Skip to main content
RSC Advances logoLink to RSC Advances
. 2022 Jun 6;12(26):16684–16687. doi: 10.1039/d2ra03031d

Diastereoselective synthesis of chroman bearing spirobenzofuranone scaffolds via oxa-Michael/1,6-conjugated addition of para-quinone methides with benzofuranone-type olefins

Hongmei Qin 1, Qimei Xie 2, Long He 1,2,
PMCID: PMC9169491  PMID: 35754894

Abstract

A simple and convenient cyclization of ortho-hydroxyphenyl-substituted para-quinone methides with benzofuran-2-one type active olefins via oxa-Michael/1,6-conjugated addition has been developed, which afforded an easy access to enriched functionalized chroman-spirobenzofuran-2-one scaffolds with good to excellent yields (up to 90%) and diastereoselectivities (up to >19 : 1 dr). This reaction provided an efficient method for constructing desired spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one.


Highly diastereoselective synthesis of spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one.graphic file with name d2ra03031d-ga.jpg


The chroman framework represents a privileged heterocyclic core commonly found within a wide variety of biologically active natural products1 and synthetic compounds of medicinal interest (Fig. 1).2 Owing to the wide application of these heterocyclic molecules, over the past few decades, numerous efforts have been devoted to the efficient synthesis of chroman nucleus motifs.3,4 In particular, incorporating chroman into spiro-bridged and spiro-fused heterocyclic systems is appealing due to its fascinating molecular architecture and proven biological activity.5 Among the existing methods, the [4 + m] cycloaddition of para-quinone methides (p-QMs) is found to be an efficient pathway to access these valuable spirocyclic skeletons.6 For instance, the Enders group synthesized functionalized chromans with an oxindole motif by the asymmetric organocatalytic domino oxa-Michael/1,6-addition reaction.7 After that, the Hao,8a Peng,8b Shi,8c,d Zhou,8e Liang8f and Wang8g groups developed convenient methods to construct chromans bearing spirocyclic skeletons from p-QMs, respectively. Despite all these shining achievements, however, it is still very challenging to simply and conveniently construct chromans bearing quaternary carbon spirals for organic chemical or drug discovery among these [4 + m] cycloaddition reactions.

Fig. 1. Representative chroman compounds.

Fig. 1

Benzofuran-2-(3H)-ones as one of the important oxygen-containing heterocycles that exist in a broad array of natural products9 and potential medicines.10 The streamlined synthesis of benzofuran-2-ones pose considerable challenge due to their quaternary carbon centers at the C-3 position,11 especially those featuring relatively congested spirocyclic motifs represent challenging synthetic targets.12,13 In our continuous interests in developing efficient method for the synthesis of spirocyclic compounds based on cyclization reaction,14 we wish to report a cycloaddition of para-quinone methides with benzofuranone derived olefins, affording the spiro-cycloadducts in good to excellent yields and diastereoselectivities. This cyclization features the simultaneous formation of chroman and spirobenzofuran-2-one skeletons in a single step (Scheme 1), which may be potentially applied as pharmaceutical agents.

Scheme 1. Strategy for the synthesis of chroman-spirobenzofuran-2-one.

Scheme 1

We initiated our investigations with the readily available ortho-hydroxyphenyl-substituted para-quinone methides 1a and 3-benzylidenebenzofuran-2-one 2a in toluene at room temperature in the presence of base. Unfortunately, no desired chroman derivatives bearing spirobenzofuranone scaffolds 3a was isolated in the presence of 2 eq. Na2CO3 after stirring at room temperature for 48 h (entry 1, Table 1). A base survey showed that K2CO3 and CsF led to desired cycloaddcuts 3a even if with a disappointing yield (entries 2–4, Table 1). Gratifyingly, Cs2CO3 furnished the desired product in 70% yield and with a generally acceptable 6 : 1 dr value (entry 5, Table 1). A solvent screening indicated that the yield and diastereoselectivity are both dependent on the solvent (Table 1). Thus, the oxygenated solvents such as THF, diethyl ether and 1,4-dioxane gave comparably high yields and diastereoselectivities than polar solvents as exemplified by CH3CN or DMF (entries 5–10). To our delight, performing the reaction in THF led to desired chroman-spirobenzofuranone 3a with an excellent diastereoselectivity, albeit with a very subtle erosion of the yield (entry 6). Further optimization of the reaction conditions by varying the temperature was also investigated. When higher temperature was used, no improvement in the final yield was observed (entry 11). Performing the reaction at lower 10 °C resulted in a increase of the yield accompanied with no erosion in diastereoselectivity (entry 12). However, the yield decreased to 64% when the reaction performed at lower 0 °C (entry 13).

Optimization of conditionsa.

graphic file with name d2ra03031d-u1.jpg
Entry Base Solvent Yieldb (%) Drc
1 Na2CO3 Toluene
2 DMAP Toluene
3 K2CO3 Toluene 25 3 : 1
4 CsF Toluene 52 5 : 1
5 Cs2CO3 Toluene 70 6 : 1
6 Cs2CO3 THF 68 >19 : 1
7 Cs2CO3 Et2O 60 8 : 1
8 Cs2CO3 Dioxane 53 7 : 1
9 Cs2CO3 CH3CN 50 >19 : 1
10 Cs2CO3 DMF 31 15 : 1
11d Cs2CO3 THF 65 >19 : 1
12e Cs2CO3 THF 75 >19 : 1
13f Cs2CO3 THF 64 >19 : 1
a

Reaction conditions: p-QMs 1a (0.1 mmol), benzofuranones 2a (0.12 mmol) and base (0.2 mmol) in 2 mL of solvent for 6–48 h.

b

Isolated yields.

c

Determined by crude 1H NMR analysis.

d

Performed at 30 °C.

e

Performed at 10 °C.

f

Performed at 0 °C.

With the optimized reaction conditions in hand, we explored the substrate scope of this cyclization reaction with a selection of benzofuranones. The results are shown in Table 2. To our pleasure, a wide range of benzofuran-2-ones derived olefins were compatible affording the corresponding chromans-spirobenzofuranone scaffolds 3 in good results. In detail, the steric hindrance of substituents had a significant impact on the cyclization reaction. The substrates with substituents on para- or meta-position on phenyl ring were tolerable affording the desired cycloadducts in good yields regardless of the electronic nature of substituents (entries 5–14). However, good diastereoselectivities were also observed in ortho-substituted substrates (entries 2–4). Furthermore, 2-naphthyl derived substrate gave also good yield and sole diastereoselectivity (entry 15). Multi-substituted substrate was also able to participate in this cyclization, for example, 3,4,5-trimethoxylphenyl substituted benzofuranone delivered cycloadduct 3p in 88% yield and with 12 : 1 dr value (entry 16). Interestingly, the extension of the reaction conditions to heteroaromatic substrates including 3-pyridyl and 3-thiophenyl benzofuranones were proceeded smoothly, giving rise to cyclization products 3q and 3r in 79% and 80% yield, respectively (entries 17–18).

Substrate scope of diastereoselective synthesis of chroman-spirobenzofuran-2-onea.

graphic file with name d2ra03031d-u2.jpg
Entry R 3 Yieldb (%) Drc
1 C6H5 3a 75 >19 : 1
2 2-ClC6H4 3b 69 >19 : 1
3 2-BrC6H4 3c 67 15 : 1
4 2-CH3C6H4 3d 64 >19 : 1
5 3-CH3C6H4 3e 75 >19 : 1
6 3-MeOC6H4 3f 72 >19 : 1
7 3-NO2C6H4 3g 71 >19 : 1
8 3-BrC6H4 3h 75 >19 : 1
9 4-CH3C6H4 3i 73 10 : 1
10 4-MeOC6H4 3j 86 >19 : 1
11 4-CF3C6H4 3k 82 12 : 1
12 4-NO2C6H4 3l 85 12 : 1
13 4-ClC6H4 3m 83 >19 : 1
14 4-BrC6H4 3n 81 12 : 1
15 2-Naphthyl 3o 74 >19 : 1
16 3,4,5-(OMe)3C6H2 3p 88 12 : 1
17 3-Pyridinyl 3q 79 >19 : 1
18 3-Thiophenyl 3r 80 >19 : 1
a

Reaction conditions: p-QMs 1a (0.1 mmol), benzofuranones 2 (0.12 mmol) and Cs2CO3 (0.2 mmol) in 2 mL of THF.

b

Isolated yields for 4–48 h.

c

Determined by crude 1H NMR analysis.

Subsequently, the generality of this cyclization reaction was further evaluated through varying p-QMs 1. As shown in Table 3. It turned out that various p-QMs 1 can be employed to the reaction, which delivered functionalized chroman-spiro-benzofuran-2-ones scaffolds 4 in high yields (up to 90%) and with good diastereoselectivities. It seems that the position of the substituents had some delicate influence on the reaction. The C5-methoxyl- or methyl-substituted substrates p-QMs 1 generated the products with a higher yield than those of the C4- substituted counterparts (entries 3–6). Moreover, the C5-chloro- and bromo-substituted p-QMs 1 afforded the products 4a and 4b in moderate yield (entries 1–2).

Substrate scope of p-QMsa.

graphic file with name d2ra03031d-u3.jpg
Entry R 4 Yieldb (%) Drc
1 5-Cl 4a 73 >19 : 1
2 5-Br 4b 65 >19 : 1
3 5-CH3 4c 90 >19 : 1
4 5-OCH3 4d 80 10 : 1
5 4-CH3 4e 72 >19 : 1
6 4-OCH3 4f 66 10 : 1
a

Reaction conditions: p-QMs 1 (0.1 mmol), benzofuranones 2a (0.12 mmol) and Cs2CO3 (0.2 mmol) in 2 mL of THF for 6–48 h.

b

Isolated yields.

c

Determined by crude 1H NMR analysis.

The structure and relative configuration of 3a were determined by HRMS, NMR spectroscopy and single-crystal X-ray analysis.15 The relative configuration of other cycloadducts were tentatively assigned by analogy (Fig. 2 and see ESI).

Fig. 2. X-ray crystal structure of 3a.

Fig. 2

Conclusions

In conclusion, we described a cyclization reaction of ortho-hydroxyphenyl-substituted para-quinone methides with benzofuran-2-one derived olefins via oxa-Michael/1,6-conjugated addition, which efficiently constructed enriched functionalized spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one in good to excellent yields (up to 90%) and diastereoselectivities (up to 19 : 1 dr).

Conflicts of interest

There are no conflicts to declare.

Supplementary Material

RA-012-D2RA03031D-s001
RA-012-D2RA03031D-s002

Acknowledgments

We are grateful to the National Natural Science Foundation of China (21772158), Scientific Research Funds of Guiyang University [GYU-KY-2022] and Guizhou Education Department Youth Science and Technology Talents Growth Project KY[2019]094.

Electronic supplementary information (ESI) available. CCDC 2128983. For ESI and crystallographic data in CIF or other electronic format see https://doi.org/10.1039/d2ra03031d

