recorded between May and June, reaching full bloom towards the beginning of July with 95% of open flowers (Fig 8). In contrast, Aizoaceae mixture immediately provided a much more abundant bloom, reaching full bloom between May and June with 80–100% of open flowers; however, flowering was over by the end of July.

Fig 7. Duration of flowering stage in the two test treatments–Year 2011.

Fig 7

Fig 8. Bloom percentage in the two test treatments–Year 2011.

Fig 8

Hydrological observations

Fig 9 shows the amount of monthly rainfall retained by the two systems during the second year of growth (January–November 2012). Analysis of the averages for all of the test periods did not provide any significant differences between the two mixtures (retained water Sedum: 24.9 L m-2 andretained water Aizoaceae: 23.6 L m-2; repeated measures ANOVA). Single observations, however, revealed significant differences for February (retained water Sedum: 44.9 L m-2 vs retained water Aizoaceae: 37.4 L m-2) and March (retained water Sedum: 29 L m-2 vs retained water Aizoaceae: 17 L m-2) in favour of Sedum mixture, and November (retained water Sedum: 55 L m-2 vs retained water Aizoaceae: 63 L m-2) in favour of Aizoaceae mixture. No significant differences were found for the remaining months of observations.

Fig 9. Rainfall retained by the systems year 2012.

Fig 9

For each data, histograms with different letters are significantly different at p≤ 0.05.

Discussion

Results obtained during activities show that succulents are, in general, suited to use in green roofs in the Mediterranean area, managing to grow in the given test conditions with low maintenance input, as also found by other authors in similar conditions [38,56]. Typical of hot-arid and desert climates, the Aizoaceae and Crassulaceae used in the test may have found environmental conditions which are not dissimilar to their original environment [48].

In general, analysis of the growth indicators shows growth rates which are typical of xerophytes. During dry, summer climate conditions, plant vertical growth and development of ground cover is reduced to a halt.

With the exception of a significant initial lead in plant height recorded in the Aizoaceae mixture, the two mixtures then began to show similar growth trends, with plant heights for Aizoaceae mixture recorded as lower than Sedum mixture, but with no statistical differences. It is worth noting that, compared to Aizoaceae mixture, Sedum mixture showed continual vertical growth right up to June, performing more favourably in this aspect than the other mixture. However, in successive months, both mixtures (Sedum mixture and Aizoaceae mixture) slowed to a halt, even witnessing a reduction in average plant height compared to preceding months. This reduction in size, which may seem a little unexpected for this parameter, is due to the apexes drying out in the high temperatures and to the lack of water, typical of Mediterranean environments in this period.

This reduction in size was seen to be greater in the Sedum up to September, whilst the Aizoaceae mixture recovered vertical growth in August, with development which was statically greater than Sedum mixture from September to November.

The Aizoaceae mix proved constantly higher for growth index and cover percentage than the Sedum mix regarding both every sample date and in relation to the whole growth season. The Aizoaceae mix had already reached 70% of cover just 15 months after transplanting, extending to 80% in approx. 20 months.

The Sedum mix, although not reaching 80% cover in the 20 months of observation, did obtain a similar profile to the other mixture. Although slightly less developed, it was, however, considered suited to the test conditions, as it managed to ensure a certain degree of cover percentage, above all in the initial stages due to greater vertical growth than the Aizoaceae. The Sedum mixture obtained 80% cover just two months later (at 22 months), when the Aizoaceae mixture was reaching 90% cover. It is worth pointing out that the presence of Sedum hispanicum in the Sedum mixture, due to its annual behaviour, may not have contributed well to expected levels of plant cover. Schindler et al. [60] reported that when the aim is to obtain as extensive a cover as possible, the use of perennial Sedum species may be more suited, rather than annuals. However, it is also true that annuals are able to contribute to the floral diversification of the systems, not only in terms of biodiversity in general but also within the same mix [42].

An explanation for the more favorable growth index and percentage cover results obtained by the Aizoaceae in comparison to the Sedum mix may be given by the morpho-physiological characteristics of the species selection. Carpobrothus edulis, with its long, thick stalks, may have given a significant contribution to horizontal growth cover, and, similar to data reported by Razzaghmanesh [51] regarding Carpobrothus rossii, it may have coped better with the hot, dry summers than other species thanks to a more efficient use of water. Similarly, Aptenia cordifolia is able to survive long periods of severe environmental conditions which would inhibit growth in other plants [61,62], by adopting various resistance strategies to short-term water shortages, amongst which the ability to control photosynthesis [52].

Contributing to the creation of greater plant cover by the Aizoaceae was the presence of Drosanthemum floribundum in the mixture, as it forms a dense groundcover. The prevalent horizontal growth of the Aizoaceae, above all in the initial stage, is confirmed by superior growth index and percentage cover results compared to Sedum, which showed better initial vertical growth. In the end stage of observations, vertical growth was greater in the Aizoaceae; horizontal growth in the Sedum also recovered, although not enough to outperform the Aizoaceae mixture. In this regard, parameters of the linear regression lines between growth index and plant/height allowed us to estimate, for the given test period, an increase in growth index of approx. 2 cm for Sedum mixture and approx. 3 cm for Aizoaceae mixture for each unit increase of plant/height.

In addition to growth rates, flowering of the two mixtures (concentrated between late spring and the summer) also highlighted the Mediterranean nature of the species in the study. In particular, the Sedum mixture ensured a longer flowering period, with a gradual beginning and constancy in the production of flowers throughout the period. This is an interesting feature, according to Nagase and Tashiro-Ishii [63], when deciding upon the selection of species for green roofs which are oriented more towards criteria such as landscape aesthetics or the preservation of rare species, thereby promoting greater plant biodiversity in green roof systems.

Observations on the rainfall capture and retention capacity of the two systems, during the second season, allowed us to make a primary assessment of the water retaining capacity of succulent green roofs in the Mediterranean, also in terms of survival prospects, plant development and groundcover.

Below 60 mm of rain per month, as can be seen in graph 9, the two systems behaved in a similar way, not demonstrating significant differences between the two, although greater rain capture was observed at times in the Sedum mixture. The systems differed, however, for rainfall over 80 mm; in February and March mixture Sedum mixture produced the most promising results (retained water Sedum: 45%; retained water Aizoaceae: 38%), and in November, mixture Aizoaceae mixture performed best (retained water Aizoaceae: 69%; retained water Sedum: 60%). From May, with only 25 mm of rainfall/month, no outflow was observed due to the fact that 100% of the rainfall was retained in the system, as with the other summer months.

Retained water from the two succulent systems was not constant during the year, as found also by other authors [64]. Variations were dependent upon the main climate parameter trends, plant growth (vertical and horizontal), activity levels and subsequent shape (one or two dimensional). In this regard, with a comparable structure and climate, the best performance results for the parameter retained water were observed at the end of winter/beginning of spring in the Sedum mixture, and in Autumn, in the Aizoaceae mix (in conjunction with favorable growth rates in each mixture, as previously described).

The fact that green roofs are dynamic as regards biomass, plant height and cover, moving over time, is well documented in scientific literature [16,65,66]. It is also worth noting that two-dimensional plant ground cover in green roofs is important in terms of visual attractiveness and other ecosystems services [67,68]. As reported by some authors, although the simultaneous presence of species and different growth shapes contributes to maximizing the provision of services on a green roof (reduction of substrate surface temperature, rainfall retention etc.), it is not clear how greater diversity in shape behaves in different climates [66,69,70]. Therefore, greater research in this area is fundamental and this study contributes to furthering knowledge on these aspects, together with the possibility of broadening the range of succulent species which can be considered in the creation of extensive green roofs in the Mediterranean to maximize the functioning capacity of the systems.

Conclusions

The results of this study show firstly that succulents are suited, in general, to use in green roofs in Mediterranean environments, managing to grow in the test conditions with low input maintenance. More specifically, both succulent mixtures performed to satisfying levels and can be deemed as the correct choice for the Mediterranean and a possible, advantageous solution not only to mitigate summer temperatures, and therefore, improve energy consumption in buildings, but also to capture and retain rainfall. Other benefits include increasing urban plant biodiversity and low-maintenance green areas for citizens, together with potential development of the production sector (nurseries, construction of technological systems etc.) linked to green technologies. Furthermore, this study, based on the different growth rates of the species in the two test mixtures, suggests that new mixtures of Sedum and Aizoaceae together might prove more resilient in Mediterranean environments.

Supporting information

S1 Fig. Pilot roof system.

(PDF)

S1 Table. Cover Plant_ Aizoaceae (%).

(XLSX)

S2 Table. Height Plant _Aìzoaceae (cm).

(XLSX)

S3 Table. Height Plant_ Sedum (cm).

(XLSX)

S4 Table. Cover (%).

(XLSX)

S5 Table. Plant height.

(XLSX)

S6 Table. Growth index.

(XLSX)

S7 Table. Flowering.

(XLSX)

S8 Table. Relationship between G.I. and plant height.

(XLSX)

S9 Table. Hydrological observations.

(XLSX)

S10 Table. Cover plant_ Sedum (%).

(XLSX)

S11 Table. Plant material.

(XLSX)

S12 Table. Plant location.

(XLSX)

Acknowledgments

The authors would like to thank Dr GianVito Zizzo for having contributed to the research and Lucie Branwen Hornsby for her linguistic assistance.

Data Availability

All relevant data are within the paper and its Supporting Information files.

Funding Statement

Title of project: Ar.Co.Verde Grant number: DM 19741/7643/08. Full name of the funder: Italian Ministry of Agricultural, Food and Forestry Policies for funding the project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Abeygunawardena P, Agrawala S, Caspary G, Debois M, Foy T, Harrold M, et al. Reducing the Vulnerability of the Poor through Adaptation Poverty and Climate Change. Part 1. World Bank Group, Washington, DC (United States). 2003; p. 1:26.
  • 2.Bulkeley H. Reconfiguring environmental governance: Towards a politics of scales and networks. Political geography. 2005; 24(8), 875–902. 10.1016/j.polgeo.2005.07.002. [DOI] [Google Scholar]
  • 3.Aall C, Groven K, Lindseth G, The scope of Action for Local Climate Policy: The case of study of Neorway. Global Enviromental Politics. 2007; 7(2), 83–101. 10.1162/glep.2007.7.2.83. [DOI] [Google Scholar]
  • 4.Hunt A, Watkiss P. Climate change impacts and adaptation in cities: a review of the literature. Climatic Change. 2011; 104 (1), 13–49. 10.1007/s10584-010-9975-6. [DOI] [Google Scholar]
  • 5.William R, Goodwell A, Richardson M, Le PVV, Kumar P, Stillwell AS. An environmental cost-benefit analysis of alternative green roofing strategies. Ecol. Eng. 2016; 95, 1:9. 10.1016/j.ecoleng.2016.06.091. [DOI] [Google Scholar]
  • 6.Mesimaki M, Hauru K, Kotze DJ, Lehvavirta S. Neo-spaces for urban livability? Urbanites’ versatile mental images of green roofs in the Helsinki metropolitan area. Land Use Pol. 2017; (61), 587:600. 10.1016/j.landusepol.2016.11.021. [DOI] [Google Scholar]
  • 7.Theodosiou TG. Green Roofs in Buildings: Thermal and Environmental Behaviour. Advances in Building Energy Research. 2009; 3:1, 271–288. 10.3763/aber.2009.0311. [DOI] [Google Scholar]
  • 8.Sfakianaki A, Pagalou E, Pavlou K, Santamouris M, Assimakopoulos MN. Theoretical and experimental analysis of the thermal behaviour of a green roof system installed in two residential buildings in Athens, Greece. Int. J. Energy Res. 2009; 33: 1059–1069. 10.1002/er.1535. [DOI] [Google Scholar]
  • 9.Santamouris M. Cooling the cities–A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy. 2014; Volume 103, 682–703. 10.1016/j.solener.2012.07.003. [DOI] [Google Scholar]
  • 10.Takakura T, Kitade S, Goto E. Cooling effect of greenery cover over a building. Energy and buildings. 2000; 31(1), 1–6. 10.1016/S0378-7788(98)00063-2. [DOI] [Google Scholar]
  • 11.Theodosiou TG. Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and buildings. 2003; 35(9), 909–917. 10.1016/S0378-7788(03)00023-9. [DOI] [Google Scholar]
  • 12.Wong NH, Chen Y, Ong CL, Sia A. Investigation of thermal benefits of rooftop garden in the tropical environment. Building and environment. 2003; 38(2), 261–270. 10.1016/S0360-1323(02)00066-5. [DOI] [Google Scholar]
  • 13.Kumar R, Kaushik SC. Performance evaluation of green roof and shading for thermal protection of buildings. Building and environment. 2005; 40(11), 1505–1511. 10.1016/j.buildenv.2004.11.015. [DOI] [Google Scholar]
  • 14.Getter KL, Rowe DB. The Role of Extensive Green Roofs in Sustainable Development. Hortscience. 2006; 41(5):1276–1285. 10.21273/HORTSCI.41.5.1276. [DOI] [Google Scholar]
  • 15.Alexandri E, Jones P. Temperature decrease in a urban canyon due to green walls and green roofs in di- verse climates. Building and Environment. 2008; 43: 480–493. 10.1016/j.buildenv.2006.10.055. [DOI] [Google Scholar]
  • 16.Dunnett N, Kingsbury N. Planting green roofs and living walls. Portland, OR: Timber press. 2008. [Google Scholar]
  • 17.Spala A, Bagiorgas HS, Assimakopoulos MN, Kalavrouziotis J, Matthopoulos D, Mihalakakou G. On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renewable Energy. 2008; 33(1), 173–177. 10.1016/j.renene.2007.03.022. [DOI] [Google Scholar]
  • 18.Castleton HF, Stovin V, Beck SB, Davison JB. Green roofs; building energy savings and the potential for retrofit. Energy and buildings. 2010; 42(10), 1582–1591. 10.1016/j.enbuild.2010.05.004. [DOI] [Google Scholar]
  • 19.Jaffal I, Ouldboukhitine SE, Belarbi R. A comprehensive study of the impact of green roofs on building energy performance. Renewable energy. 2012; 43, 157–164. 10.1016/j.renene.2011.12.004. [DOI] [Google Scholar]
  • 20.La Gennusa M, Peri G, Scaccianoce G, Sorrentino G, Aprile S. A case-study of green roof monitoring: The building of council for agricultural research and economics in Bagheria, (Italy). In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems, Palermo, Italy, 12–15 June 2018. pp. 1–5. 10.1109/EEEIC.2018.8494423. [DOI]
  • 21.Sohaili J, Yan LK, Muniyandi SK, Mohamad SS. Urban Heat Island Mitigation Using Green Roof Approach. Jurnal Teknologi. 2018; 80(3). 10.11113/jt.v80.10577. [DOI] [Google Scholar]
  • 22.Fioretti R, Palla A, Lanza LG, Principi P. Green roof energy and water related performance in the Mediterranean climate. Building and Environment. 2010; 45:1890–1904. 10.1016/j.buildenv.2010.03.001. [DOI] [Google Scholar]
  • 23.Peri G, Sorrentino G, Covais A, Aprile S. Experimentally approaching the analysis of the thermal performances of green roofing in Mediterranean climates. In 2nd EMUNI Research Souk. The Euro-Mediterranean Student Research Multi-conference.“Living Together in the Multi-cultural Society". 2010.
  • 24.Van Mechelen C, Dutoit T, Hermy M. Vegetation development on different extensive green roof types in a Mediterranean and temperate maritime climate. Ecological engineering. 2015; 82, 571–582. 10.1016/j.ecoleng.2015.05.011. [DOI] [Google Scholar]
  • 25.Bevilacqua P, Mazzeo D, Bruno R, Arcuri N. Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area. Energy and buildings. 2016; 122, 63–79. 10.1016/j.enbuild.2016.03.062. [DOI] [Google Scholar]
  • 26.Ferrante P, La Gennusa M, Peri G, Rizzo G, Scaccianoce G. Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs’ system. Energy. 2016; 115, 1723–1732. 10.1016/j.energy.2016.07.085. [DOI] [Google Scholar]
  • 27.Vahdati N, Tehranifar A, Kazemi F. Energy conservation potential of an extensive green roof in Iran for one year duration. Journal of Ornamental plants. 2017; 7(1), 53–61. [Google Scholar]
  • 28.Miller PC. Canopy structure of Mediterranean-type shrubs in relation to heat and moisture. Mediterranean-Type Ecosystems. 1983; 133–166. 10.1007/978-3-642-68935-2_8. [DOI] [Google Scholar]
  • 29.Paskoff RP. Geomorphological processes and characteristic landforms in the Mediterranean regions of the world. In Di Castri F. & Mooney H. A. (eds), Mediterranean Type Ecosystems: Origin and Structure. Springer, New York. 1973; 53–60. 10.1007/978-3-642-65520-3_5. [DOI] [Google Scholar]
  • 30.Dallman, PR. Plant life in the world’s Mediterranean climates: California, Chile, South Africa, Australia, and the Mediterranean basin. Univ of California Press. 1998.
  • 31.Zhang Z, Szota C, Fletcher TD, Williams NS, Farrell C. Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of environmental management. 2019; 232, 404–412. 10.1016/j.jenvman.2018.11.070 [DOI] [PubMed] [Google Scholar]
  • 32.Palla A, Gnecco I, Lanza LG. Hydrologic Restoration in the Urban Environment Using Green Roofs. Water. 2010; 2(2):140–154. 10.3390/w2020140. [DOI] [Google Scholar]
  • 33.Liesecke HJ. Back to nature. Execution of extended green areas on flat roofs; Zurueck zur Natur. Ausbildung von Extensivbegruenungen auf Flachdaechern. Bausubstanz. 1999; 15.
  • 34.Köhler M, Schmidt M, Grimme FW, Laar M, Gusmão F. Urban water retention by greened roofs in temperate and tropical climate. Technology Resource Management and Development. 2001; 2, 151–162. [Google Scholar]
  • 35.Mentens J, Raes D, Hermy M. Greenroofs as a part of urban water management. Progress in Water Resources. 2003; 8, 35–43. [Google Scholar]
  • 36.Pęczkowski G, Orzepowski W, Pokładek R, Kowalczyk T, Żmuda R, Wójcik R. Retention properties of the type of extensive green roofs as an example of model tests. Acta Scientiarum Polonorum. Formatio Circumiectus. 2016; 15(3), 113. [Google Scholar]
  • 37.Cascone S, Gagliano A, Poli T, Sciuto G. Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Building Simulation, Tsinghua University Press. 2019; 12, No. 3, pp. 379–393. 10.1007/s12273-018-0488-y. [DOI] [Google Scholar]
  • 38.VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Xiao L. Watering regime and green roof substrate design affect Sedum plant growth. HortScience. 2005; 40(3), 659–664. 10.21273/HORTSCI.40.3.659. [DOI] [Google Scholar]
  • 39.Li WC, Yeung KKA. A comprehensive study of green roof performance from environmental perspective. International Journal of Sustainable Built Environment. 2014; 3(1), 127–134. 10.1016/j.ijsbe.2014.05.001. [DOI] [Google Scholar]
  • 40.Baldwin DL. Succulents Simplified: Growing, Designing, and Crafting with 100 Easy-Care Varieties. Timber Press. 2013. [Google Scholar]
  • 41.Cabahug RAM, Nam SY, Lim KB, Jeon JK, Hwang YJ. Propagation Techniques for Ornamental Succulents. Flower Res. J. 2018; 26(3): 90–101. 10.11623/frj.2018.26.3.02. [DOI] [Google Scholar]
  • 42.Tuttolomondo T, Fascella G, Licata M, Schicchi R, Gennaro MC, La Bella S, et al. Studies on Sedum taxa found in Sicily (Italy) for Mediterranean extensive green roofs. Italian Journal of Agronomy. 2018; 13(2), 148–154. 10.4081/ija.2018.1077. [DOI] [Google Scholar]
  • 43.Grace OM. Succulent plant diversity as natural capital. Plants, People, Planet. 2019; 1(4), 336–345. 10.1002/ppp3.25. [DOI] [Google Scholar]
  • 44.Nyffeler R, Eggli U. An up-to-date familial and suprafamilial classification of succulent plants. Bradleya, 2010; (28), 125–144. 10.25223/brad.n28.2010.a1. [DOI] [Google Scholar]
  • 45.Byalt V.V. The adventive species of Crassulaceae. Russ J Biol Invasions, 2011; (2), 155. 10.1134/S2075111711030039. [DOI] [Google Scholar]
  • 46.Posey DA, Dutchfield G. Indigenous peoples and sustainability: cases and actions. IUCN Inter-Commission Task Force on Indigenous Peoples. 1997.
  • 47.Dunnett N. Planting options for extensive and semi-extensive green roofs. 2004. [Google Scholar]
  • 48.Liu TC, Shyu GS, Fang WT, Liu SY, Cheng BY. Drought tolerance and thermal effect measurements for plants suitable for extensive green roof planting in humid subtropical climates. Energy and buildings. 2012; 47, 180–188. 10.1016/j.enbuild.2011.11.043. [DOI] [Google Scholar]
  • 49.Aprile S, Tuttolomondo T, Gennaro MC, Leto C, La Bella S, Licata M. Effects of plant density and cutting-type on rooting and growth of an extensive green roof of Sedum sediforme (Jacq.) Pau in a Mediterranean environment. Scientia Horticulturae. 2020; 262, 109091. 10.1016/j.scienta.2019.109091. [DOI] [Google Scholar]
  • 50.Williams NSG, Hughes RE, Jones NM, Bradbury DA, Rayner JP. The performance of native and exotic species for extensive green roofs in Melbourne, Australia. In II International Conference on Landscape and Urban Horticulture 881. 2009; pp. 689–696. 10.17660/ActaHortic.2010.881.113. [DOI]
  • 51.Razzaghmanesh M, Beecham S, Kazemi F. The growth and survival of plants in urban green roofs in a dry climate. Science of the Total Environment. 2014; 476, 288–297. 10.1016/j.scitotenv.2014.01.014 [DOI] [PubMed] [Google Scholar]
  • 52.Schweitzer O, Erell E. Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy and Buildings. 2014; 68, 25–32. 10.1016/j.enbuild.2013.09.012. [DOI] [Google Scholar]
  • 53.Lundholm JT. Coarse-and fine-scale plant species mixtures to optimize green roof ecosystem functioning. In VI International Conference on Landscape and Urban Horticulture 1189. 2016; (pp. 189–196). 10.17660/ActaHortic.2017.1189.38. [DOI]
  • 54.Ellenberg, H. and Müller-Dombois D. A key of Raunkiaer plant life forms with revised subdivision, in Berichte des Geobotanischen Institutes, 1967, ETH Stiftung Rübel, 37, pp. 56–73.
  • 55.Nagase A, Dunnett N. Establishment of an annual meadow on extensive green roofs in the UK. Landscape and urban planning. 2013; 112, 50–62. 10.1016/j.landurbplan.2012.12.007. [DOI] [Google Scholar]
  • 56.Monterusso MA, Rowe DB, Rugh CL. Establishment and persistence of Sedum spp. and native taxa for green roof applications. HortScience. 2005; 40(2), 391–396. 10.21273/HORTSCI.40.2.391. [DOI] [Google Scholar]
  • 57.Schaefer H, Forrester K, Jost V, Luckett K, Morgan S, Yan T, et al. Effects of green roof growth medium depths on Sedum immergrauch establishment. In ISAS Annual Meeting. IL, USA: Chicago. April 2005.
  • 58.Sendo T, Kanechi M, Uno Y, Inagaki N. Evaluation of growth and green coverage of ten ornamental species for planting as urban rooftop greening. Journal of the Japanese Society for Horticultural Science. 2010; 79(1), 69–76. 10.2503/jjshs1.79.69. [DOI] [Google Scholar]
  • 59.Herms DA. Using degree-days and plant phenology to predict pest activity. In IPM (integrated pest management) of midwest landscapes. St. Paul, MN: Minnesota Agricultural Experiment Station Publication. 2004, Vol. 58, pp. 49–59. [Google Scholar]
  • 60.Schindler BY, Blaustein L, Vasl A, Kadas GJ, Seifan M. Cooling effect of Sedum sediforme and annual plants on green roofs in a Mediterranean climate. Urban forestry & urban greening. 2019; 38, 392–396. 10.1016/j.ufug.2019.01.020. [DOI] [Google Scholar]
  • 61.Herppich WB, Peckmann K. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia to short-term drought and rewatering. Journal of Plant Physiology. 1997; 150(4), 467–474. 10.1016/S0176-1617(97)80100-9. [DOI] [Google Scholar]
  • 62.Cela J, Arrom L, Munné-Bosch S. Diurnal changes in photosystem II photochemistry, photoprotective compounds and stress-related phytohormones in the CAM plant, Aptenia cordifolia. Plant science. 2009; 177(5), 404–410. 10.1016/j.plantsci.2009.07.001. [DOI] [Google Scholar]
  • 63.Nagase A, Tashiro-Ishii Y. Habitat template approach for green roofs using a native rocky seacoast plant community in Japan. Journal of environmental management. 2018; 206, 255–265. 10.1016/j.jenvman.2017.10.001 [DOI] [PubMed] [Google Scholar]
  • 64.Schroll E, Lambrinos J, Righetti T, Sandrock D. The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecological engineering. 2011; 37(4), 595–600. 10.1016/j.ecoleng.2010.12.020. [DOI] [Google Scholar]
  • 65.Zheng X, Zou Y, Lounsbury AW, Wang C, & Wang R. Green roofs for stormwater runoff retention: A global quantitative synthesis of the performance. Resources Conservation and Recycling, 2021; 170, 105577. 10.1016/j.resconrec.2021.105577. [DOI] [Google Scholar]
  • 66.Gong Y, Zhang X, Li H, Zhang X, He S, Miao Y. A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. J. Environ. Manage. 2021; 278, 1–10. doi: 10.1016/j.jenvman.2020.111451 [DOI] [PubMed] [Google Scholar]
  • 67.Speak AF, Rothwell JJ, Lindley SJ, Smith CL. Rainwater runoff retention on an aged intensive green roof. Science of the Total Environment. 2013; 461, 28–38. 10.1016/j.scitotenv.2013.04.085 [DOI] [PubMed] [Google Scholar]
  • 68.Nguyen CN, Muttil N, Tariq MAUR, Ng AWM. Quantifying the Benefits and Ecosystem Services Provided by Green Roofs—A Review. Water. 2022; 14(1):68. 10.3390/w14010068. [DOI] [Google Scholar]
  • 69.Tran S, Lundholm JT, Staniec M, Robinson CE, Smart CC, Voogt JA, et al. Plant survival and growth on extensive green roofs: a distributed experiment in three climate regions. Ecological Engineering. 2019; 127, 494–503. 10.1016/j.ecoleng.2018.09.027. [DOI] [Google Scholar]
  • 70.Robbiati FO, Cáceres N, Hick EC, Suarez M, Soto S, Barea G, et al. Vegetative and thermal performance of an extensive vegetated roof located in the urban heat island of a semiarid region. Build. Environ. 2022; 212, 108791. 10.1016/j.buildenv.2022.108791. [DOI] [Google Scholar]

Decision Letter 0

Sajid Ali

11 Apr 2022

PONE-D-22-05525Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climatePLOS ONE

Dear Dr. Licata,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by May 26 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols.

We look forward to receiving your revised manuscript.

Kind regards,

Sajid Ali

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at 

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and 

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. We note that the grant information you provided in the ‘Funding Information’ and ‘Financial Disclosure’ sections do not match. 

When you resubmit, please ensure that you provide the correct grant numbers for the awards you received for your study in the ‘Funding Information’ section.

3. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

Reviewers' comments:

Reviewer 1 

Overall, I enjoyed reading this paper. It was nice to see that several species will be usable in the Mediterranean climate. I have several recommendations for improving clarity. Additionally, I am uncertain as to why the height and flowering of the 3 species of sedum and the 3 species of Aizoaceae were averaged together. I would like to see their range as individual species. I would also like to know the final cover of individual species.

Introduction

Line 68: recommend removing “in these climate conditions” as vegetation can influence ecosystem services regardless of climate. or add more detail as to in what way they must be adapted in comparison to other climates.

Line 76: define what you mean by extreme conditions

Line 84: I recommend adding an example supporting the previous sentence

Methods

Test site: please include precipitation and temp averages for the seasons mentioned. Also how long do your summers/winters last?

Line 121: the term “two plant layer types” is a bit confusing here as it sounds like each panel had two plant layers? Recommend just calling it plant layer as you define your plant treatments in the next section.

Plant Material: Since plos one advertises to a wide variety of researchers I recommend removing species authority from this section and just adding it to one of your appendix tables. Additionally for this journal readers may not know the terms Camephyte succulent; Terophyte scapose; Camephyte suffruticose. I recommend defining.

Line 125: please provide information on location of wild plants, also are the same specieas all from the same mother plant?

Line 125: for ease of understanding recommend changing treatment names from T1 and T2 to Sedum mixture and Aizoaceae mixture

Please explain why species were planted at different densities.

I recommend changing the heading plant material to treatments

I recommend removing the heading cultural practices (implies social practices) as this paragraph can fit just fine in the previous section.

Line 141: confusing sentence, not sure what data was gathered

Line 142: please define various indicators

Line 143: how were hydrological observations made?

Plant height: was this taken for every individual in each treatment?

Line 157: Recommend changing “TPGC” to “cover” to make is easier to remember what it is associated with.

Line 176: how was this calculated?

The terms RW1 and RW2 I recommend spelling out to improve readability. So when mentioned later on just say retention sedum or something similar

For readability Recommend spelling out GI and not using acronym.

Results

No need to write out detailed climatic conditions, recommend just saying similar to previous studies, followed expected trends for region. Recommend moving figure 1 to appendix.

Uncertain why relationship between growth rate and height is important to include. Recommend removing or moving to appendix.

Figures

2-4: uncertain what the numbers under the heading repeated measures anova are

Please add a photograph of study system

Reviewer 2

Abstract

Additional information of statistical analysis and results values must be included in abstract in order to enhance the first look of manuscript.

Materials and methods

What was the height of pilot roof from the ground?

How mixtures obtained from the mother plant.

What was age of mother plant

How plants were propagated.

What type of water was used for irrigation e.g. tap or distilled water

Discussion

Discussion is corroborative. The authors should highlight the reason of their result findings in the light of available literature.

The author did not follow the logical trend to reach the purposes of the manuscript.

Figures

Please use similar writing format in the figures

Clearly write figure No. of all figures

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2022 Jun 3;17(6):e0269446. doi: 10.1371/journal.pone.0269446.r002

Author response to Decision Letter 0


16 May 2022

In response to Ms. Ref. No.: PONE-D-22-05525 we followed all the recommendations which were made by the editor and reviewers.

Editor’s comments

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

The authors confirm that the manuscripts meets PLOS ONE’s style requirement. They have used the PLOS ONE templates, found at links suggested by the Editor.

2. We note that the grant information you provided in the ‘Funding Information’ and ‘Financial Disclosure’ sections do not match.

When you resubmit, please ensure that you provide the correct grant numbers for the awards you received for your study in the ‘Funding Information’ section.

The authors agree with the Editor’s consideration. They state that title of project is Ar.Co.Verde, the Grant number is DM 19741/7643/08, the full name of the funder is Italian Ministry of Agricultural, Food and Forestry Policies.

3. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

The authors agree with the Editor’s comment. They affirm that the minimum dataset has been included in the Support Information File by tables S1, S2, S3, S4, S5, S6, S7, S8, S9 and S10.

Reviewer #1

In response to Ms. Ref. No.: PONE-D-22-05525 Reviewer #1, we tried to follow nearly all of his/her recommendations. Here is a point by point summary of the actions taken in response to the reviewer’s comments.

*The reviewer wrote: Overall, I enjoyed reading this paper. It was nice to see that several species will be usable in the Mediterranean climate. I have several recommendations for improving clarity. Additionally, I am uncertain as to why the height and flowering of the 3 species of sedum and the 3 species of Aizoaceae were averaged together. I would like to see their range as individual species. I would also like to know the final cover of individual species.

The authors appreciate and thank the reviewer for his/her comments. The height and flowering of the 3 species of sedum and the 3 species of Aizoaceae were averaged together because the aim of the work involved a comparison between two mixtures. The assessment of individual species was not of interest to the authors. However, we enclose the available data relating to the individual species in the Supporting Information (Tables S1, S2, S3, S4, S5, S7 and S10).

Introduction

*The reviewer wrote: Line 68: recommend removing “in these climate conditions” as vegetation can influence ecosystem services regardless of climate. or add more detail as to in what way they must be adapted in comparison to other climates.

The authors thank the reviewer for his/her suggestion. They affirm that the statement “in these climate conditions” has been removed from the manuscript.

*The reviewer wrote: Line 76: define what you mean by extreme conditions

The authors have specified and reported in the manuscript what is meant by "extreme conditions" (high temperatures, high wind, aridity).

*The reviewer wrote: Line 84: I recommend adding an example supporting the previous sentence

The authors have included a bibliographic reference to support the sentence, as suggested by the reviewer.

Methods

*The reviewer wrote: Test site: please include precipitation and temp averages for the seasons mentioned. Also how long do your summers/winters last?

The authors have added in the manuscript the average rainfall and temperature trends of the area, as suggested by the reviewer.

*The reviewer wrote: Line 121: the term “two plant layer types” is a bit confusing here as it sounds like each panel had two plant layers? Recommend just calling it plant layer as you define your plant treatments in the next section.

The authors have changed the sentence in the manuscript, as suggested by the reviewer.

*The reviewer wrote: Plant Material: Since plos one advertises to a wide variety of researchers I recommend removing species authority from this section and just adding it to one of your appendix tables. Additionally for this journal readers may not know the terms Camephyte succulent; Terophyte scapose; Camephyte suffruticose. I recommend defining.

The authors agree with the reviewer’s observation. They have made a table and inserted it in the Supporting Information (Table S11) and defined the required terms.

*The reviewer wrote: Line 125: please provide information on location of wild plants, also are the same specieas all from the same mother plant?

The authors thank the reviewer for this constructive comment. The authors have added the concerning the location in the Supporting Information (Table S12). They highlight that each species was from mother plants of the same population.

*The reviewer wrote: Line 125: for ease of understanding recommend changing treatment names from T1 and T2 to Sedum mixture and Aizoaceae mixture

The authors have changed the names in the manuscript, as suggested by the reviewer.

*The reviewer wrote: Please explain why species were planted at different densities.

This information is provided in line 130, "The plant m-2 investment for each treatment was determined by plant species size and habitus".

*The reviewer wrote: I recommend changing the heading plant material to treatments

The authors have changed the name, as suggested by the reviewer.

*The reviewer wrote: I recommend removing the heading cultural practices (implies social practices) as this paragraph can fit just fine in the previous section.

The authors have changed the name from Cultural practices to “Cultivation practices” in order to explain better the sentence.

*The reviewer wrote: Line 141: confusing sentence, not sure what data was gathered

The sentence has been changed and improved in the manuscript in order to avoid any confusion.

*The reviewer wrote: Line 142: please define various indicators

The various indicators have been defined in the manuscript. "Plant height, Growth index, Cover, Flowering."

*The reviewer wrote: Line 143: how were hydrological observations made?

The hydrological observations have been described on lines 175-180 as following. “During the second year, to coincide with the rainy months, the volume of water retained by the two succulent plant mixtures was calculated. This was then compared to monthly rainfall volumes to acquire useful data on the water retaining capacity of the two systems. Rainfall water from the systems was drained off and collected on a monthly basis in scale-marked containers located under the structure. This quantity of water was then subtracted from the known monthly rainfall levels ".

*The reviewer wrote: Plant height: was this taken for every individual in each treatment?

The height of the plant was measured for every individual in each treatment.

*The reviewer wrote: Line 157: Recommend changing “TPGC” to “cover” to make is easier to remember what it is associated with.

The authors have changed the name, as suggested by the reviewer.

*The reviewer wrote: Line 176: how was this calculated?

The volume of water retained by the two systems was calculated by the difference between the height of rain and the water flowed from the systems which was collected by graduated containers placed at the base of the system.

*The reviewer wrote: The terms RW1 and RW2 I recommend spelling out to improve readability. So when mentioned later on just say retention sedum or something similar.

The authors have changed the sentence, as suggested by the reviewer.

*The reviewer wrote: For readability Recommend spelling out GI and not using acronym.

The acronyms have been replaced with the full name.

Results

*The reviewer wrote: No need to write out detailed climatic conditions, recommend just saying similar to previous studies, followed expected trends for region. Recommend moving figure 1 to appendix.

The authors thank the reviewer for his/her comment. However, they have not changed the paragraph because of the importance that climate conditions assume in the test environment.

*The reviewer wrote: Uncertain why relationship between growth rate and height is important to include. Recommend removing or moving to appendix.

The authors thank the reviewer but would like to leave the paragraph at the end to deepen the relationship between the two parameters.

Figures

*The reviewer wrote: 2-4: uncertain what the numbers under the heading repeated measures anova are

The values under the “heading ANOVA repeated measures” represent the averages of the parameter of the two thesis with reference to the entire period.

*The reviewer wrote: Please add a photograph of study system

The authors have added the a photograph in the Supporting information (Figure S1).

Reviewer #2

In response to Ms. Ref. No.: PONE-D-22-05525 Reviewer #2, we tried to follow nearly all of his/her recommendations. Here is a point by point summary of the actions taken in response to the reviewer’s comments.

Abstract

*The reviewer wrote: must be included in abstract in order to enhance the first look of manuscript.

The authors thank the reviewer for hisher comment and have included the additional information of statistical analysis and results values in the abstract.

Materials and methods

*The reviewer wrote: What was the height of pilot roof from the ground?

The authors have reported this information in the manuscript: "Each platform was 2.2 m2 and a height of 100 cm from the ground in size and ..."

*The reviewer wrote: How mixtures obtained from the mother plant.

This information has been provided in line 130, "The plant m-2 investment for each treatment was determined by plant species size and habitus".

*The reviewer wrote: What was age of mother plant

The age of the mother plants, obtained from wild plants, was 3 years.

*The reviewer wrote: How plants were propagated.

The plants were obtained by agamic propagation.

*The reviewer wrote: What type of water was used for irrigation e.g. tap or distilled water

Tap water was used for the irrigation.

Discussion

*The reviewer wrote: Discussion is corroborative. The authors should highlight the reason of their result findings in the light of available literature.

The authors thank the reviewer for his/her constructive consideration. They have improved the manuscript with recent references.

*The reviewer wrote: The author did not follow the logical trend to reach the purposes of the manuscript.

The authors think they have discussed the parameters characterizing the green roof following a logical trend.

Figures

*The reviewer wrote: Please use similar writing format in the figures

The format of the figures has been re-written and improved.

*The reviewer wrote: Clearly write figure No. of all figures

The caption of the figures has been clearly re--written.

We hope the editorial board will agree on the interest of this study.

Sincerely yours,

Mario Licata on behalf of the authors.

Corresponding author: Dott. Mario Licata, Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze 13 Building 4, 90128 Palermo, Italy. E-mail: mario.licata@unipa.it

Attachment

Submitted filename: Response to reviewers.docx

Decision Letter 1

Sajid Ali

23 May 2022

Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate

PONE-D-22-05525R1

Dear Dr. Licata,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Sajid Ali

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Acceptance letter

Sajid Ali

25 May 2022

PONE-D-22-05525R1

Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate

Dear Dr. Licata:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Sajid Ali

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Pilot roof system.

    (PDF)

    S1 Table. Cover Plant_ Aizoaceae (%).

    (XLSX)

    S2 Table. Height Plant _Aìzoaceae (cm).

    (XLSX)

    S3 Table. Height Plant_ Sedum (cm).

    (XLSX)

    S4 Table. Cover (%).

    (XLSX)

    S5 Table. Plant height.

    (XLSX)

    S6 Table. Growth index.

    (XLSX)

    S7 Table. Flowering.

    (XLSX)

    S8 Table. Relationship between G.I. and plant height.

    (XLSX)

    S9 Table. Hydrological observations.

    (XLSX)

    S10 Table. Cover plant_ Sedum (%).

    (XLSX)

    S11 Table. Plant material.

    (XLSX)

    S12 Table. Plant location.

    (XLSX)

    Attachment

    Submitted filename: Response to reviewers.docx

    Data Availability Statement

    All relevant data are within the paper and its Supporting Information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES