Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.

Keywords: drug delivery, vaccine, protein/peptide, self-assembly, targeting, controlled release
Acknowledgements
This work was supported by the National Key Research and Development Program of China (No. 2019YFA0905200), the National Natural Science Foundation of China (No. 82072045), and the Natural Science Foundation of Jiangsu Province of China for Excellent Young Scholars (No. BK20190084).
References
- [1].Hoonjan M, Sachdeva G, Chandra S, Kharkar P S, Sahu N, Bhatt P. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles. Nanoscale. 2018;10:8031–8041. doi: 10.1039/C7NR09503A. [DOI] [PubMed] [Google Scholar]
- [2].Krauss I R, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston J E, Fragneto G, Paduano L. Interaction with human serum proteins reveals biocompatibility of phosphocholine-functionalized spions and formation of albumin-decorated nanoparticles. Langmuir. 2020;36:8777–8791. doi: 10.1021/acs.langmuir.0c01083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Wang L R, Lin H Y, Chi X Q, Sun C J, Huang J Q, Tang X X, Chen H M, Luo X J, Yin Z Y, Gao J H. A self-assembled biocompatible nanoplatform for multimodal MR/fluorescence imaging assisted photothermal therapy and prognosis analysis. Small. 2018;14:1801612. doi: 10.1002/smll.201801612. [DOI] [PubMed] [Google Scholar]
- [4].Pan G H, Ni J, Wei Y F, Yu G L, Gentz R, Dixit V M. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997;277:815–818. doi: 10.1126/science.277.5327.815. [DOI] [PubMed] [Google Scholar]
- [5].Tan C Y, Ban H, Kim Y H, Lee S K. The heat shock protein 27 (Hsp27) operates predominantly by blocking the mitochondrial-independent/extrinsic pathway of cellular apoptosis. Mol. Cells. 2009;27:703. doi: 10.1007/s10059-009-0090-3. [DOI] [PubMed] [Google Scholar]
- [6].Li J Y, Paragas N, Ned R M, Qiu A D, Viltard M, Leete T, Drexler I R, Chen X, Sanna-Cherchi S, Mohammed F, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell. 2009;16:35–46. doi: 10.1016/j.devcel.2008.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Liu J L, Chen B X, Zhao B, Luo X B, Li J F, Xie Y T, Li B L, Chen H Y, Zhao M Y, Yan H D. Effect of hirudin on arterialized venous flap survival in rabbits. Biomed. Pharmacother. 2021;142:111981. doi: 10.1016/j.biopha.2021.111981. [DOI] [PubMed] [Google Scholar]
- [8].Ki M R, Kim J K, Kim S H, Nguyen T K M, Kim K H, Pack S P. Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J. Ind. Eng. Chem. 2020;81:367–374. doi: 10.1016/j.jiec.2019.09.027. [DOI] [Google Scholar]
- [9].Murata M, Narahara S, Kawano T, Hamano N, Piao J S, Kang J H, Ohuchida K, Murakami T, Hashizume M. Design and function of engineered protein nanocages as a drug delivery system for targeting pancreatic cancer cells via neuropilin-1. Mol. Pharm. 2015;12:1422–1430. doi: 10.1021/mp5007129. [DOI] [PubMed] [Google Scholar]
- [10].Reuter L J, Shahbazi M A, Mäkilä E M, Salonen J J, Saberianfar R, Menassa R, Santos H A, Joensuu J J, Ritala A. Coating nanoparticles with plant-produced transferrin-hydrophobin fusion protein enhances their uptake in cancer cells. Bioconjug. Chem. 2017;28:1639–1648. doi: 10.1021/acs.bioconjchem.7b00075. [DOI] [PubMed] [Google Scholar]
- [11].Lucon J, Abedin M J, Uchida M, Liepold L, Jolley C C, Young M, Douglas T. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 2010;46:264–266. doi: 10.1039/B920868B. [DOI] [PubMed] [Google Scholar]
- [12].Varpness Z, Suci P A, Ensign D, Young M J, Douglas T. Chem. Commun. 2009. Photosensitizer efficiency in genetically modified protein cage architectures; pp. 3726–3728. [DOI] [PubMed] [Google Scholar]
- [13].Gillitzer E, Willits D, Young M, Douglas T. Chem. Commun. 2002. Chemical modification of a viral cage for multivalent presentation; pp. 2390–2391. [DOI] [PubMed] [Google Scholar]
- [14].Ding D, Yang C, Lv C, Li J, Tan W H. Improving tumor accumulation of aptamers by prolonged blood circulation. Anal. Chem. 2020;92:4108–4114. doi: 10.1021/acs.analchem.9b05878. [DOI] [PubMed] [Google Scholar]
- [15].Brandt M, Cardinale J, Giammei C, Guarrochena X, Happl B, Jouini N, Mindt T L. Mini-review: Targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl. Med. Biol. 2019;70:46–52. doi: 10.1016/j.nucmedbio.2019.01.006. [DOI] [PubMed] [Google Scholar]
- [16].Chen X, Ling X, Zhao L L, Xiong F, Hollett G, Kang Y, Barrett A, Wu J. Biomimetic shells endow sub-50 nm nanoparticles with ultrahigh paclitaxel payloads for specific and robust chemotherapy. ACS. Appl. Mater. Interfaces. 2018;10:33976–33985. doi: 10.1021/acsami.8b11571. [DOI] [PubMed] [Google Scholar]
- [17].Wang M Y, Zhang L, Cai Y F, Yang Y, Qiu L P, Shen Y T, Jin J, Zhou J, Chen J H. Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano. 2020;14:17405–17418. doi: 10.1021/acsnano.0c07610. [DOI] [PubMed] [Google Scholar]
- [18].Desai N, Trieu V, Yao Z W, Louie L, Ci S, Yang A, Tao C L, De T, Beals B, Dykes D, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006;12:1317–1324. doi: 10.1158/1078-0432.CCR-05-1634. [DOI] [PubMed] [Google Scholar]
- [19].Wang D F, Liang N, Kawashima Y, Cui F D, Yan P F, Sun S P. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J. Mater. Sci. 2019;54:8613–8626. doi: 10.1007/s10853-019-03486-9. [DOI] [Google Scholar]
- [20].Das R P, Singh B G, Kunwar A, Ramani M V, Subbaraju G V, Hassan P A, Priyadarsini K I. Tuning the binding, release and cytotoxicity of hydrophobic drug by bovine serum albumin nanoparticles: Influence of particle size. Colloids Surf. B Biointerfaces. 2017;158:682–688. doi: 10.1016/j.colsurfb.2017.07.048. [DOI] [PubMed] [Google Scholar]
- [21].Gong T, Tan T T, Zhang P, Li H H, Deng C F, Huang Y, Gong T, Zhang Z R. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis. Biomaterials. 2020;258:120296. doi: 10.1016/j.biomaterials.2020.120296. [DOI] [PubMed] [Google Scholar]
- [22].Nosrati H, Abbasi R, Charmi J, Rakhshbahar A, Aliakbarzadeh F, Danafar H, Davaran S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol. 2018;117:1125–1132. doi: 10.1016/j.ijbiomac.2018.06.026. [DOI] [PubMed] [Google Scholar]
- [23].Gaowa A, Horibe T, Kohno M, Sato K, Harada H, Hiraoka M, Tabata Y, Kawakami K. Combination of hybrid peptide with biodegradable gelatin hydrogel for controlled release and enhancement of anti-tumor activity in vivo. J. Controlled Release. 2014;176:1–7. doi: 10.1016/j.jconrel.2013.12.021. [DOI] [PubMed] [Google Scholar]
- [24].Chen X J, Zou J F, Zhang K, Zhu J J, Zhang Y, Zhu Z H, Zheng H Y, Li F Z, Piao J G. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta. Pharm. Sin. B. 2021;11:271–282. doi: 10.1016/j.apsb.2020.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Zhou H, He G, Sun Y B, Wang J G, Wu H T, Jin P, Zha Z. Cryptobiosis-inspired assembly of “AND” logic gate platform for potential tumor-specific drug delivery. Acta Pharm. Sin. B. 2021;11:534–543. doi: 10.1016/j.apsb.2020.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].He G, Chen S, Xu Y J, Miao Z H, Ma Y, Qian H S, Lu Y, Zha Z B. Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy. Mater. Horiz. 2019;6:711–716. doi: 10.1039/C9MH00020H. [DOI] [Google Scholar]
- [27].Cheng W Y, Wang B L, Zhang C Y, Dong Q N, Qian J J, Zha L, Chen W D, Hong L F. Preparation and preliminary pharmacokinetics study of GNA-loaded zein nanoparticles. J. Pharm. Pharmacol. 2019;71:1626–1634. doi: 10.1111/jphp.13151. [DOI] [PubMed] [Google Scholar]
- [28].Bao X Y, Qian K, Yao P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J. Nanobiotechnol. 2020;18:67. doi: 10.1186/s12951-020-00619-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Shinde P, Agraval H, Singh A, Yadav U C S, Kumar U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J. Drug. Deliv. Sci. Technol. 2019;52:369–378. doi: 10.1016/j.jddst.2019.04.044. [DOI] [Google Scholar]
- [30].Alqahtani M S, Syed R, Alshehri M. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers. 2020;12:2576. doi: 10.3390/polym12112576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Yang Y Y, Zhang M, Liu Z P, Wang K, Yu D G. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying. Appl. Surf. Sci. 2018;434:1040–1047. doi: 10.1016/j.apsusc.2017.11.024. [DOI] [Google Scholar]
- [32].Qian X P, Ge L, Yuan K J, Li C, Zhen X, Cai W B, Cheng R S, Jiang X Q. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics. 2019;9:7417–7430. doi: 10.7150/thno.33470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Farooq M A, Aquib M, Ghayas S, Bushra R, Haleem Khan D, Parveen A, Wang B. Whey protein: A functional and promising material for drug delivery systems recent developments and future prospects. Polym. Adv. Technol. 2019;30:2183–2191. doi: 10.1002/pat.4676. [DOI] [Google Scholar]
- [34].Castro M A A, Alric I, Brouillet F, Peydecastaing J, Fullana S G, Durrieu V. Spray-dried succinylated soy protein microparticles for oral ibuprofen delivery. AAPS PharmSciTech. 2019;20:79. doi: 10.1208/s12249-018-1250-6. [DOI] [PubMed] [Google Scholar]
- [35].Tang J H, Zhou J P, Chen F H, Sun T T, Kuang W J, Feng R X. Synthesis, characterization and drug-loading capacity of novel amphiphilic amino acid copolymer. J. China Pharm. Univ. 2012;43:211–215. [Google Scholar]
- [36].Loureiro A, Nogueira E, Azoia N G, Sárria M P, Abreu A S, Shimanovich U, Rollett A, Härmark J, Hebert H, Guebitz G, et al. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids Surf. B Biointerfaces. 2015;135:90–98. doi: 10.1016/j.colsurfb.2015.06.073. [DOI] [PubMed] [Google Scholar]
- [37].Yang P P, Zhang K, He P P, Fan Y, Gao X J, Gao X F, Chen Z M, Hou D Y, Li Y, Yi Y, et al. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci. Adv. 2020;6:eaaz4107. doi: 10.1126/sciadv.aaz4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [38].Bao C Y, Yin Y H, Zhang Q. Synthesis and assembly of laccase-polymer giant amphiphiles by self-catalyzed CuAAC click chemistry. Biomacromolecules. 2018;19:1539–1551. doi: 10.1021/acs.biomac.8b00087. [DOI] [PubMed] [Google Scholar]
- [39].Mohammad-Beigi H, Shojaosadati S A, Morshedi D, Arpanaei A, Marvian A T. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles. J. Nanopart. Res. 2015;17:167. doi: 10.1007/s11051-015-2978-5. [DOI] [Google Scholar]
- [40].Li W, Garringer H J, Goodwin C B, Richine B, Acton A, VanDuyn N, Muhoberac B B, Irimia-Dominguez J, Chan R J, Peacock M, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS One. 2015;10:e0117435. doi: 10.1371/journal.pone.0117435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Thompson K, Menzies S, Muckenthaler M, Torti F M, Wood T, Torti S V, Hentze M W, Beard J, Connor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res. 2003;71:46–63. doi: 10.1002/jnr.10463. [DOI] [PubMed] [Google Scholar]
- [42].Pieters B J G E, Van Eldijk M B, Nolte R J M, Mecinović J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016;45:24–39. doi: 10.1039/C5CS00157A. [DOI] [PubMed] [Google Scholar]
- [43].Carmona F, Poli M, Bertuzzi M, Gianoncelli A, Gangemi F, Arosio P. Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology. Biochim. Biophys. Acta. Gen. Subj. 2017;1861:522–532. doi: 10.1016/j.bbagen.2016.12.011. [DOI] [PubMed] [Google Scholar]
- [44].Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12:e1591. doi: 10.1002/wnan.1591. [DOI] [PubMed] [Google Scholar]
- [45].Fiedler J D, Fishman M R, Brown S D, Lau J, Finn M G. Multifunctional enzyme packaging and catalysis in the Qβ protein nanoparticle. Biomacromolecules. 2011;19:3945–3957. doi: 10.1021/acs.biomac.8b00885. [DOI] [PubMed] [Google Scholar]
- [46].Wang J C, Liu Y C, Chen Y M, Zhang T, Wang A P, Wei Q, Liu D M, Wang F Y, Zhang G P. Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet. Microbiol. 2021;253:108974. doi: 10.1016/j.vetmic.2020.108974. [DOI] [PubMed] [Google Scholar]
- [47].Harrison P M, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta Bioenerg. 1996;1275:161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
- [48].Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life. 2017;69:414–422. doi: 10.1002/iub.1621. [DOI] [PubMed] [Google Scholar]
- [49].Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochim. Biophys. Acta. Gen. Subj. 2010;1800:834–845. doi: 10.1016/j.bbagen.2009.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Harrison P M, Fischbach F A, Hoy T G, Haggis G H. Ferric oxyhydroxide core of ferritin. Nature. 1967;216:1188–1190. doi: 10.1038/2161188a0. [DOI] [PubMed] [Google Scholar]
- [51].Bertini I, Lalli D, Mangani S, Pozzi C, Rosa C, Theil E C, Turano P. Structural insights into the ferroxidase site of ferritins from higher eukaryotes. J. Am. Chem. Soc. 2012;134:6169–6176. doi: 10.1021/ja210084n. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. Gen. Subj. 2009;1790:589–599. doi: 10.1016/j.bbagen.2008.09.004. [DOI] [PubMed] [Google Scholar]
- [53].Torti F M, Torti S V. Regulation of ferritin genes and protein. Blood. 2002;99:3505–3516. doi: 10.1182/blood.V99.10.3505. [DOI] [PubMed] [Google Scholar]
- [54].Damiani V, Falvo E, Fracasso G, Federici L, Pitea M, De Laurenzi V, Sala G, Ceci P. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int. J. Mol. Sci. 2017;18:1555. doi: 10.3390/ijms18071555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Fracasso G, Falvo E, Colotti G, Fazi F, Ingegnere T, Amalfitano A, Doglietto G B, Alfieri S, Boffi A, Morea V, et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractoriness. J. Controlled Release. 2016;239:10–18. doi: 10.1016/j.jconrel.2016.08.010. [DOI] [PubMed] [Google Scholar]
- [56].Falvo E, Tremante E, Arcovito A, Papi M, Elad N, Boffi A, Morea V, Conti G, Toffoli G, Fracasso G, et al. Improved doxorubicin encapsulation and pharmacokinetics of ferritin-fusion protein nanocarriers bearing proline, serine, and alanine elements. Biomacromolecules. 2016;17:514–522. doi: 10.1021/acs.biomac.5b01446. [DOI] [PubMed] [Google Scholar]
- [57].Huang C, Chu C C, Wang X Y, Lin H R, Wang J Q, Zeng Y, Zhu W Z, Wang Y X J, Liu G. Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 2017;5:1512–1516. doi: 10.1039/C7BM00302A. [DOI] [PubMed] [Google Scholar]
- [58].Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, Avvakumova S, Bertolini J A, Rizzuto M A, Colombo M, et al. H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules. 2017;18:3318–3330. doi: 10.1021/acs.biomac.7b00974. [DOI] [PubMed] [Google Scholar]
- [59].Falvo E, Malagrinò F, Arcovito A, Fazi F, Colotti G, Tremante E, Di Micco P, Braca A, Opri R, Giuffrè A, et al. The presence of glutamate residues on the PAS sequence of the stimuli-sensitive nano-ferritin improves in vivo biodistribution and mitoxantrone encapsulation homogeneity. J. Controlled Release. 2018;275:177–185. doi: 10.1016/j.jconrel.2018.02.025. [DOI] [PubMed] [Google Scholar]
- [60].Ryser H, Caulfield J B, Aub J C. Studies on protein uptake by isolated tumor cells. I. Electron microscopic evidence of ferritin uptake by ehrlich ascites tumor cells. J. Cell Biol. 1962;14:255–268. doi: 10.1083/jcb.14.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [61].Caulfield J B. Studies on ferritin uptake by isolated tumor cells. Lab. Invest. 1963;12:1018–1025. [PubMed] [Google Scholar]
- [62].Easty G C, Yarnell M M, Andrews R D. The uptake of proteins by normal and tumour cells in vitro. Br. J. Cancer. 1965;18:354–367. doi: 10.1038/bjc.1964.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Li L, Fang C J, Ryan J C, Niemi E C, Lebrón J A, Björkman P J, Arase H, Torti F M, Torti S V, Nakamura M C, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. USA. 2010;107:3505–3510. doi: 10.1073/pnas.0913192107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019;133:46–54. doi: 10.1016/j.freeradbiomed.2018.06.037. [DOI] [PubMed] [Google Scholar]
- [65].Fan K L, Cao C Q, Pan Y X, Lu D, Yang D L, Feng J, Song L N, Liang M M, Yan X Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012;7:765. doi: 10.1038/nnano.2012.204. [DOI] [PubMed] [Google Scholar]
- [66].Wang B, Tang M, Yuan Z, Li Z, Hu B, Bai X, Chu J, Xu X, Zhang X. Targeted delivery of a sting agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy. Bioact. Mater. 2022;16:232–248. doi: 10.1016/j.bioactmat.2022.02.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Lajoie J M, Shusta E V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015;55:613–631. doi: 10.1146/annurev-pharmtox-010814-124852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [68].Fan K L, Jia X H, Zhou M, Wang K, Conde J, He J Y, Tian J, Yan X Y. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano. 2018;12:4105–4115. doi: 10.1021/acsnano.7b06969. [DOI] [PubMed] [Google Scholar]
- [69].Richter K, Haslbeck M, Buchner J. The heat shock response: Life on the verge of death. Mol. Cell. 2010;40:253–266. doi: 10.1016/j.molcel.2010.10.006. [DOI] [PubMed] [Google Scholar]
- [70].Guo M, Liu J H, Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016;7:114. doi: 10.3389/fpls.2016.00114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Shende P, Bhandarkar S, Prabhakar B. Heat shock proteins and their protective roles in stem cell biology. Stem Cell Rev. Rep. 2019;15:637–651. doi: 10.1007/s12015-019-09903-5. [DOI] [PubMed] [Google Scholar]
- [72].Smith D F, Whitesell L, Katsanis E. Molecular chaperones: Biology and prospects for pharmacological intervention. Pharmacol. Rev. 1998;50:493–514. [PubMed] [Google Scholar]
- [73].Tsukahara F, Yoshioka T, Muraki T. Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol. Pharmacol. 2000;58:1257–1263. doi: 10.1124/mol.58.6.1257. [DOI] [PubMed] [Google Scholar]
- [74].Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 2004;279:11222–11228. doi: 10.1074/jbc.M310149200. [DOI] [PubMed] [Google Scholar]
- [75].Kim K K, Kim R, Kim S H. Crystal structure of a small heat-shock protein. Nature. 1998;394:595–599. doi: 10.1038/29106. [DOI] [PubMed] [Google Scholar]
- [76].Kim R, Kim K K, Yokota H, Kim S H. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA. 1998;95:9129–9133. doi: 10.1073/pnas.95.16.9129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].Kim K K, Yokota H, Santoso S, Lerner D, Kim R, Kim S H. Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct. Biol. 1998;121:76–80. doi: 10.1006/jsbi.1998.3969. [DOI] [PubMed] [Google Scholar]
- [78].Flenniken M L, Willits D A, Brumfield S, Young M J, Douglas T. The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003;3:1573–1576. doi: 10.1021/nl034786l. [DOI] [Google Scholar]
- [79].Bova M P, Ding L L, Horwitz J, Fung B K K. Subunit exchange of αA-crystallin. J. Biol. Chem. 1997;272:29511–29517. doi: 10.1074/jbc.272.47.29511. [DOI] [PubMed] [Google Scholar]
- [80].Choi S H, Kwon I C, Hwang K Y, Kim I S, Ahn H J. Small heat shock protein as a multifunctional scaffold: Integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules. 2011;12:3099–3106. doi: 10.1021/bm200743g. [DOI] [PubMed] [Google Scholar]
- [81].Flenniken M L, Liepold L O, Crowley B E, Willits D A, Young M J, Douglas T. Chem. Commun. 2005. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture; pp. 447–449. [DOI] [PubMed] [Google Scholar]
- [82].Kawano T, Murata M, Kang J H, Piao J S, Narahara S, Hyodo F, Hamano N, Guo J, Oguri S, Ohuchida K, et al. Ultrasensitive MRI detection of spontaneous pancreatic tumors with nanocage-based targeted contrast agent. Biomaterials. 2018;152:37–46. doi: 10.1016/j.biomaterials.2017.10.029. [DOI] [PubMed] [Google Scholar]
- [83].Suprenant K A. Vault ribonucleoprotein particles: Sarcophagi, gondolas, or safety deposit boxes. Biochemistry. 2002;41:14447–14454. doi: 10.1021/bi026747e. [DOI] [PubMed] [Google Scholar]
- [84].Van Zon A, Mossink M H, Scheper R J, Sonneveld P, Wiemer E A C. The vault complex. Cell. Mol. Life Sci. 2003;60:1828–1837. doi: 10.1007/s00018-003-3030-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [85].Kedersha N L, Rome L H. Isolation and characterization of a novel ribonucleoprotein particle: Large structures contain a single species of small RNA. J. Cell Biol. 1986;103:699–709. doi: 10.1083/jcb.103.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Ding K, Zhang X, Mrazek J, Kickhoefer V A, Lai M, Ng H L, Yang O O, Rome L H, Zhou Z H. Solution structures of engineered vault particles. Structure. 2018;26:619–626. doi: 10.1016/j.str.2018.02.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [87].Stephen A G, Raval-Fernandes S, Huynh T, Torres M, Kickhoefer V A, Rome L H. Assembly of vault-like particles in insect cells expressing only the major vault protein. J. Biol. Chem. 2001;276:23217–23220. doi: 10.1074/jbc.C100226200. [DOI] [PubMed] [Google Scholar]
- [88].Mikyas Y, Makabi M, Raval-Fernandes S, Harrington L, Kickhoefer V A, Rome L H, Stewart P L. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: Localization of the MVP N termini and VPARP. J. Mol. Biol. 2004;344:91–105. doi: 10.1016/j.jmb.2004.09.021. [DOI] [PubMed] [Google Scholar]
- [89].Kickhoefer V A, Liu Y E, Kong L B, Snow B E, Stewart P L, Harrington L, Rome L H. The telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J. Cell Biol. 2001;152:157–164. doi: 10.1083/jcb.152.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [90].Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The vault nanoparticle: A gigantic ribonucleoprotein assembly involved in diverse physiological and pathological phenomena and an ideal nanovector for drug delivery and therapy. Cancers. 2021;13:707. doi: 10.3390/cancers13040707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [91].Voth B L, Pelargos P E, Barnette N E, Bhatt N S, Chen C H J, Lagman C, Chung L K, Nguyen T, Sheppard J P, Romiyo P, et al. Intratumor injection of CCL21-coupled vault nanoparticles is associated with reduction in tumor volume in an in vivo model of glioma. J. Neurooncol. 2020;147:599–605. doi: 10.1007/s11060-020-03479-8. [DOI] [PubMed] [Google Scholar]
- [92].Goldsmith L E, Yu M, Rome L H, Monbouquette H G. Vault nanocapsule dissociation into halves triggered at low pH. Biochemistry. 2007;46:2865–2875. doi: 10.1021/bi0606243. [DOI] [PubMed] [Google Scholar]
- [93].Esfandiary R, Kickhoefer V A, Rome L H, Joshi S B, Middaugh C R. Structural stability of vault particles. J. Pharm. Sci. 2009;98:1376–1386. doi: 10.1002/jps.21508. [DOI] [PubMed] [Google Scholar]
- [94].Barth H, Ulsenheimer A, Pape G R, Diepolder H M, Hoffmann M, Neumann-Haefelin C, Thimme R, Henneke P, Klein R, Paranhos-Baccala G, et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood. 2005;105:3605–3614. doi: 10.1182/blood-2004-05-1952. [DOI] [PubMed] [Google Scholar]
- [95].Crisci E, Bárcena J, Montoya M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol. 2012;148:211–225. doi: 10.1016/j.vetimm.2012.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [96].Lin T W, Chen Z G, Usha R, Stauffacher C V, Dai J B, Schmidt T, Johnson J E. The refined crystal structure of cowpea mosaic virus at 2. 8 Å resolution. Virology. 1999;265:20–34. doi: 10.1006/viro.1999.0038. [DOI] [PubMed] [Google Scholar]
- [97].Speir J A, Bothner B, Qu C X, Willits D A, Young M J, Johnson J E. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. J. Virol. 2006;80:3582–3591. doi: 10.1128/JVI.80.7.3582-3591.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [98].Cui Z C, Gorzelnik K V, Chang J Y, Langlais C, Jakana J, Young R, Zhang J J. Structures of Qβ virions, virus-like particles, and the Qβ-murA complex reveal internal coat proteins and the mechanism of host lysis. Proc. Natl. Acad. Sci. USA. 2017;114:11697–11702. doi: 10.1073/pnas.1707102114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [99].Franzen S, Lommel S A. Targeting cancer with ‘smart bombs’: Equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine. 2009;4:575–588. doi: 10.2217/nnm.09.23. [DOI] [PubMed] [Google Scholar]
- [100].Ren Y P, Wong S M, Lim L Y. Application of plant viruses as nano drug delivery systems. Pharm. Res. 2010;27:2509–2513. doi: 10.1007/s11095-010-0251-2. [DOI] [PubMed] [Google Scholar]
- [101].Chung Y H, Cai H, Steinmetz N F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev. 2020;156:214–235. doi: 10.1016/j.addr.2020.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [102].Liu J L, Dixit A B, Robertson K L, Qiao E, Black L W. Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Proc. Natl. Acad. Sci. USA. 2014;111:13319–13324. doi: 10.1073/pnas.1321940111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [103].Lam P, Steinmetz N F. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater. Sci. 2019;7:3138–3142. doi: 10.1039/C9BM00785G. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Frietze K M, Peabody D S, Chackerian B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016;18:44–49. doi: 10.1016/j.coviro.2016.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019;145:119–129. doi: 10.1016/j.addr.2018.08.007. [DOI] [PubMed] [Google Scholar]
- [106].Neek M, Kim T I, Wang S W. Protein-based nanoparticles in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 2019;15:164–174. doi: 10.1016/j.nano.2018.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [107].Zepeda-Cervantes J, Ramírez-Jarquín J O, Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): Toward better engineering of VLPs. Front. Immunol. 2020;11:1100. doi: 10.3389/fimmu.2020.01100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Shukla S, Wang C, Beiss V, Cai H, Washington T, II, Murray A A, Gong X J, Zhao Z C, Masarapu H, Zlotnick A, et al. The unique potency of cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater. Sci. 2020;8:5489–5503. doi: 10.1039/D0BM01219J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Linder M B, Szilvay G R, Nakari-Setälä T, Penttilä M E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005;29:877–896. doi: 10.1016/j.femsre.2005.01.004. [DOI] [PubMed] [Google Scholar]
- [110].Wessels J G H. Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 1996;38:1–45. doi: 10.1016/S0065-2911(08)60154-X. [DOI] [PubMed] [Google Scholar]
- [111].Wösten H A B, Scholtmeijer K. Applications of hydrophobins: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015;99:1587–1597. doi: 10.1007/s00253-014-6319-x. [DOI] [PubMed] [Google Scholar]
- [112].Wessels J G H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 1994;32:413–437. doi: 10.1146/annurev.py.32.090194.002213. [DOI] [Google Scholar]
- [113].Kwan A H, Winefield R D, Sunde M, Matthews J M, Haverkamp R G, Templeton M D, Mackay J P. Structural basis for rodlet assembly in fungal hydrophobins. Proc. Natl. Acad. Sci. U.S.A. 2006;103:3621–3626. doi: 10.1073/pnas.0505704103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [114].Kallio J M, Linder M B, Rouvinen J. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. J. Biol. Chem. 2007;282:28733–28739. doi: 10.1074/jbc.M704238200. [DOI] [PubMed] [Google Scholar]
- [115].Fang G H, Tang B, Liu Z T, Gou J X, Zhang Y, Xu H, Tang X. Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: In vitro characteristics and in vivo performance. Eur. J. Pharm. Sci. 2014;60:1–9. doi: 10.1016/j.ejps.2014.04.016. [DOI] [PubMed] [Google Scholar]
- [116].Maiolo D, Pigliacelli C, Moreno P S, Violatto M B, Talamini L, Tirotta I, Piccirillo R, Zucchetti M, Morosi L, Frapolli R, et al. Bioreducible hydrophobin-stabilized supraparticles for selective intracellular release. ACS Nano. 2017;11:9413–9423. doi: 10.1021/acsnano.7b04979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [117].Holt C, Carver J A, Ecroyd H, Thorn D C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J. Dairy Sci. 2013;96:6127–6146. doi: 10.3168/jds.2013-6831. [DOI] [PubMed] [Google Scholar]
- [118].Artym J, Zimecki M. Milk-derived proteins and peptides in clinical trials. Postepy Hig. Med. Dosw. 2013;67:800–816. doi: 10.5604/17322693.1061635. [DOI] [PubMed] [Google Scholar]
- [119].Elzoghby A O, Abo El-Fotoh W S, Elgindy N A. Casein-based formulations as promising controlled release drug delivery systems. J. Controlled Release. 2011;153:206–216. doi: 10.1016/j.jconrel.2011.02.010. [DOI] [PubMed] [Google Scholar]
- [120].Horne D S. Casein structure, self-assembly and gelation. Curr. Opin. Colloid Interface Sci. 2002;7:456–461. doi: 10.1016/S1359-0294(02)00082-1. [DOI] [Google Scholar]
- [121].Huppertz T, De Kruif C G. Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int. Dairy J. 2008;18:556–565. doi: 10.1016/j.idairyj.2007.10.009. [DOI] [Google Scholar]
- [122].Kumosinski T F, Brown E M, Farrell H M., Jr. Three-dimensional molecular modeling of bovine caseins: An energy-minimized β-casein structure. J. Dairy Sci. 1993;76:931–945. doi: 10.3168/jds.S0022-0302(93)77420-2. [DOI] [PubMed] [Google Scholar]
- [123].Tai M S, Kegeles G. A micelle model for the sedimentation behavior of bovine β-casein. Biophys. Chem. 1984;20:81–87. doi: 10.1016/0301-4622(84)80007-1. [DOI] [PubMed] [Google Scholar]
- [124].Portnaya I, Ben-Shoshan E, Cogan U, Khalfin R, Fass D, Ramon O, Danino D. Self-assembly of bovine β-casein below the isoelectric pH. J. Agric. Food Chem. 2008;56:2192–2198. doi: 10.1021/jf072630r. [DOI] [PubMed] [Google Scholar]
- [125].Javor G T, Sood S M, Chang P, Slattery C W. Interactions of triply phosphorylated human β-casein: Fluorescence spectroscopy and light-scattering studies of conformation and self-association. Arch. Biochem. Biophys. 1991;289:39–46. doi: 10.1016/0003-9861(91)90439-P. [DOI] [PubMed] [Google Scholar]
- [126].Livney Y D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 2010;15:73–83. doi: 10.1016/j.cocis.2009.11.002. [DOI] [Google Scholar]
- [127].Trejo R, Dokland T, Jurat-Fuentes J, Harte F. Cryo-transmission electron tomography of native casein micelles from bovine milk. J. Dairy Sci. 2011;94:5770–5775. doi: 10.3168/jds.2011-4368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [128].Pasquali-Ronchetti I, Baccarani-Contri M. Elastic fiber during development and aging. Microsc. Res. Tech. 1997;38:428–435. doi: 10.1002/(SICI)1097-0029(19970815)38:4<428::AID-JEMT10>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- [129].Martyn C, Greenwald S. A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharmacol. Physiol. 2001;28:948–951. doi: 10.1046/j.1440-1681.2001.03555.x. [DOI] [PubMed] [Google Scholar]
- [130].Faury G. Function-structure relationship of elastic arteries in evolution: From microfibrils to elastin and elastic fibres. Pathol. Biol. 2001;49:310–325. doi: 10.1016/S0369-8114(01)00147-X. [DOI] [PubMed] [Google Scholar]
- [131].Tatham A S, Shewry P R. Elastomeric proteins: Biological roles, structures and mechanisms. Trends Biochem. Sci. 2000;25:567–571. doi: 10.1016/S0968-0004(00)01670-4. [DOI] [PubMed] [Google Scholar]
- [132].Yeboah A, Cohen R I, Rabolli C, Yarmush M L, Berthiaume F. Elastin-like polypeptides: A strategic fusion partner for biologics. Biotechnol. Bioeng. 2016;113:1617–1627. doi: 10.1002/bit.25998. [DOI] [PubMed] [Google Scholar]
- [133].Straley K S, Heilshorn S C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter. 2009;5:114–124. doi: 10.1039/B808504H. [DOI] [Google Scholar]
- [134].Catherine C, Oh S J, Lee K H, Min S E, Won J I, Yun H, Kim D M. Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. Biotechnol. Bioprocess Eng. 2015;20:417–422. doi: 10.1007/s12257-015-0190-1. [DOI] [Google Scholar]
- [135].Bataille L, Dieryck W, Hocquellet A, Cabanne C, Bathany K, Lecommandoux S, Garbay B, Garanger E. Recombinant production and purification of short hydrophobic elastin-like polypeptides with low transition temperatures. Protein Exp. Purif. 2016;121:81–87. doi: 10.1016/j.pep.2016.01.010. [DOI] [PubMed] [Google Scholar]
- [136].Urry D W, Trapane T L, Prasad K U. Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies. Biopolymers. 1985;24:2345–2356. doi: 10.1002/bip.360241212. [DOI] [PubMed] [Google Scholar]
- [137].Urry D W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B. 1997;101:11007–11028. doi: 10.1021/jp972167t. [DOI] [Google Scholar]
- [138].Dhandhukia J P, Shi P, Peddi S, Li Z, Aluri S, Ju Y P, Brill D, Wang W, Janib S M, Lin Y A, et al. Bifunctional elastin-like polypeptide nanoparticles bind rapamycin and integrins and suppress tumor growth in vivo. Bioconjug. Chem. 2017;28:2715–2728. doi: 10.1021/acs.bioconjchem.7b00469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [139].Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv. Drug Deliv. Rev. 2021;170:26–43. doi: 10.1016/j.addr.2020.12.012. [DOI] [PubMed] [Google Scholar]
- [140].Liu J, Zheng Q, Deng Y Q, Cheng C S, Kallenbach N R, Lu M. A seven-helix coiled coil. Proc. Natl. Acad. Sci. USA. 2006;103:15457–15462. doi: 10.1073/pnas.0604871103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [141].Lupas A N, Bassler J, Dunin-Horkawicz S. The structure and topology of α-helical coiled coils. In: Parry D A D, Squire J M, editors. Fibrous Proteins: Structures and Mechanisms. Cham: Springer; 2017. pp. 95–129. [Google Scholar]
- [142].Apostolovic B, Klok H A. pH-sensitivity of the E3/K3 heterodimeric coiled coil. Biomacromolecules. 2001;9:3173–3180. doi: 10.1021/bm800746e. [DOI] [PubMed] [Google Scholar]
- [143].Fletcher J M, Harniman R L, Barnes F R H, Boyle A L, Collins A, Mantell J, Sharp T H, Antognozzi M, Booth P J, Linden N, et al. Self-assembling cages from coiled-coil peptide modules. Science. 2013;340:595–599. doi: 10.1126/science.1233936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [144].Ljubetič A, Lapenta F, Gradišar H, Drobnak I, Aupič J, Strmšek Ž, Lainšček D, Hafner-Bratkovič I, Majerle A, Krivec N, et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 2017;35:1094–1101. doi: 10.1038/nbt.3994. [DOI] [PubMed] [Google Scholar]
- [145].Raman S, Machaidze G, Lustig A, Aebi U, Burkhard P. Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006;2:95–102. doi: 10.1016/j.nano.2006.04.007. [DOI] [PubMed] [Google Scholar]
- [146].Beck K, Gambee J E, Kamawal A, Bächinger H P. A single amino acid can switch the oligomerization state of the α-helical coiled-coil domain of cartilage matrix protein. EMBO J. 1997;16:3767–3777. doi: 10.1093/emboj/16.13.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [147].Dames S A, Kammerer R A, Wiltscheck R, Engel J, Alexandrescu A T. NMR structure of a parallel homotrimeric coiled coil. Nat. Struct. Biol. 1991;5:687–691. doi: 10.1038/90444. [DOI] [PubMed] [Google Scholar]
- [148].Klatt A R, Becker A K A, Neacsu C D, Paulsson M, Wagener R. The matrilins: Modulators of extracellular matrix assembly. Int. J. Biochem. Cell Biol. 2011;43:320–330. doi: 10.1016/j.biocel.2010.12.010. [DOI] [PubMed] [Google Scholar]
- [149].Wiltscheck R, Dames S A, Alexandrescu A T, Kammerer R A, Schulthess T, Blommers M J J, Engel J. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. Protein Sci. 1997;6:1734–1745. doi: 10.1002/pro.5560060814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [150].Eriksson M, Hassan S, Larsson R, Linder S, Ramqvist T, Lövborg H, Vikinge T, Figgemeier E, Müller J, Stetefeld J, et al. Utilization of a right-handed coiled-coil protein from archaebacterium staphylothermus marinus as a carrier for cisplatin. Anticancer Res. 2009;29:11–18. [PubMed] [Google Scholar]
- [151].Fan J Q, Fan Y, Wei Z J, Li Y J, Li X D, Wang L, Wang H. Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. Chin. Chem. Lett. 2020;31:1787–1791. doi: 10.1016/j.cclet.2020.03.065. [DOI] [Google Scholar]
- [152].Zhou X Y, Su X K, Zhou C C. Preparation of diblock amphiphilic polypeptide nanoparticles for medical applications. Eur. Polym. J. 2011;100:132–136. doi: 10.1016/j.eurpolymj.2018.01.025. [DOI] [Google Scholar]
- [153].Choi H, Liu T, Nath K, Zhou R, Chen I W. Peptide nanoparticle with pH-sensing cargo solubility enhances cancer drug efficiency. Nano Today. 2017;13:15–22. doi: 10.1016/j.nantod.2017.02.008. [DOI] [Google Scholar]
- [154].Sigg S J, Postupalenko V, Duskey J T, Palivan C G, Meier W. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules. 2016;17:935–945. doi: 10.1021/acs.biomac.5b01614. [DOI] [PubMed] [Google Scholar]
- [155].Gong Z Y, Lao J, Gao F, Lin W P, Yu T, Zhou B L, Dong J H, Liu H, Bai J K. pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery. Colloids Surf. B Biointerfaces. 2020;188:110811. doi: 10.1016/j.colsurfb.2020.110811. [DOI] [PubMed] [Google Scholar]
- [156].Gong Z Y, Liu X Y, Zhou B L, Wang G H, Guan X W, Xu Y, Zhang J J, Hong Z X, Cao J J, Sun X R, et al. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf. B Biointerfaces. 2021;202:111673. doi: 10.1016/j.colsurfb.2021.111673. [DOI] [PubMed] [Google Scholar]
- [157].Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011;6:815–823. doi: 10.1038/nnano.2011.166. [DOI] [PubMed] [Google Scholar]
- [158].Raj S, Khurana S, Choudhari R, Kesari K K, Kamal M A, Garg N, Ruokolainen J, Das B C, Kumar D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021;69:166–177. doi: 10.1016/j.semcancer.2019.11.002. [DOI] [PubMed] [Google Scholar]
- [159].Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668. doi: 10.1021/nl052396o. [DOI] [PubMed] [Google Scholar]
- [160].Hoshyar N, Gray S, Han H B, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–692. doi: 10.2217/nnm.16.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [161].Li H L, Li J M, He X Y, Zhang B, Liu C X, Li Q F, Zhu Y, Huang W L, Zhang W, Qian H, et al. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP. Chin. Chem. Lett. 2019;30:1083–1088. doi: 10.1016/j.cclet.2019.01.003. [DOI] [Google Scholar]
- [162].Huang K Z, Gao M Y, Fan L, Lai Y Y, Fan H W, Hua Z Z. IR820 covalently linked with self-assembled polypeptide for photothermal therapy applications in cancer. Biomater. Sci. 2011;6:2925–2931. doi: 10.1039/C8BM00399H. [DOI] [PubMed] [Google Scholar]
- [163].Huang X, Yin Y L, Wu M, Zan W, Yang Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chin. Chem. Lett. 2019;30:1335–1340. doi: 10.1016/j.cclet.2019.02.019. [DOI] [Google Scholar]
- [164].Wen S F, Zhang K, Li Y, Fan J Q, Chen Z M, Zhang J P, Wang H, Wang L. A self-assembling peptide targeting VEGF receptors to inhibit angiogenesis. Chin. Chem. Lett. 2020;31:3153–3157. doi: 10.1016/j.cclet.2020.03.077. [DOI] [Google Scholar]
- [165].Peng J F, Wang R R, Sun W R, Huang M H, Wang R, Li Y J, Wang P Y, Sun G B, Xie S Y. Delivery of miR-320a-3p by gold nanoparticles combined with photothermal therapy for directly targeting Sp1 in lung cancer. Biomater. Sci. 2021;9:6528–6541. doi: 10.1039/D1BM01124C. [DOI] [PubMed] [Google Scholar]
- [166].Xiao Y J, Zhang Q, Wang Y Y, Wang B, Sun F N, Han Z Y, Feng Y Q, Yang H T, Meng S X, Wang Z F. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics. 2018;8:3111–3125. doi: 10.7150/thno.24613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [167].Fan R R, Mei L, Gao X, Wang Y L, Xiang M L, Zheng Y, Tong A P, Zhang X N, Han B, Zhou L X, et al. Self-assembled bifunctional peptide as effective drug delivery vector with powerful antitumor activity. Adv. Sci. 2017;4:1600285. doi: 10.1002/advs.201600285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [168].Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen T M, Corti A, Ponzoni M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. 2003;63:7400–7409. [PubMed] [Google Scholar]
- [169].Garde S V, Forté A J, Ge M, Lepekhin E A, Panchal C J, Rabbani S A, Wu J J. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anti-Cancer Drugs. 2007;18:1189–1200. doi: 10.1097/CAD.0b013e3282a213ce. [DOI] [PubMed] [Google Scholar]
- [170].Negussie A H, Miller J L, Reddy G, Drake S K, Wood B J, Dreher M R. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J. Controlled Release. 2010;143:265–273. doi: 10.1016/j.jconrel.2009.12.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [171].Sudimack J, Lee R J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000;41:147–162. doi: 10.1016/S0169-409X(99)00062-9. [DOI] [PubMed] [Google Scholar]
- [172].Lu Y J, Low P S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 2012;64:342–352. doi: 10.1016/j.addr.2012.09.020. [DOI] [PubMed] [Google Scholar]
- [173].Thong Q X, Biabanikhankahdani R, Ho K L, Alitheen N B, Tan W S. Thermally-responsive virus-like particle for targeted delivery of cancer drug. Sci. Rep. 2019;9:3945. doi: 10.1038/s41598-019-40388-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [174].Chen H M, Qin Z N, Zhao J M, He Y, Ren E, Zhu Y, Liu G, Mao C B, Zheng L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials. 2019;225:119520. doi: 10.1016/j.biomaterials.2019.119520. [DOI] [PubMed] [Google Scholar]
- [175].Högemann-Savellano D, Bos E, Blondet C, Sato F, Abe T, Josephson L, Weissleder R, Gaudet J, Sgroi D, Peters P J, et al. The transferrin receptor: A potential molecular imaging marker for human cancer. Neoplasia. 2003;5:495–506. doi: 10.1016/S1476-5586(03)80034-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [176].Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires V M R, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, et al. L-ferritin binding to scara5: A new iron traffic pathway potentially implicated in retinopathy. PLoS One. 2014;9:e106974. doi: 10.1371/journal.pone.0106974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [177].Dong Y X, Ma Y M, Li X, Wang F, Zhang Y. ERK-peptide-inhibitor-modified ferritin enhanced the therapeutic effects of paclitaxel in cancer cells and spheroids. Mol. Pharm. 2021;18:3365–3377. doi: 10.1021/acs.molpharmaceut.1c00303. [DOI] [PubMed] [Google Scholar]
- [178].Owens D E, III, Peppas N A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. [DOI] [PubMed] [Google Scholar]
- [179].Singh A, Xu J, Mattheolabakis G, Amiji M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomed. Nanotechnol. Biol. Med. 2016;12:589–600. doi: 10.1016/j.nano.2015.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [180].Hu H, Steinmetz N F. Doxorubicin-loaded physalis mottle virus particles function as a pH-responsive prodrug enabling cancer therapy. Biotechnol. J. 2020;15:2000077. doi: 10.1002/biot.202000077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [181].Wang C Y, Zhang C, Li Z L, Yin S, Wang Q, Guo F X, Zhang Y, Yu R, Liu Y D, Su Z G. Extending half life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation. Biomacromolecules. 2018;19:773–781. doi: 10.1021/acs.biomac.7b01545. [DOI] [PubMed] [Google Scholar]
- [182].Jin P P, Sha R, Zhang Y J, Liu L, Bian Y P, Qian J, Qian J Y, Lin J, Ishimwe N, Hu Y, et al. Blood circulation-prolonging peptides for engineered nanoparticles identified via phage display. Nano Lett. 2019;19:1467–1478. doi: 10.1021/acs.nanolett.8b04007. [DOI] [PubMed] [Google Scholar]
- [183].Chen Y X, Wei C X, Lyu Y Q, Chen H Z, Jiang G, Gao X L. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci. 2020;8:1073–1088. doi: 10.1039/C9BM01395D. [DOI] [PubMed] [Google Scholar]
- [184].Zhang H Y, Van Os W L, Tian X B, Zu G Y, Ribovski L, Bron R, Bussmann J, Kros A, Liu Y, Zuhorn I S. Development of curcumin-loaded zein nanoparticles for transport across the blood-brain barrier and inhibition of glioblastoma cell growth. Biomater. Sci. 2021;9:7092–7103. doi: 10.1039/D0BM01536A. [DOI] [PubMed] [Google Scholar]
- [185].Wen L J, Peng Y, Wang K, Huang Z H, He S Y, Xiong R W, Wu L P, Zhang F T, Hu F Q. Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics. Nano Res. 2022;15:1455–1465. doi: 10.1007/s12274-021-3686-3. [DOI] [Google Scholar]
- [186].Li Y R, Zhang X J, Qi Z F, Guo X L, Liu X P, Shi W J, Liu Y, Du L B. The enhanced protective effects of salvianic acid A: A functionalized nanoparticles against ischemic stroke through increasing the permeability of the blood-brain barrier. Nano Res. 2020;13:2791–2802. doi: 10.1007/s12274-020-2930-6. [DOI] [Google Scholar]
- [187].Pang H H, Huang C Y, Chou Y W, Lin C J, Zhou Z L, Shiue Y L, Wei K C, Yang H W. Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale. 2019;11:8102–8109. doi: 10.1039/C9NR01247H. [DOI] [PubMed] [Google Scholar]
- [188].Liu W, Lin Q, Fu Y, Huang S Q, Guo C Q, Li L, Wang L L, Zhang Z R, Zhang L. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J. Controlled Release. 2020;323:191–202. doi: 10.1016/j.jconrel.2019.12.010. [DOI] [PubMed] [Google Scholar]
- [189].Huang C W, Chuang C P, Chen Y J, Wang H Y, Lin J J, Huang C Y, Wei K C, Huang F T. Integrin α2β1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J. Nanobiotechnol. 2021;19:180. doi: 10.1186/s12951-021-00925-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [190].Zhao S, Duan H X, Yang Y L, Yan X Y, Fan K L. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett. 2019;19:8887–8895. doi: 10.1021/acs.nanolett.9b03774. [DOI] [PubMed] [Google Scholar]
- [191].Chen Z Y, Liao T, Wan L H, Kuang Y, Liu C, Duan J L, Xu X Y, Xu Z Q, Jiang B B, Li C. Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery. Nano Res. 2021;14:4264–4273. doi: 10.1007/s12274-021-3624-4. [DOI] [Google Scholar]
- [192].Li H P, Zhou Z W, Zhang F R, Guo Y X, Yang X, Jiang H L, Tan F, Oupicky D, Sun M J. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res. 2018;11:4627–4642. doi: 10.1007/s12274-018-2044-6. [DOI] [Google Scholar]
- [193].Yao H C, Zhao W W, Zhang S G, Guo X F, Li Y, Du B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B. 2018;6:3107–3115. doi: 10.1039/C8TB00118A. [DOI] [PubMed] [Google Scholar]
- [194].Niikura K, Sugimura N, Musashi Y, Mikuni S, Matsuo Y, Kobayashi S, Nagakawa K, Takahara S, Takeuchi C, Sawa H, et al. Virus-like particles with removable cyclodextrins enable glutathione-triggered drug release in cells. Mol. BioSyst. 2013;9:501–507. doi: 10.1039/c2mb25420d. [DOI] [PubMed] [Google Scholar]
- [195].Aljabali A A A, Shukla S, Lomonossoff G P, Steinmetz N F, Evans D J. CPMV-DOX delivers. Mol. Pharm. 2013;10:3–10. doi: 10.1021/mp3002057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [196].Nguyen B, Tolia N H. Protein-based antigen presentation platforms for nanoparticle vaccines. npj Vaccines. 2021;6:70. doi: 10.1038/s41541-021-00330-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [197].Gobeil, P.; Pillet, S.; Boulay, I.; Séguin, A.; Makarkov, A.; Heizer, G.; Bhutada, K.; Mahmood, A.; Charland, N.; Trépanier, S. et al. Phase 2 randomized trial of an AS03 adjuvanted plant-based virus-like particle vaccine for Covid-19 in healthy adults, older adults and adults with comorbidities. medRxiv, in press, 10.1101/2021.05.14.21257248.
- [198].Ward B J, Séguin A, Couillard J, Trépanier S, Landry N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age. Vaccine. 2021;39:1528–1533. doi: 10.1016/j.vaccine.2021.01.004. [DOI] [PubMed] [Google Scholar]
- [199].Chichester J A, Green B J, Jones R M, Shoji Y, Miura K, Long C A, Lee C K, Ockenhouse C F, Morin M J, Streatfield S J, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A phase 1 dose-escalation study in healthy adults. Vaccine. 2018;36:5865–5871. doi: 10.1016/j.vaccine.2018.08.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [200].Pillet S, Aubin É, Trépanier S, Poulin J F, Yassine-Diab B, Meulen J T, Ward B J, Landry N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a phase 2 clinical trial. npj Vaccines. 2018;3:3. doi: 10.1038/s41541-017-0043-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [201].Chichester J A, Jones R M, Green B J, Stow M, Miao F D, Moonsammy G, Streatfield S J, Yusibov V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/indonesia/05/2005 (H5N1) influenza virus: A phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses. 2012;4:3227–3244. doi: 10.3390/v4113227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [202].Cummings J F, Guerrero M L, Moon J E, Waterman P, Nielsen R K, Jefferson S, Gross F L, Hancock K, Katz J M, Yusibov V. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza a (H1N1)pdm09 virus: A phase 1 dose-escalation study in healthy adults. Vaccine. 2014;32:2251–2259. doi: 10.1016/j.vaccine.2013.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [203].Ortega-Rivera O A, Shin M D, Chen A, Beiss V, Moreno-Gonzalez M A, Lopez-Ramirez M A, Reynoso M, Wang H, Hurst B L, Wang J, et al. Trivalent subunit vaccine candidates for COVID-19 and their delivery devices. J. Am. Chem. Soc. 2021;143:14748–14765. doi: 10.1021/jacs.1c06600. [DOI] [PubMed] [Google Scholar]
- [204].Christiansen D, Earnest-Silveira L, Chua B, Meuleman P, Boo I, Grubor-Bauk B, Jackson D C, Keck Z Y, Foung S K H, Drummer H E, et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci. Rep. 2018;8:6483. doi: 10.1038/s41598-018-24762-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [205].Zabel F, Mohanan D, Bessa J, Link A, Fettelschoss A, Saudan P, Kündig T M, Bachmann M F. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies. J. Immunol. 2014;192:5499–5508. doi: 10.4049/jimmunol.1400065. [DOI] [PubMed] [Google Scholar]
- [206].Gomes A C, Mohsen M, Bachmann M F. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines. 2017;5:6. doi: 10.3390/vaccines5010006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [207].Kanekiyo M, Wei C J, Yassine H M, McTamney P M, Boyington J C, Whittle J R R, Rao S S, Kong W P, Wang L S, Nabel G J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–106. doi: 10.1038/nature12202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [208].Kang Y F, Sun C, Zhuang Z, Yuan R Y, Zheng Q B, Li J P, Zhou P P, Chen X C, Liu Z, Zhang X, et al. Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates. ACS Nano. 2021;15:2738–2752. doi: 10.1021/acsnano.0c08379. [DOI] [PubMed] [Google Scholar]
- [209].Bruun T U J, Andersson A M C, Draper S J, Howarth M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano. 2018;12:8855–8866. doi: 10.1021/acsnano.8b02805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [210].Hsia Y, Bale J B, Gonen S, Shi D, Sheffler W, Fong K K, Nattermann U, Xu C, Huang P-S, Ravichandran R, et al. Corrigendum: Design of a hyperstable 60-subunit protein icosahedron. Nature. 2016;540:150. doi: 10.1038/nature20108. [DOI] [PubMed] [Google Scholar]
- [211].Bale J B, Gonen S, Liu Y X, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates T O, Gonen T, King N P, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science. 2016;353:389–394. doi: 10.1126/science.aaf8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [212].Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H W, Khan M I, Burkhard P. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res. Treat. 2011;2011:126794. doi: 10.1155/2011/126794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [213].Champion C I, Kickhoefer V A, Liu G C, Moniz R J, Freed A S, Bergmann L L, Vaccari D, Raval-Fernandes S, Chan A M, Rome L H, et al. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One. 2009;4:e5409. doi: 10.1371/journal.pone.0005409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [214].Hu H, Steinmetz N F. Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers. 2021;13:2909. doi: 10.3390/cancers13122909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [215].Wang W J, Liu Z D, Zhou X X, Guo Z Q, Zhang J, Zhu P, Yao S, Zhu M Z. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomed. Nanotechnol. Biol. Med. 2019;16:69–78. doi: 10.1016/j.nano.2018.11.009. [DOI] [PubMed] [Google Scholar]
- [216].Rad-Malekshahi M, Fransen M F, Krawczyk M, Mansourian M, Bourajjaj M, Chen J, Ossendorp F, Hennink W E, Mastrobattista E, Amidi M. Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol. Pharm. 2017;14:1482–1493. doi: 10.1021/acs.molpharmaceut.6b01003. [DOI] [PMC free article] [PubMed] [Google Scholar]