Notes and references

  1. (a) Hasler H. Kaufmann F. Pirson W. Schneider F. Eur. J. Med. Chem. 1987;22:559. [Google Scholar]; (b) Hiessbock R. Wolf C. Richter E. Hitzler M. Chiba P. Kratzel M. Ecker G. J. Med. Chem. 1999;42:1921. doi: 10.1021/jm980517+. [DOI] [PubMed] [Google Scholar]; (c) Middleton E. Kandaswami C. Theoharides T. C. Pharmacol. Rev. 2000;52:673. [PubMed] [Google Scholar]; (d) Shen H. C. Tetrahedron. 2009;65:3931. [Google Scholar]; (e) Kushwaha R. K. Singh K. Kumar P. Chandra D. Research J. Pharm. and Tech. 2019;12:5566. [Google Scholar]
  2. (a) Uroos M. Hayes C. J. Org. Lett. 2010;12:5294. doi: 10.1021/ol102296t. [DOI] [PubMed] [Google Scholar]; (b) Uroos M. Lewis W. Blake A. J. Hayes C. J. J. Org. Chem. 2010;75:8465. doi: 10.1021/jo101691n. [DOI] [PubMed] [Google Scholar]; (c) Ding C. Y. Wang L. L. Chen H. J. Wild C. Ye N. Ding Y. Wang T. Z. White M. A. Shen Q. Zhou J. Org. Biomol. Chem. 2014;12:8442. doi: 10.1039/c4ob01040j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Selected examples: ; (a) Galliford C. V. Scheidt K. A. Angew. Chem., Int. Ed. 2007;46:8748. doi: 10.1002/anie.200701342. [DOI] [PubMed] [Google Scholar]; (b) Yamamoto Y. Itonaga K. Org. Lett. 2009;11:717. doi: 10.1021/ol802800s. [DOI] [PubMed] [Google Scholar]; (c) Meng X. T. Huang Y. Zhao H. X. Xie P. Z. Ma J. Z. Chen R. Org. Lett. 2009;11:991. doi: 10.1021/ol802917d. [DOI] [PubMed] [Google Scholar]; (d) Ward A. F. Xu Y. Wolfe J. P. Chem. Commun. 2012;48:609. doi: 10.1039/c1cc15880e. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Taylor R. R. R. Batey R. A. J. Org. Chem. 2013;78:1404. doi: 10.1021/jo302328s. [DOI] [PubMed] [Google Scholar]; (f) Wang P. S. Liu P. Zhai Y. J. Lin H. C. Han Z. Y. Gong L. Z. J. Am. Chem. Soc. 2015;137:12732. doi: 10.1021/jacs.5b08477. [DOI] [PubMed] [Google Scholar]; (g) Wang S. S. He J. An Z. Chem. Commun. 2017;53:8882. doi: 10.1039/c7cc03556j. [DOI] [PubMed] [Google Scholar]; (h) Ren H. Song X. Y. Wang S. R. Wang L. J. Tang Y. Org. Lett. 2018;20:3858. doi: 10.1021/acs.orglett.8b01442. [DOI] [PubMed] [Google Scholar]
  4. Selected examples for the synthesis of chroman via p-QMs, see: ; (a) Chen K. Liu S. Wang D. Hao W. J. Zhou P. Tu S. J. Jiang B. J. Org. Chem. 2017;82:11524. doi: 10.1021/acs.joc.7b02134. [DOI] [PubMed] [Google Scholar]; (b) Liao J. Y. Ni Q. Zhao Y. Org. Lett. 2017;19:4074. doi: 10.1021/acs.orglett.7b01851. [DOI] [PubMed] [Google Scholar]; (c) Zhang X.-Z. Gan K. J. Liu X.-X. Deng Y. H. Wang F. X. Yu K. Y. Zhang J. Fan C.-A. Org. Lett. 2017;19:3207. doi: 10.1021/acs.orglett.7b01331. [DOI] [PubMed] [Google Scholar]; (d) Mei G. J. Xu S. L. Zheng W. Q. Bian C. Y. Shi F. J. Org. Chem. 2018;83:1414. doi: 10.1021/acs.joc.7b02942. [DOI] [PubMed] [Google Scholar]; (e) Zhang Z. P. Xie K. X. Yang C. Li M. Li X. J. Org. Chem. 2018;83:364. doi: 10.1021/acs.joc.7b02750. [DOI] [PubMed] [Google Scholar]
  5. (a) Lindsey C. C. Wu K. L. Pettus T. R. R. Org. Lett. 2006;8:2365. doi: 10.1021/ol0606886. [DOI] [PubMed] [Google Scholar]; (b) Wang F. Qu M. Lu X. Chen F. Shi M. Chem. Commun. 2012;48:6259. doi: 10.1039/c2cc32545d. [DOI] [PubMed] [Google Scholar]; (c) Ramachary D. B. Shiva Prasad M. Vijaya Laxmi S. Madhavachary R. Org. Biomol. Chem. 2014;12:574. doi: 10.1039/c3ob42100g. [DOI] [PubMed] [Google Scholar]; (d) Subba Reddy B. V. Hanuman Reddy V. Medaboina D. Sridhar B. Rami Reddy Y. V. Org. Biomol. Chem. 2016;14:3234. doi: 10.1039/c5ob02639c. [DOI] [PubMed] [Google Scholar]; (e) Cao Z. Zhou G.-X. Ma C. Jiang K. Mei G.-J. Synthesis. 2018;50:1307. [Google Scholar]; (f) Yoshida K. Inoue H. Oji Y. Suzuki H. I Takao F.- J. Org. Chem. 2020;85:10189. doi: 10.1021/acs.joc.0c00589. [DOI] [PubMed] [Google Scholar]; (g) Reddy A. G. K. Niharika P. Zhou S. Jia S. K. Shi T. D. Xu X. F. Qian Y. Hu W. H. Org. Lett. 2020;22:2925. doi: 10.1021/acs.orglett.0c00587. [DOI] [PubMed] [Google Scholar]; (h) Liu N. Zhu W. J. Yao J. Yin L. Lu T. Dou X. W. ACS Catal. 2020;10:2596. [Google Scholar]; (i) Gudise V. B. Settipalli P. C. Reddy Y. P. Anwar S. D. ChemistrySelect. 2021;6:13589. [Google Scholar]
  6. (a) Li W. Xu X. Zhang P. Li P.-F. Chem.–Asian J. 2018;13:2350. doi: 10.1002/asia.201800415. [DOI] [PubMed] [Google Scholar]; (b) Xiang M. Li C.-Y. Song X.-J. Zou Y. Huang Z.-C. Li X. Tian F. Wang L.-X. Chem. Commun. 2020;56:14825. doi: 10.1039/d0cc06777f. [DOI] [PubMed] [Google Scholar]; (c) Si W. Xu F. Liu Z. Song R. Lv J. J. Tetrahedron Lett. 2020;61:152171. [Google Scholar]; (d) Mao W. Lin S. Zhang L. Lu H. Jia J. Xu Z. Org. Chem. Front. 2020;7:856. [Google Scholar]; (e) Lima C. G. S. Pauli F. P. Costa D. C. S. Souza A. S. Forezi L. S. M. Ferreira V. F. Silva F. C. Eur. J. Org. Chem. 2020;18:2650. [Google Scholar]; (f) Varlet T. Matišić M. Elslande E. Neuville L. Gandon V. Masson G. J. Am. Chem. Soc. 2021;143:11611. doi: 10.1021/jacs.1c04648. [DOI] [PubMed] [Google Scholar]
  7. Zhao K. Zhi Y. Shu T. Valkonen A. Rissanen K. Enders D. Angew. Chem., Int. Ed. 2016;55:12104. doi: 10.1002/anie.201606947. [DOI] [PubMed] [Google Scholar]
  8. (a) Liu S. L. Lan X. C. Chen K. Hao W. J. Li G. Tu S. J. Jiang B. Org. Lett. 2017;19:3831. doi: 10.1021/acs.orglett.7b01705. [DOI] [PubMed] [Google Scholar]; (b) Han Y. Z. Zhu Y. Z. Zhang P. M. M. Li W. J. Li P. F. ChemistrySelect. 2017;2:11380. [Google Scholar]; (c) Wang C. S. Cheng Y. C. Zhou J. Mei G. J. Wang W. L. Shi F. J. Org. Chem. 2018;83:13861. doi: 10.1021/acs.joc.8b02186. [DOI] [PubMed] [Google Scholar]; (d) Wang Y.-X. Lu Y.-N. Xu L.-L. Sheng F. T. Zhang J. P. Tan W. Shi F. Synthesis. 2020;52:2979. [Google Scholar]; (e) Ye Z. Bai L. Bai Y. Gan Z. Zhou H. Pan T. Yu Y. Zhou J. Tetrahedron. 2019;75:682. [Google Scholar]; (f) Huo M. Zhou J. Bai L. Xu Q. Zhou Z. Zhou H. Liang G. Tetrahedron. 2019;75:130752. [Google Scholar]; (g) Tan J. P. Zhang H. K. Jiang Z. Y. Chen Y. Ren X. Y. Jiang C. H. Wang T. L. Adv. Synth. Catal. 2020;362:1058. [Google Scholar]
  9. Selected examples, see: ; (a) Nakatani N. Inatani R. Agric. Biol. Chem. 1983;47:353. [Google Scholar]; (b) Kwon Y.-J. Sohn M.-J. Zheng C.-J. Kim W.-G. Org. Lett. 2007;9:2449. doi: 10.1021/ol0703231. [DOI] [PubMed] [Google Scholar]; (c) Wada S. I. Hitomi T. Tokuda H. Tanaka R. Chem. Biodiv. 2010;7:2303. doi: 10.1002/cbdv.201000147. [DOI] [PubMed] [Google Scholar]; (d) Pertino M. W. Theoduloz C. J. Rodriguez A. Lazo V. J. Nat. Prod. 2010;73:639. doi: 10.1021/np900822x. [DOI] [PubMed] [Google Scholar]; (e) Soman S. S. Thaker T. H. Med. Chem. Res. 2013;22:4223. [Google Scholar]; (f) Kaishap P. P. Duarah G. Sarma B. Chetia D. Gogoi S. Angew. Chem., Int. Ed. 2018;57:456. doi: 10.1002/anie.201710049. [DOI] [PubMed] [Google Scholar]; (g) Wang Z. Y. Shen F.-M. Yang T. Zhang J. K. Chen R.-X. Wang K. K. Liu H. X. Asian. J. Org. Chem. 2021;10:3293. [Google Scholar]
  10. (a) Adediran S. A. Cabaret D. Drouillat B. Pratt R. F. Wakselman M. Bioorg. Med. Chem. 2001;9:1175. doi: 10.1016/s0968-0896(00)00345-x. [DOI] [PubMed] [Google Scholar]; (b) Balestrieri C. Felice F. Piacente S. Pizza C. Montoro P. Oleszek W. Visciano V. Balestrieri M. L. Biochem. Pharmacol. 2006;71:1479. doi: 10.1016/j.bcp.2006.01.021. [DOI] [PubMed] [Google Scholar]; (c) Nicolaou K. C. Wu T. R. Kang Q. Chen D. Y. K. Angew. Chem., Int. Ed. 2009;48:3440. doi: 10.1002/anie.200900438. [DOI] [PubMed] [Google Scholar]; (d) Nicolaou K. C. Kang Q. Wu T. R. Lim C. S. Chen D. Y.-K. J. Am. Chem. Soc. 2010;132:7540. doi: 10.1021/ja102623j. [DOI] [PubMed] [Google Scholar]
  11. Selected examples for the construction of 3,3-disubstitued benzofuran-2-ones: ; (a) Hills I. D. Fu G. C. Angew. Chem., Int. Ed. 2003;42:3921. doi: 10.1002/anie.200351666. [DOI] [PubMed] [Google Scholar]; (b) Shaw S. A. Aleman P. Christy J. Kampf J. W. Va P. Vedejs E. J. Am. Chem. Soc. 2006;128:925. doi: 10.1021/ja056150x. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Li X. Xi Z. G. Luo S. Z. Cheng J. P. Adv. Synth. Catal. 2010;352:1097. [Google Scholar]; (d) Li X. Hu S. S. Xi Z. G. Zhang L. Luo S. Z. Cheng J.-P. J. Org. Chem. 2010;75:8697. doi: 10.1021/jo101832e. [DOI] [PubMed] [Google Scholar]; (e) Zhu C.-L. Zhang F.-G. Meng W. Nie J. Cahard D. Ma J.-A. Angew. Chem., Int. Ed. 2011;50:5869. doi: 10.1002/anie.201100283. [DOI] [PubMed] [Google Scholar]; (f) Cheng X.-F. Li Y. Su Y.-M. Yin F. Wang J.-Y. Sheng J. Vora H. U. Wang X.-S. Yu J.-Q. J. Am. Chem. Soc. 2013;135:1236. doi: 10.1021/ja311259x. [DOI] [PMC free article] [PubMed] [Google Scholar]; (g) Ohmatsu K. Ito M. Kunieda T. Ooi T. J. Am. Chem. Soc. 2013;135:590. doi: 10.1021/ja312125a. [DOI] [PubMed] [Google Scholar]; (h) Zhu Y. Zhang E.-G. Luo C. Li X. Cheng J.-P. Tetrahedron. 2015;71:4090. [Google Scholar]; (i) Liu Y. Zhou C. Xiong M. Jiang J. Wang J. Org. Lett. 2018;20:5889. doi: 10.1021/acs.orglett.8b02555. [DOI] [PubMed] [Google Scholar]; (j) Huang Z. Yang X. Yang F. Lu T. Zhou Q. Org. Lett. 2017;19:3524. doi: 10.1021/acs.orglett.7b01482. [DOI] [PubMed] [Google Scholar]; (k) Cruchter T. Medvedev M. G. Shen X. Mietke T. Harms K. Marsch M. Meggers E. ACS Catal. 2017;7:5151. [Google Scholar]; (l) Santi M. Ould D. M. C. Wenz J. Soltani Y. Melen R. L. Wirth T. Angew. Chem., Int. Ed. 2019;58:7861. doi: 10.1002/anie.201902985. [DOI] [PubMed] [Google Scholar]
  12. Selected examples for enantioselective construction of C3-spiro quaternary center of benzofuran-2-ones: ; (a) Zhang M. Wang J. X. Chang S. Q. Liu X. L. Zuo X. Zhou Y. Chin. Chem. Lett. 2020;31:381. [Google Scholar]; (b) Wang D. Wang G. G. P. Sun Y. L. Zhu S. F. Wei Y. Zhou Q. L. Shi M. Chem. Sci. 2015;6:7319. doi: 10.1039/c5sc03135d. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Li X. Yang C. Jin J. L. Xue X. S. Cheng J. P. Chem. - Asian J. 2013;8:997. doi: 10.1002/asia.201201244. [DOI] [PubMed] [Google Scholar]; (d) Cassani C. Tian X. Escudero-Adan E. C. Melchiorre P. Chem. Commun. 2011;47:233. doi: 10.1039/c0cc01957g. [DOI] [PubMed] [Google Scholar]; (e) Companyó X. Zea A. ACPa A. N. R. Mazzanti A. Moyano A. Rios R. Chem. Commun. 2010;46:6953. doi: 10.1039/c0cc01522a. [DOI] [PubMed] [Google Scholar]
  13. Selected diastereoselective synthesis of C3-spirocyclic benzo- furan-2-ones: ; (a) Li X. Wang F. Dong N. Cheng J.-P. Org. Biomol. Chem. 2013;11:1451. doi: 10.1039/c3ob27288e. [DOI] [PubMed] [Google Scholar]; (b) Yang C. J. Li J. J. Zhou R. Chen X. Y. Gao Y. P. He Z. J. Org. Biomol. Chem. 2015;13:4869. doi: 10.1039/c5ob00258c. [DOI] [PubMed] [Google Scholar]; (c) Zhang C. B. Dou P. H. Zhang J. Wei Q. Q. Wang Y. B. Zhu J. Y. Fu J. Y. Ding T. ChemistrySelect. 2016;1:4403. [Google Scholar]; (d) Li R. Yao L. Wang Y. B. Zhu J. J. Zhang L. X. Fu J. Y. Zhang C. B. Zhao L. L. Org. Lett. 2021;23:5611. doi: 10.1021/acs.orglett.1c01510. [DOI] [PubMed] [Google Scholar]
  14. (a) Liu Z. S. Li W. K. Kang T. R. He L. Liu Q.-Z. Org. Lett. 2015;17:150. doi: 10.1021/ol503383x. [DOI] [PubMed] [Google Scholar]; (b) Huang X. B. Li X. J. Li T. T. Chen B. Chu W. D. He L. Liu Q.-Z. Org. Lett. 2019;21:1713. doi: 10.1021/acs.orglett.9b00274. [DOI] [PubMed] [Google Scholar]; (c) Cao F. Hu F. Xie Q. M. Luo G. Y. Chu W. D. He L. Liu Q.-Z. Asian J. Org. Chem. 2018;7:36. [Google Scholar]
  15. The relative configuration of 3a was confirmed by X-ray crystallography experiments: CCDC 2128983 contains the supplementary crystallographic data for this paper.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

RA-012-D2RA03031D-s001
RA-012-D2RA03031D-s002

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES