Skip to main content
Bentham Open Access logoLink to Bentham Open Access
. 2021 Dec 24;18(10):753–771. doi: 10.2174/1567205018666211208125855

Mitochondrially-Targeted Therapeutic Strategies for Alzheimer’s Disease

Isaac G Onyango 1,*, James P Bennett 2, Gorazd B Stokin 1,3,4
PMCID: PMC9178515  PMID: 34879805

Abstract

Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments available for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initiation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mitochondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mitochondrial systems biology. We review evidence for mitochondrial impairments ranging from mitochondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expression, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dynamics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could potentially alter the course of this progressive, heterogeneous Disease while being cognizant that successful future therapeutics may require a combinatorial approach.

Keywords: Alzheimer’s disease, mitochondria, mtDNA, bioenergetics, β-amyloid, epigenetic modifiers, lifestyle changes, repurposed drugs

1. INTRODUCTION

Alzheimer's disease is the most common neurodegenerative disease in patients over 60 years and there are currently more than 50 million individuals affected globally at an annual cost in excess of US$ 1 trillion. Without breakthrough therapy, more than 152 million people will be affected by 2050 (https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf). While our understanding of the genetics of the disease has increased considerably, there are still no effective prevention or therapeutic strategies available to stop or slow disease progression. Current treatment only provide temporary symptomatic relief when administered in a timely manner [1]. While cholinesterase inhibitors are prescribed for all stages of AD dementia, N-Methyl-D-aspartate (NMDA) receptor antagonist memantine or a combination of cholinesterase inhibitors and glutamate inhibitors is FDA approved for moderate to severe AD. The nutraceutical Huperzine A improves cognition and daily function but is not used in the USA as it is not regulated by the US Food and Drug Administration (FDA) [2-4]. Early-onset familial AD (fAD) comprise <10% of AD cases where ~ 60% have at least one affected first-degree relative and 13% of them are inherited in an autosomal dominant manner [5, 6]. Mutations in the amyloid precursor protein (APP; chromosome 21), presenilin-1 (PSEN1; chromosome 14), and presenilin-2 (PSEN2; chromosome 1) cause fAD [7]. These mutations drive amyloidosis [8-11], resulting in an early disease onset (20-30 years of age) [12, 13], although most of the cases are diagnosed between 45 and 60 years. Most AD cases are late-onset sporadic (sAD) (>95% prevalence). While age is considered to be a principal risk factor for sAD [14], apolipoprotein E (APOE), the strongest genetic risk factor for sAD [15] and meta-analysis of genome-wide association studies (GWAS) have identified novel genes sets that are associated with significant sAD risk including: bridging integrator 1 (BIN1), clusterin (CLU), complement component (3b/4b) receptor 1 (CR1), disabled homolog 1 (DAB1), PI-binding clathrin assembly protein (PICALM), Sortilin- like receptor 1 (SORL1), triggering receptor expressed on myeloid cells 2 (TREM2), the membrane-spanning 4-domains, subfamily A (MS4A), ATP-binding cassette transporter A1 and A7 (C1 and 7), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and CD33 [16, 17]. These genes are involved in innate immunity, inflammation, lipid metabolism, production and clearance of amyloid-β, and endosomal vesicle recycling [18-20].

Female gender is an additional sAD risk factor that is partly explainable by aging and lengthened lifespan. Other factors that may increase the risk for sAD include chronic inflammation, lack of physical activity, depression, social isolation, diabetes, obesity hypertension and smoking [21, 22]. Cumulative evidence reveals that mitochondrial dysfunction is a key player in AD pathogenesis. While the human brain accounts for ~2% of the body weight, but it consumes ~20% of glucose-derived energy [23]. This very high energy demand makes it particularly vulnerable to mitochondrial dysfunction [24]. Glucose hypometabolism is consistently evident in the hippocampus and cortical regions and precedes the clinical diagnosis of AD by decades and quite accurately predicts cognitive decline in normal aging [25] as well as progression from mild cognitive impairment (MCI) to AD [26, 27]. Indeed, mitochondrial dysfunction and glucose hypometabolism consistently precede Aβ plaque and neurofibrillary tangles in AD pathology [28]. Further, the ROS arising from oxidative phosphorylation (OXPHOS) adversely affects cellular structures such as membranes, proteins, DNA and lipids when produced in excess. mtDNA are particularly vulnerable to mitochondrial ROS (mtROS) because they are not only close to the respiratory chain, but unlike nDNA, they do not have protective histones. Damaged mtDNA further alters the respiratory chain and trigger a vicious cycle by enhancing the generation of free radicals that results in neuronal dysfunction and aging phenotype [29]. This oxidative stress is further compounded by inflammatory processes associated with alterations in cellular metabolism [24, 30, 31]. Type 2 diabetes mellitus (T2DM) confers an additional risk factor for AD [32-36], suggesting that deranged metabolism contributes to AD development [11, 37, 38]. Several recent studies demonstrate epigenetic modifications in aging and neurodegeneration. These include histone modifications, DNA methylation, and microRNA expression that alter gene expression and genome architecture [39-42]. There is growing evidence that the mitochondrial DNA (mtDNA) like nuclear DNA, can be controlled by epigenetic mechanisms [43-46]. While several diseases including AD are associated with differential mtDNA methylation, it has not yet been elucidated whether the disease results from the methylation or the methylation results from the disease [47]. Epigenetic changes to nucleoid proteins may influence the regulation of mtDNA gene expression as these lack histones. There is an urgent need to develop effective disease-modifying drugs for AD and a paradigm that alleviates the bioenergetic deficit in vulnerable neurons of affected brain regions may achieve better outcomes in AD patients. This can be achieved by restoring optimal mitochondrial function in AD.

1.1. The Mitochondrion

The human mitochondrion holds two to ten copies of 16.5 kilo base (kb) double stranded, closed circular mitochondrial DNA (mtDNA) [48-50]. mtDNA codes only 13 polypeptides, two rRNAs (12S and 16S) and 22 tRNAs that are essential for the oxidative phosphorylation system [51]. The cell’s nuclear genome encodes the rest of the mitochondrial proteins, metabolic enzymes, DNA and RNA polymerases, ribosomal proteins, and mtDNA regulatory factors, such as mitochondrial transcription factor A. Nuclear mitochondrial proteins are synthesized in the cytoplasm and then transported into mitochondria. mtDNA are primarily maternally inherited with many thousands of copies per cell. An equilibrium between mitochondrial fission and fusion regulates the number and morphology of mitochondria [52, 53]. This is crucial for metabolism, energy production, calcium (Ca2+) signaling, reactive oxygen species (ROS) production, apoptosis, and senescence [54-58]. The trafficking of mitochondrial components between different mitochondria is facilitated by fusion. mtDNA is hyper-mutable compared with nuclear DNA (nDNA) because they replicate more frequently and also because they do not have protective histones and are close to the respiratory chain. As mtDNA mutations arise in the maternal lineage, a heteroplasmic state is established as a mixture of the wild-type and mutant mtDNAs. As cells divide, the mutant mtDNAs are randomly passed onto the daughter’s cells and the percentage of mutant mtDNAs in different cell lineages drift toward either pure mutant or normal (known as homoplasmy) [59, 60]. The dynamic process by which mtDNA mutations accumulate (clonal expansion) results in a decline in cellular energy output and a total cellular mitochondrial dysfunction. The ratio of mutant to normal mtDNA, therefore, determines the severity of the disease. Severely damaged mitochondria are unable to fuse and this results in the fragmentation of mitochondria [61].

1.2. Mitochondria in AD

AD mitochondria are fundamentally altered in many ways. Energy metabolism is impaired in AD [62-65] and PET studies consistently demonstrate glucose hypometabolism in the brain [66] that precede the onset of the histopathological hallmarks and symptoms [67, 68]. The activities of the mitochondrial complex IV cytochrome c oxidase (COX), pyruvate dehydrogenase complex (PDHC), mitochondrial isocitrate dehydrogenase, α-ketoglutarate dehydrogenase (αKGDH), and ATP synthase complex are decreased [67, 69, 70] and this compromises the mtΔΨ and ATP production [71]. Aged mitochondria can induce neuronal death through altered mitochondrial dynamics and biogenesis/mitophagy processes; impaired Ca2+ homeostasis; mutations on mtDNA; aberrant activation of apoptotic pathways; oxidative stress; and altered bioenergetics [72]. The mitochondrial dynamics are disrupted in AD [73-75], resulting in altered sizes and shapes (including both enlarged, very small, and elongated mitochondria [76-79], with fewer cristae [77, 80, 81] and reduced expression of mitochondrially encoded electron transport chain (ETC) enzymes [65, 82, 83]. These alterations in mitochondrial dynamics are also evident in the peripheral blood of AD patients and may be potential blood based biomarkers for the disease [84]. In AD, misfolded proteins impair mitochondrial activity through direct interaction with mitochondrial structures and impede trafficking and dynamics. This results in impaired bioenergetics and quality control pathways, and trigger mitochondria-dependent apoptosis [85]. Aβ peptides can localize on the endoplasmic reticulum (ER) mitochondrial associated membranes (MAMs) and induce the release of cytosolic Ca2+ that leads to mitochondrial Ca2+ overload, stimulation of mitochondrial respiration and increased ROS generation [86-89]. Aβ peptides have been shown to interact with components of the mitochondrial matrix [90] and in excess, Aβ alters mitochondrial dynamics by differentially modulating fission/fusion proteins [91, 92]. Finally, the effects of aggregating Aβ can be mitigated by efficient mitochondrial proteostasis [75, 93]. Since mitochondria are structurally and functionally altered in AD [94-96], compounds that can induce and/or restore their bioenergetic capacity present an attractive strategy AD therapy. We review nascent developments of mitochondrially targeted approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency, which show promise for AD treatment although it is likely that successful future therapeutics may require a combinatorial approach.

2. POSSIBLE MITOCHONDRIALLY TARGETED INTERVENTIONS IN AD

2.1. Editing mtDNA Mutations

The frequency of mtDNA deletions and mutations increases with age in human somatic tissues [97], with the substitution rate of mtDNA being an order of magnitude higher than that of the nuclear DNA (nDNA) mutations [98, 99]. While these alterations do not result in a significant change in the absolute copy number, they reduce respiratory activity and are considered to be important drivers of aging [100-102] and the pathophysiology of AD [103-105]. The common mtDNA 5 kb deletion is increased > 15 times in AD brains [106, 107] and somatic mtDNA control region (CR) mutations are increased 73% in AD brains [108]. With the rapid development of gene editing, mtDNA modifications with fewer side effects can provide a new pathway to developing target-oriented molecular networks, interactions, and mitochondrial biology.

A gene editing tool that does not involve CRISPR and is capable of precise editing of mtDNA in vitro has been recently described [109]. It is based on an interbacterial toxin A called DddA, which deaminates cytidines within dsDNA and has been engineered into non-toxic and inactive halves that are activated when coupled on target DNA by adjacently bound programmable DNA-binding proteins. Fusion of the split-DddA halves, transcription activator- like effector array proteins, and a uracil glycosylase inhibitor create RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyze C•G-to-T•A conversions in human mtDNA with high target specificity and product purity.

Mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) are able to rectify mtDNA mutations in an mtDNA disease patient cell culture [110, 111] and also correct induced mtDNA mutation in mouse models [112]. Mitochondrially targeted zinc- finger nucleases (mtZFNs) [113] can also be used to specific remove mtDNA mutations without any interaction with the cell’s nuclear DNA. mtZFNs can eliminate pathogenic mtDNA mutation in mouse models [114]. Adult cells accrue age related mtDNA mutations and are heteroplasmic and the extent (threshold) of the mutant mtDNA mutation load determines when onset of clinical symptoms [115]. Shifting the heteroplasmic equilibrium can ameliorate the onset of clinical symptoms [116]. While CRISPR and mitoTALENs can rectify mtDNA mutations, mtZFNs selectively eliminate mitochondria that harbor mtDNA mutations, ultimately repopulating cells with healthy mitochondria [117]. This is ideal for clinical applications as it eliminates the risk normal genes being erroneously being altered by gene-editing techniques [112-114, 118-121].

2.2. Intercellular Mitochondrial Transplantation

The transplantation of functional mitochondria directly into defective cells is a novel approach for combating mitochondrial dysfunction. This results in enhanced bioenergetics, reduced ROS production and restoration of mitochondrial function. It was recently discovered that astrocytes may release extracellular mitochondrial particles that are endocytosed into injured neurons via an actin-dependent mechanism and restore neuronal viability and recovery after stroke [122-124]. In vitro cytoplasmic hybrid (cybrid) cell system was the original mitochondrial delivery method in an AD model. Cybrids result from the fusion of mt-DNA depleted (rho0) cells with mitochondria from AD patient platelets [125-127]. Peptide- mediated allogeneic mitochondrial delivery (PMD) is a novel technique that facilitates the incorporation of mitochondria into Parkinson’s disease (PD) rat models. Direct microinjection of Pep-1-modified allogeneic mitochondria into medial forebrain bundle (MFB) significantly improves mitochondrial uptake by neurons compared to either the injection of naïve mitochondria or xenogeneic PMD. As a result, respiration is enhanced while ROS is quenched and neuronal viability improves and the locomotor activity of PD rats is restored [128]. The successful uptake of mitochondria by target tissues will likely depend upon the amount, quality of mitochondria and route of organelle delivery.

2.3. Cellular Therapy

Cell-based therapies in the treatment of AD are being explored in many in vivo and in vitro models as a promising alternative to reverse neurodegeneration. This can be achieved by the direct replacement of injured neurons or by paracrine induction of neuronal repair [129]. Neurons and glial cells can be generated from embryonic stem cells (ESCs), neural stem cells (NSCs), neural progenitor cells (NPCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), induced neuronal cells (iN), and induced neuronal progenitor cells (iNPCs). MSCs, which are non-hematopoietic stem cells capable of differentiating into a multitude of cell lineages [130] are the most commonly used cells in tissue engineering and regenerative medicine because they can promote host tissue repair through several different mechanisms, including donor cell engraftment, release of cell signaling factors, and the transfer of healthy organelles to the host. Transplantation of these cells into AD animal models induces mitochondrial biogenesis and reverses cognitive defects and extends lifespan [131-133]. This nascent therapeutic technique has great promise for NDDs, including AD [134-136].

2.4. Targeting Mitochondrial Biogenesis

Impaired mitochondrial bioenergetics is a key player in the pathogenesis of AD. As a consequence, therapeutic strategies that enhance mitochondrial mass and activity may be beneficial [137-140]. Cells increase their mitochondrial mass by a process called mitochondrial biogenesis. This process involves an intricate coordination of nuclear gene expression, protein import and mtDNA transcription [141-145], including inter alia, mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC- 1α) and other proteins, including nuclear respiratory factors (NRF -1 and NRF-2), uncoupling proteins (UCP2), thyroid hormone, glucocorticoid, estrogen, and estrogen-related receptors (ERR) a and b [146-148]. PGC-1α additionally regulates mitochondrial genome copy number, mitochondrial dynamics and OXPHOS [149]. Mitochondria are fluid and constantly fuse (fusion) and divide (fission) [150]. Fusion involves three GTPases; mitofusin (Mfn) 1 and Mfn2, and optic atrophy protein 1 (OPA1), while fission is mediated by GTPase dynamin-related protein 1 (Drp1) [151]. Upregulating TFAM increases mtDNA. Mitochondrial bioenergetics can be improved by extraneous manipulation of mitochondrial genome, including by the use of synthetic TFAM that can target mitochondria. Treating 3xTg-AD mice with human TFAM (hTFAM) enhances the expression of transthyretin which blocks Aβ aggregation, and reduces oxidative stress and enhances cognitive function [152, 153]. Recombinant-human TFAM (rhTFAM) improves cellular bioenergetics in mtDNA disease cultured cells [154, 155] as well as in aged lab mice where memory is improved [156, 157] and they are able to run two times longer on their rotating rods than their age matched controls [157]. The pirinixic acid derivate MH84, an in vitro dual g-secretase/proliferator activated receptor gamma (PPARγ) modulator, improves mitochondrial dysfunction in cellular and Thy-1- APP -SL mice (that harbor the Swedish and London mutation of human APP) [158]. Dumont et al., however, have shown that overexpression of PGC-1a In the Tg19959 mouse model of AD induced mitochondrial abnormalities and neuronal death [159, 160].

2.5. Targeting the Proteasome

The ubiquitin proteasome system (UPS) and mitochondrial systems are tightly interdependent (Fig. 1). Mitochondrial dysfunction and impairment of the ubiquitin proteasome system are both hallmarks of aging and implicated in the etiopathogenesis of AD. It is not clear which one triggers the vicious cycle of dysfunction [161-164]. Defective proteostasis impairs mitochondrial function. In order to restore mitochondrial function, cells initiate the mitochondrial unfolded protein response (mtUPR) [165-167], which induces mitochondrial biogenesis [167]. If this fails to maintain mitochondrial ΔΨm, mitophagy ensues to eliminate the dysfunctional mitochondria [168] and maintain a healthy population of mitochondria [150]. A viable strategy to treat NDDs is to activate the proteasome using small molecules to get rid of protein aggregates [169-171]. Betulinic acid is a triterpene natural product that selectively enhances the chymotryptic-like site of proteasome activity. Synthetic modifications have produced active analogs, suggesting a complex structure activity relationship (SAR) [172, 173]. Pyrazolone is another small molecule proteasome activator [170] that is neuroprotective in animal models of amyotrophic lateral sclerosis [174]. Another potent activator of the proteasome is the p38MAPK inhibitor PD169316, which enhances Proteolysis Targeting Chimeric (PROTAC)-mediated and ubiquitin-dependent protein gradation. This downregulates both overexpressed and endogenous α-synuclein in a bimolecular fluorescence complementation (BiFC) assay [175, 176] without any adverse effects on overall protein turnover while increasing the viability of cells overexpressing toxic α-synuclein assemblies [173]. Synthetic peptides based upon the HbYX motif are the most common class of proteasome gate openers. While their activity depends on the activator protein they are modeled after, they all increase the turnover of oxidized proteins [177-181]. Selective phosphodiesterase-4 inhibitors like rolipram, activate proteasome function, reduce aggregated tau levels, and improve cognitive performance and ameliorate the early stages of neurodegeneration in mouse models of tauopathy by increasing cAMP levels [171]. The FDA-approved drug for adult chronic myeloid leukemia, Nilotinib, clears misfolded and damaged proteins by autophagy via its enhancement of parkin levels [182]. It is in phase 2 trials for AD (NCT02947893). It is important to recognize that it is important to restore autophagic flux and not simply enhance autophagy that might merely result in accumulation of autophagosomes and undigested autolysosomes, but enhance all stages from autophagosome biogenesis, lysosome fusion and degradation of loaded autolysosomes [183, 184]. Finally, since activating Nuclear factor erythroid-derived 2 -like 2 (Nrf2) increases proteasome activity, the antioxidant 3H-1,2-dithiole-3-thione (D3T), which upregulates both 20S and 19S proteasome subunits, are promising therapeutic targets [185, 186]. As a proof of concept, genetic activation of the proteasome ameliorates the aging process and elongates lifespan in different models, including C. elegans, human fibroblasts and yeast cells [187, 188].

Fig. (1).

Fig. (1)

The ubiquitin proteasome system (UPS) and mitochondrial systems are tightly interdependent. Proteasome activation is a promising strategy to treat or prevent AD as it helps prevent the accumulation of toxic protein aggregates. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

2.6. Targeting Mitophagy

Defects in mitophagy closely track with AD pathogenesis. Mitophagy is the quality control process by which damaged and inefficient mitochondria are eliminated and are regulated by mitochondria fission- and fusion- promoting proteins [189-191]. Mitophagy is crucial in neurons [192-195] which are post-mitotic, have high energy demands and strictly aerobic and are therefore particularly sensitive to mitochondrial dysfunction [190, 196-200]. They need an efficent system to eliminate damaged mitochondria and decrease ROS -induced death [201, 202]. Damaged mitochondria are eliminated through focal mitophagy that results in reduced ROS and neuroprotection [201, 202]. Urolithin A, which is produced by human gut microbiota, induces mitophagy which degrades dysfunctional mitochondria that would otherwise accumulate with age. This extends Caenorhabditis elegans lifespan and improves rodent muscle function [203]. Urolithin A can cross the blood-brain barrier (BBB) and is neuroprotective against NDDs. The aliphatic polyamine, Spermidine, induces autophagy in a SIRT1- independent manner [204] and induces the formation of mitophagosomes and decreases the aggregation of dysfunctional mitochondrial through the PINK1/Parkin pathway [205] and restores mitochondrial activity in aged cardiomyocytes [206] as well as protect against age-induced memory impairment [207]. Metformin and resveratrol, which regulate PINK1/parkin and sirtuin activating compounds (STACS) or nicotinamide adenine dinucleotide (NAD) precursors such nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), induce mitophagy [208]. PMI (P62- mediated mitophagy inducer), is a novel potent inducer of mitophagy. Its actions are independent of the PINK1/parkin pathway and do not affect the mitochondrial network or induce mitochondrial membrane potential [209]. Inactive glyceraldehyde-3-phosphate dehydrogenase (iGAPDH) induces mitophagy. iGAPDH is a molecular sensor that detects and tags damaged mitochondria as GAPDH is inactivated by mitochondrial ROS. Mitochondria-associated iGAPDH promotes the elimination of damaged mitochondria via a lysosomal-like structure, a hybrid organelle of late endosome and lysosome [162, 210]. Exogenously expressed, catalytically inactive iGAPDH eliminate damaged mitochondria [162, 210]. Neurons may be protected by modulating GAPDH to eliminate damage mitochondria or mitochondria that are producing excessive amounts of ROS.

2.7. Targeting Mitochondrial ROS

An ideal strategy for preventing and treating AD is to eliminate detrimental neuronal ROS without affecting ROS signaling cascades. Anti-oxidants targeting mitochondria potently sequester reactive oxygen intermediates (ROIs) and confer greater protection against oxidative damage than untargeted cellular antioxidants. Compounds such as CP2, a tricyclic pyrone that can cross the BBB and accumulate in the mitochondria can selectively target mitochondria-derived ROS have the potential of enhancing neuronal viability [211]. In wild-type mice, it elicits a mito-hormetic effect by mildly inhibiting complex I of the mitochondrial ETC and increasing respiratory capacity and coupling. In APP, PSEN1 and APP/PSEN1 mouse models of AD, CP2 prevents cognitive impairment and reduces Ab plaques and phosphorylated tau. Other mitochondria-targeted antioxidants such as (10-(6′-plastoquinonyl) decyltriphenyl-phosphonium) (SkQ1), MitoQ, MitoTEMPOL and MitoVitE are neuroprotective and more efficient compared to untargeted antioxidants such as 6- hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) [212]. Similar antioxidants include: 4,5-dihydroxybenzene-1,3-disulfonate (Tiron), also accumulate within the mitochondria by permeabilizing the mitochondrial membrane [213] and astaxanthin is a mitochondrion-permeable antioxidant, that crosses the blood-brain barrier and effectively prevents and treats macular degeneration [214-216]. Szeto-Schiller (SS) tetrapeptides can deliver and localize anti-oxidants into the inner mitochondrial membrane with an approximate 1000- 5000- fold accumulation [217-220]. Novel XJB peptides, which consist of an electron and ROS scavenger (4-NH2-TEMPO) conjugated to the Leo-D-Phe-Pro-Val-Orn fragment of gramicidin S can specifically target the XJB peptides to mitochondria. Of these, XJB-5-131, improves mitochondrial function and enhances neuronal viability in Huntington’s disease animal models [221, 222]. Nano carriers such as the biodegradable poly-lactide-co-gylcolide (PLGA) like PLGA CoQ10 nanoparticles are an alternative vehicle to target anti-oxidants to mitochondria [221, 223].

N-acetyl-5-methoxytryptamine (Melatonin) is potently neuroprotective against oxidative stress in the brain compared to vitamins C and E at physiological concentrations [224-229]. Melatonin and its metabolites are broad-spectrum antioxidants [230-232] with therapeutic potential in aging and AD [233-236]. Melatonin also down regulates caspase-3 levels [237], that are elevated in AD brains [238] and are linked directly to neuronal apoptosis [239]. Caspase-3 activation increases β-secretase activity and Aβ production [240]. Melatonin also increases anti-apoptotic Bcl-2 expression in AD transgenic mice and ischemic brains [241], and has anti-fibrillogenic effects [242]. It also alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction [243, 244], inhibits amyloid pathology [245] and increases survival in AD transgenic mouse models [246]. Melatonin reverses the pro-fibrillogenic activity of ApoE4 and neutralizes its neurotoxic combination with Aβ [242].

2.8. Targeting Cardiolipin

Targeting cardiolipin SS-31 (elamipretide) is a mitochondrially specific small peptide that binds to cardiolipin on the inner mitochondrial membrane. Cardiolipin helps organize the components of the ETC into super complexes for more efficient OXPHOS [247]. SS-31 also prevents mitochondrial permeability transition pore formation that leads to mitochondrial swelling and apoptosis when mitochondria are stressed [248]. In preclinical models of AD, SS-31 protects against anesthesia-induced cognitive impairment and promotes mitochondrial and synaptic health [248, 249]. SS-31, which is in clinical trials for mitochondrial myopathy, Leber’s hereditary optic neuropathy, Barth syndrome and Huntington’s diseases are being repurposed for potential use in AD (stealthbt.com/clinical).

2.9. Targeting Mitochondrial Cholesterol

Mitochondrial function can be severely disrupted in cholesterol accumulation and this may contribute to the progression of AD. Cholesterol accumulation in the mitochondria reduces the fluidity of membranes [250], ATP generation [251-254] and mitochondrial glutathione (GSH) import [255-259]. Altered membrane lipids are directly linked to brain mitochondrial dysfunction [260]. There are increased levels of lysosomal cholesterol transporter Niemann-Pick type C protein 1 (NPC1) in the hippocampus and frontal cortex of patients with AD and AD-Tg mice [261]. Steroidogenic acute regulatory protein (STARD1), which modulate mitochondrial cholesterol trafficking is elevated in the pyramidal hippocampal neurons of AD patients [262, 263]. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively lowers cholesterol through multiple mechanisms and is FDA approved. HPβCD, which is in phase 2b/3 trials for Niemann-Pick type C (NPC), reduces cholesterol accumulation defect in animal models [264] and can be administered intranasally when amalgamated with polymeric microspheres made of chitosan or sodium alginate [265]. Cytochrome P450 46A1 (CYP46A1) modulates brain cholesterol turnover by regulating its elimination. In the APP23 AD mouse model, inhibiting CYP461A1 results in Ab accumulating with extensive neuronal death. Decreasing CYP46A1 gene expression increases cholesterol concentration in normal mouse hippocampal neurons resulting in hippocampal atrophy and cognitive deficits [266]. There are ongoing preclinical tests aimed at restoring AD brain cholesterol metabolism by targeting CYP46A1 [218]. The clinical trial is anticipated to start in 2021 http://www.brainvectis.com.

2.10. Targeting Mitochondrial Membrane Potential

Ursodeoxycholic acid (UDCA) is safe and has a limited side effect profile and has been indicated for primary biliary sclerosis for over 30 years [267]. Drp1 inhibitors have been explored as a therapeutic avenue in AD. In vitro and in vivo studies in AD models of UDCA and related compound tauroursodeoxycholic acid (TUDCA) [268-271] have revealed a putative protective effect [270-273]. UDCA restores mitochondrial membrane potential in sAD and PSEN1 mutant fibroblast through its effects on Drp1. It does this without impacting both sAD and PSEN1 mutant fibroblasts via its actions on Drp1 while having no significant effect on mitochondrial morphology. Drp1 inhibitors are now explored as a therapeutic avenue in AD [274].

2.11. Epigenetic Modifiers

Epigenetic mechanisms may mediate the risk for AD [275], and molecular modulation of epigenetic mechanisms may protect against age related cognitive decline [276]. A few epigenetic compounds are in clinical trials for AD. These include Suberoylanilide hydroxamic acid (SAHA, Vorinostat) pan-histone deacetylase (HDAC) inhibitor that can induce autophagy in cardiomyocytes and mitigate ischemia/reperfusion injury if administered during reperfusion. If administered before or after ischemia, SAHA induces and autophagy mitochondrial biogenesis that mitigates mitochondrial dysfunction and ameliorates oxidative stress [277]. Vorinostat is FDA-approved for cutaneous T-cell lymphoma and is currently in phase I trial for patients with AD (NCT03056495). ORY-2001, a safe, well tolerated selective dual LSD1-MAO-B inhibitor that is capable of crossing the BBB and regulating histone methylation, has been shown to significantly improve cognition in transgenic AD models [278].

3. NON-PHARMACOLOGIC LIFESTYLE AND NUTRITIONAL INTERVENTIONS

3.1. Calorie Restriction

Calorie restriction (CR) aims to decrease caloric intake while maintaining all the essential nutrients so that there is no malnutrition. It enhances life span and prevents age-related diseases, including neurological deficits, brain atrophy, and cognitive decline [279]. CR induces mitochondrial biogenesis [280] in a NO•- mediated manner resulting in enhanced mitophagy and the production of new, more efficient mitochondria that have reduced membrane potential, produce less ROS, consume increased levels of oxygen and exhibit an improved ATP/ROS ratio - leading to decreased energy expenditure [281]. It is viable non-pharmacologic strategy to improve healthy brain aging [282].

CR neutralizes the harmful effects of ROS and oxidative damage [283-286] and slows down age-associated transcriptional changes [287]. CR induces expressions of sirtuins, such as SIRT1, SIRT3, SIRT5, and SIRT7 [288]. CR also inhibits the PI3K/AKT pathway, induces mitophagy and maintains mitochondria homeostasis [289].

3.2. Endurance Exercise

Endurance exercise (EE) may help retard the neurodegenerative process in AD. In AD mouse models, EE increases mtDNA repair capacity in the hippocampus and activates mitochondrial uncoupling proteins (UCP), which regulates mitochondrial proliferation and control the production of mitochondrial-derived ROS and activates autophagy. Ultimately, EE abrogates the deleterious effects of free radicals, the production of total cholesterol, and insulin resistance while enhancing vascularization and angiogenesis, and improving glucose metabolism and neurotrophic functions that result in neurogenesis and synaptogenesis. These improve memory and cognitive function [290-292].

Endurance exercise (EE) increases mitochondrial biogenesis in most brain regions [293] and may help retard the neurodegenerative process in AD. The induction of continuous oxidative stress induces mitohormesis- a series of counteractive mechanisms that enhances mitochondrial health and mitigates ROS-induced neurotoxicity [281, 294]. This is especially crucial in the hippocampus, which is particularly sensitive to oxidative stress [295]. Simultaneously, EE improves mtDNA repair capacity in the mouse hippocampus and activates mitochondrial uncoupling proteins (UCP) that regulate mitochondrial proliferation [296] and production of mitochondrial-derived ROS [297, 298]. At the same time EE alters mitochondrial proteostasis and mitochondrial unfolded protein response (UPRmt) markers and stimulates the OXPHOS component from mtDNA in (neuropeptide Y) NPY-producing neurons in the lateral hypothalamus of mice [299]. Since EE has been shown to be helpful in retarding the progress of Parkinson’s disease (PD) [300], it may be a promising therapeutic option for AD [301].

3.3. Ketogenic Diet

The ketogenic diet (KD) is a high-fat and low-carbohydrate diet aimed at reducing carbohydrate to ≤10% of consumed energy in order to shift to the utilization of ketone bodies (KBs) from fatty acids (FAs) for energy [302]. In a 24 h period, the adult brain utilizes between 100-120 g of glucose which is ~ 20% of its basal metabolism [303]. The KD aims to supply sufficient protein for growth and development but not enough carbohydrates for the metabolic requirements [304, 305]. KD is biochemical fasting [306], which promotes the utilization of KBs instead of glucose, as the main fuel source by organs, including the CNS [307]. Ketogenic diet benefits AD patients [308]. While the neuroprotective mechanism hasn’t been fully elucidated, it enhances neuronal mitochondrial biogenesis and function [309, 310]. Ketone bodies (KBs) prevent the entry of Ab into mitochondria, thus preserving respiratory chain function, and improving cognition [311] by abrogating the bioenergetic deficit in AD brains [312]. Alternatively, by improving mitochondrial function, Ab production is decreased while the soluble APPa production is enhanced and this promotes neurite growth by binding to p75 receptor of BDNF [313]. In animal studies and clinical trials, KD induced stabilization of synaptic functions due to enhanced mitochondrial biogenesis [314], reduced ROS production, and enhanced cellular bioenergetics [315]. In rat cultured hippocampal neurons, KB protects against Ab toxicity [316, 317]. In AD and aging mouse models, motor function and cognition are improved by KD, while human studies show improved cognitive outcomes (global cognition, memory and executive functions) regardless of the severity of cognitive impairments previously detected [318]. 2-deoxy-D- glucose (2-DG) stimulated ketogenesis improves mitochondrial bioenergetics and delays progression of AD by reducing both amyloid precursor protein and Aβ oligomers [319]. A new experimental drug J147 has been shown to be effective against AD and aging in mouse models of accelerated aging [320, 321]. It is currently under Phase 1 clinical trial. A J147 derivative called CAD-31 enhances the use of free fatty acids for energy production by shifting of the metabolic profile of fatty acids toward the production of ketone bodies [321]. It targets mitochondrial ATP synthase. However, the best KD treatment outcomes are expected in the pre-symptomatic stages of AD.

CONCLUSION

AD is a complex, mostly sporadic age-dependent disease that is becoming increasingly prevalent, partly because the global population and average lifespan continue to increase. With only symptomatic treatments currently available, it presents a major threat to human health and is of great socioeconomic concern. Mitochondrial impairments ranging from mtDNA mutations, epigenetic modification of mtDNA, to oxidative stress, altered gene expression, impaired mitobiogenesis, altered protein turnover and changed organelle dynamics (fission and fusion) may drive the neurodegenerative process in AD. We discuss potential therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency and lead to the development of effective therapy (Fig. 2).

Fig. (2).

Fig. (2)

Schematic illustration of mitochondrial impairments observed in AD and the potential therapeutic approaches for each level of deficiency. The red arrow depicts the possible causes of mitochondrial impairment, while potential therapeutic approaches are depicted in green. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

ACKNOWLEDGEMENTS

Declared none.

LIST OF ABBREVIATIONS

αKGDH

α-Ketoglutarate Dehydrogenase

Amyloid Beta

ABCA

ATP-Binding Cassette Subfamily A

AD

Alzheimer’s Disease

APP

Amyloid Precursor Protein

BBB

Blood-Brain Barrier

BIN1

Bridging Integrator 1

CLU

Clusterin

CNS

Central Nervous System

COX

Cytochrome C Oxidase

CR

Calorie Restriction

CR1

Complement Component (3b/4b) Receptor 1

CYP46A1

Cytochrome P450 46A1

Drp1

Dynamin-related Protein 1

EE

Endurance Exercise

ER

Endoplasmic Reticulum

ERR

Estrogen-related Receptors

ESC

Embryonic Stem Cells

fAD

Early-onset Familial Alzheimer’s Disease

GWAS

Genome-wide Association Studies

HDAC

Histone Deacetylase

hTFAM

Human TFAM

iN

Induced Neuronal Cells

iPSCs

Induced Pluripotent Stem Cells

KD

Ketogenic Diet

MAMs

Mitochondrial Associated Membranes

Mfn

Mitofusin

MSCs

Mesenchymal Stem Cells

mtDNA

Mitochondrial DNA

MTHFD1

Methylenetetrahydrofolate Dehydrogenase 1

mtROS

Mitochondrial Reactive Oxygen Species

mtUPR

Mitochondrial Unfolded Protein Response

mtZFNs

Mitochondrially Targeted Zinc-finger Nucleases

NDD

Neurodegenerative Diseases

NMDA

N-Methyl-D-aspartate

NPCs

Neural Progenitor Cells

NPC1

Niemann-Pick Type C Protein 1

NRF

Nuclear Respiratory Factors

NSCs

Neural Stem Cells

OPA1

Optic Atrophy Protein 1

OXPHOS

Oxidative Phosphorylation

PD

Parkinson’s Disease

PDHC

Pyruvate Dehydrogenase Complex

PGC-1α

Peroxisome Proliferator-activated Receptor Gamma Coactivator 1-Alpha

PICALM

PI-Binding Clathrin Assembly Protein

PSEN1

Presenilin 1

PSEN2

Presenilin 2

rhTFAM

Recombinant-Human TFAM

ROI

Reactive Oxygen Intermediates

ROS

Reactive Oxygen Species

sAD

Late-onset Sporadic Alzheimer’s Disease

SAHA

Suberoylanilide Hydroxamic Acid

SORL1

Sortilin-Related Receptor-1

STARD1

Steroidogenic Acute Regulatory Protein 1

T2DM

Type 2 Diabetes Mellitus

TFAM

Mitochondrial Transcription Factor A

TREM2

Triggering Receptor Expressed on Myeloid Cells 2

TUDCA

Tauroursodeoxycholic Acid

UCP

Uncoupling Proteins

UDCA

Ursodeoxycholic Acid

UPS

Ubiquitin Proteasome System

AUTHOR'S CONTRIBUTION

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

This work was supported by the European Regional Development Fund- Project ENOCH 750 (No. CZ.02.1.01/0.0/0.0/16_019/0000868).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

  • 1.Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021;16(1):2. doi: 10.1186/s13024-021-00424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Tsai S.J., SJ Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(10):750–751. doi: 10.1097/JCMA.0000000000000151. [DOI] [PubMed] [Google Scholar]
  • 3.Gul A., Bakht J., Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(1):40–43. doi: 10.1016/j.jcma.2018.07.004. [DOI] [PubMed] [Google Scholar]
  • 4.Xing S.H., Zhu C.X., Zhang R., An L. Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid. Based Complement. Alternat. Med. 2014;2014:363985. doi: 10.1155/2014/363985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jarmolowicz A.I., Chen H.Y., Panegyres P.K. The patterns of inheritance in early-onset dementia: Alzheimer’s disease and frontotemporal dementia. Am. J. Alzheimers Dis. Other Demen. 2015;30(3):299–306. doi: 10.1177/1533317514545825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Campion D., Dumanchin C., Hannequin D., Dubois B., Belliard S., Puel M., Thomas-Anterion C., Michon A., Martin C., Charbonnier F., Raux G., Camuzat A., Penet C., Mesnage V., Martinez M., Clerget-Darpoux F., Brice A., Frebourg T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999;65(3):664–670. doi: 10.1086/302553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Li N., Liu K., Qiu Y., Ren Z., Dai R., Deng Y., Qing H. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front. Aging Neurosci. 2016;8:51. doi: 10.3389/fnagi.2016.00051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Behl T., Kaur I., Fratila O., Brata R., Bungau S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. Int. J. Mol. Sci. 2020;21(20):7443. doi: 10.3390/ijms21207443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hardy J.A., Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185. doi: 10.1126/science.1566067. [DOI] [PubMed] [Google Scholar]
  • 10.Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–1222. doi: 10.1016/j.cell.2012.02.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012;2(5):a006270. doi: 10.1101/cshperspect.a006270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Muirhead K.E., Borger E., Aitken L., Conway S.J., Gunn-Moore F.J. The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. Biochem. J. 2010;426(3):255–270. doi: 10.1042/BJ20091941. [DOI] [PubMed] [Google Scholar]
  • 13.Su B., Wang X., Nunomura A., Moreira P.I., Lee H.G., Perry G., Smith M.A., Zhu X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res. 2008;5(6):525–532. doi: 10.2174/156720508786898451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2019;5:899–905. doi: 10.1016/j.trci.2019.11.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dorszewska J., Prendecki M., Oczkowska A., Dezor M., Kozubski W. Molecular basis of familial and sporadic alzheimer’s disease. Curr. Alzheimer Res. 2016;13(9):952–963. doi: 10.2174/1567205013666160314150501. [DOI] [PubMed] [Google Scholar]
  • 16.Milind N., Preuss C., Haber A., Ananda G., Mukherjee S., John C., Shapley S., Logsdon B.A., Crane P.K., Carter G.W. Transcriptomic stratification of late-onset Alzheimer’s cases reveals novel genetic modifiers of disease pathology. PLoS Genet. 2020;16(6):e1008775. doi: 10.1371/journal.pgen.1008775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Allen M., Zou F., Chai H.S., Younkin C.S., Crook J., Pankratz V.S., Carrasquillo M.M., Rowley C.N., Nair A.A., Middha S., Maharjan S., Nguyen T., Ma L., Malphrus K.G., Palusak R., Lincoln S., Bisceglio G., Georgescu C., Schultz D., Rakhshan F., Kolbert C.P., Jen J., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Schellenberg G.D., Petersen R.C., Graff-Radford N.R., Dickson D.W., Younkin S.G., Ertekin-Taner N., Apostolova L.G., Arnold S.E., Baldwin C.T., Barber R., Barmada M.M., Beach T., Beecham G.W., Beekly D., Bennett D.A., Bigio E.H., Bird T.D., Blacker D., Boeve B.F., Bowen J.D., Boxer A., Burke J.R., Buros J., Buxbaum J.D., Cairns N.J., Cantwell L.B., Cao C., Carlson C.S., Carney R.M., Carroll S.L., Chui H.C., Clark D.G., Corneveaux J., Cotman C.W., Crane P.K., Cruchaga C., Cummings J.L., De Jager P.L., DeCarli C., DeKosky S.T., Demirci F.Y., Diaz-Arrastia R., Dick M., Dombroski B.A., Duara R., Ellis W.D., Evans D., Faber K.M., Fallon K.B., Farlow M.R., Ferris S., Foroud T.M., Frosch M., Galasko D.R., Gallins P.J., Ganguli M., Gearing M., Geschwind D.H., Ghetti B., Gilbert J.R., Gilman S., Giordani B., Glass J.D., Goate A.M., Green R.C., Growdon J.H., Hakonarson H., Hamilton R.L., Hardy J., Harrell L.E., Head E., Honig L.S., Huentelman M.J., Hulette C.M., Hyman B.T., Jarvik G.P., Jicha G.A., Jin L.W., Jun G., Kamboh M.I., Karlawish J., Karydas A., Kauwe J.S., Kaye J.A., Kennedy N., Kim R., Koo E.H., Kowall N.W., Kramer P., Kukull W.A., Lah J.J., Larson E.B., Levey A.I., Lieberman A.P., Lopez O.L., Lunetta K.L., Mack W.J., Marson D.C., Martin E.R., Martiniuk F., Mash D.C., Masliah E., McCormick W.C., McCurry S.M., McDavid A.N., McKee A.C., Mesulam M., Miller B.L., Miller C.A., Miller J.W., Montine T.J., Morris J.C., Myers A.J., Naj A.C., Nowotny P., Parisi J.E., Perl D.P., Peskind E., Poon W.W., Potter H., Quinn J.F., Raj A., Rajbhandary R.A., Raskind M., Reiman E.M., Reisberg B., Reitz C., Ringman J.M., Roberson E.D., Rogaeva E., Rosenberg R.N., Sano M., Saykin A.J., Schneider J.A., Schneider L.S., Seeley W., Shelanski M.L., Slifer M.A., Smith C.D., Sonnen J.A., Spina S., St George-Hyslop P., Stern R.A., Tanzi R.E., Trojanowski J.Q., Troncoso J.C., Tsuang D.W., Van Deerlin V.M., Vardarajan B.N., Vinters H.V., Vonsattel J.P., Wang L.S., Weintraub S., Welsh-Bohmer K.A., Williamson J., Woltjer R.L., Alzheimer’s Disease Genetics Consortium (ADGC) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012;79(3):221–228. doi: 10.1212/WNL.0b013e3182605801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zhu L., Zhong M., Elder G.A., Sano M., Holtzman D.M., Gandy S., Cardozo C., Haroutunian V., Robakis N.K., Cai D. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA. 2015;112(38):11965–11970. doi: 10.1073/pnas.1510011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.El Gaamouch F., Jing P., Xia J., Cai D. Alzheimer’s disease risk genes and lipid regulators. J. Alzheimers Dis. 2016;53(1):15–29. doi: 10.3233/JAD-160169. [DOI] [PubMed] [Google Scholar]
  • 20.De Strooper B., Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–615. doi: 10.1016/j.cell.2015.12.056. [DOI] [PubMed] [Google Scholar]
  • 21.Barber R.C. The genetics of Alzheimer’s disease. Scientifica (Cairo) 2012;2012:246210. doi: 10.6064/2012/246210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Munoz D.G., Feldman H. Causes of Alzheimer’s disease. CMAJ. 2000;162(1):65–72. [PMC free article] [PubMed] [Google Scholar]
  • 23.Jensen N.J., Wodschow H.Z., Nilsson M., Rungby J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int. J. Mol. Sci. 2020;21(22):8767. doi: 10.3390/ijms21228767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Golpich M., Amini E., Mohamed Z., Azman Ali R., Mohamed Ibrahim N., Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Calsolaro V., Edison P. Alterations in glucose metabolism in Alzheimer’s disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 2016;10(1):31–39. doi: 10.2174/1872214810666160615102809. [DOI] [PubMed] [Google Scholar]
  • 26.Chételat G., Desgranges B., de la Sayette V., Viader F., Eustache F., Baron J.C. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–1377. doi: 10.1212/01.WNL.0000055847.17752.E6. [DOI] [PubMed] [Google Scholar]
  • 27.Pagani M., Nobili F., Morbelli S., Arnaldi D., Giuliani A., Öberg J., Girtler N., Brugnolo A., Picco A., Bauckneht M., Piva R., Chincarini A., Sambuceti G., Jonsson C., De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur. J. Nucl. Med. Mol. Imaging. 2017;44(12):2042–2052. doi: 10.1007/s00259-017-3761-x. [DOI] [PubMed] [Google Scholar]
  • 28.Hu H., Tan C.C., Tan L., Yu J.T. A mitocentric view of Alzheimer’s disease. Mol. Neurobiol. 2017;54(8):6046–6060. doi: 10.1007/s12035-016-0117-7. [DOI] [PubMed] [Google Scholar]
  • 29.Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochimica et Biophysica Acta (BBA) 2015;1852(11):2442–55. doi: 10.1016/j.bbadis.2015.08.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.De Felice F.G., Ferreira S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262–2272. doi: 10.2337/db13-1954. [DOI] [PubMed] [Google Scholar]
  • 31.Spielman L.J., Little J.P., Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J. Neuroimmunol. 2014;273(1-2):8–21. doi: 10.1016/j.jneuroim.2014.06.004. [DOI] [PubMed] [Google Scholar]
  • 32.Willette A. Does metabolic syndrome impact cognition and emotion in Alzheimer’s disease? Eur. J. Neurol. 2016;23(2):237–238. doi: 10.1111/ene.12879. [DOI] [PubMed] [Google Scholar]
  • 33.Wang X.F., Lin X., Li D.Y., Zhou R., Greenbaum J., Chen Y.C., Zeng C.P., Peng L.P., Wu K.H., Ao Z.X., Lu J.M., Guo Y.F., Shen J., Deng H.W. Linking Alzheimer’s disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach. J. Neurol. Sci. 2017;380:262–272. doi: 10.1016/j.jns.2017.07.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Rios J.A., Cisternas P., Arrese M., Barja S., Inestrosa N.C. Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol. 2014;121:125–146. doi: 10.1016/j.pneurobio.2014.07.004. [DOI] [PubMed] [Google Scholar]
  • 35.Pistollato F., Sumalla Cano S., Elio I., Masias Vergara M., Giampieri F., Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev. 2016;74(10):624–634. doi: 10.1093/nutrit/nuw023. [DOI] [PubMed] [Google Scholar]
  • 36.Demetrius L.A., Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013;14(6):641–649. doi: 10.1007/s10522-013-9479-7. [DOI] [PubMed] [Google Scholar]
  • 37.Liu C.C., Liu C.C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Burke S.L., Maramaldi P., Cadet T., Kukull W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: dementia. Int. Psychogeriatr. 2016;28(9):1409–1424. doi: 10.1017/S1041610216000405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Saul D, Kosinsky R.L. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci. 2021;22:401. doi: 10.3390/ijms22010401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Brunet A., Berger S.L. Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(Suppl. 1):S17–S20. doi: 10.1093/gerona/glu042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Stoccoro A., Coppedè F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag. 2018;8(3):181–193. doi: 10.2217/nmt-2018-0004. [DOI] [PubMed] [Google Scholar]
  • 42.Qazi T.J., Quan Z., Mir A., Qing H. Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol. Neurobiol. 2018;55(2):1026–1044. doi: 10.1007/s12035-016-0357-6. [DOI] [PubMed] [Google Scholar]
  • 43.Misrani A., Tabassum S., Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021;13:617588. doi: 10.3389/fnagi.2021.617588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Hroudová J., Singh N., Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. Biomed Res Int. 2014;2014:175062. doi: 10.1155/2014/175062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Blanch M., Mosquera J.L., Ansoleaga B., Ferrer I., Barrachina M. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am. J. Pathol. 2016;186(2):385–397. doi: 10.1016/j.ajpath.2015.10.004. [DOI] [PubMed] [Google Scholar]
  • 46.Stoccoro A., Siciliano G., Migliore L., Coppedè F. Decreased methylation of the mitochondrial d-loop region in late-onset Alzheimer’s disease. J. Alzheimers Dis. 2017;59(2):559–564. doi: 10.3233/JAD-170139. [DOI] [PubMed] [Google Scholar]
  • 47.Mposhi A., Van der Wijst M.G., Faber K.N., Rots M.G. Regulation of mitochondrial gene expression, the epigenetic enigma. Front. Biosci. 2017;22:1099–1113. doi: 10.2741/4535. [DOI] [PubMed] [Google Scholar]
  • 48.Wang Y., Xu E., Musich P.R., Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 2019;25(7):816–824. doi: 10.1111/cns.13116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Reddy P.H. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10(4):291–315. doi: 10.1007/s12017-008-8044-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  • 51.Tobore T.O., TO On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol. Sci. 2019;40(8):1527–1540. doi: 10.1007/s10072-019-03863-x. [DOI] [PubMed] [Google Scholar]
  • 52.Chan D.C. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol Mech Dis. 2020;15:235–259. doi: 10.1146/annurev-pathmechdis-012419-032711. [DOI] [PubMed] [Google Scholar]
  • 53.Chan D.C. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 2006;22:79–99. doi: 10.1146/annurev.cellbio.22.010305.104638. [DOI] [PubMed] [Google Scholar]
  • 54.Vinten-Johansen J. Commentary: Mitochondria are more than just the cells’ powerhouse. J. Thorac. Cardiovasc. Surg. 2020;160(2):e33–e34. doi: 10.1016/j.jtcvs.2019.07.029. [DOI] [PubMed] [Google Scholar]
  • 55.Stefano G.B., Challenger S., Kream R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr. 2016;55(8):2339–2345. doi: 10.1007/s00394-016-1212-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Chen H., Chomyn A., Chan D.C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 2005;280(28):26185–26192. doi: 10.1074/jbc.M503062200. [DOI] [PubMed] [Google Scholar]
  • 57.McBride H.M., Neuspiel M., Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006;16(14):R551–R560. doi: 10.1016/j.cub.2006.06.054. [DOI] [PubMed] [Google Scholar]
  • 58.Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA. 2006;103(8):2653–2658. doi: 10.1073/pnas.0511154103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Burgstaller J.P., Kolbe T., Havlicek V., Hembach S., Poulton J., Piálek J., Steinborn R., Rülicke T., Brem G., Jones N.S., Johnston I.G. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat. Commun. 2018;9(1):2488. doi: 10.1038/s41467-018-04797-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Stewart J.B., Chinnery P.F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 2015;16(9):530–542. doi: 10.1038/nrg3966. [DOI] [PubMed] [Google Scholar]
  • 61.Chu C.T., CT Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol. Dis. 2019;122:23–34. doi: 10.1016/j.nbd.2018.07.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Yin F., Sancheti H., Patil I., Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med. 2016;100:108–122. doi: 10.1016/j.freeradbiomed.2016.04.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Santos R.X., Correia S.C., Wang X., Perry G., Smith M.A., Moreira P.I., Zhu X. Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int. J. Clin. Exp. Pathol. 2010;3(6):570–581. [PMC free article] [PubMed] [Google Scholar]
  • 64.Cunnane S., Nugent S., Roy M., Courchesne-Loyer A., Croteau E., Tremblay S., Castellano A., Pifferi F., Bocti C., Paquet N., Begdouri H., Bentourkia M., Turcotte E., Allard M., Barberger-Gateau P., Fulop T., Rapoport S.I. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27(1):3–20. doi: 10.1016/j.nut.2010.07.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Podlesniy P., Llorens F., Golanska E., Sikorska B., Liberski P., Zerr I., Trullas R. Mitochondrial DNA differentiates Alzheimer’s disease from Creutzfeldt-Jakob disease. Alzheimers Dement. 2016;12(5):546–555. doi: 10.1016/j.jalz.2015.12.011. [DOI] [PubMed] [Google Scholar]
  • 66.Trimmer P.A., Swerdlow R.H., Parks J.K., Keeney P., Bennett J.P., Jr, Miller S.W., Davis R.E., Parker W.D., Jr Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol. 2000;162(1):37–50. doi: 10.1006/exnr.2000.7333. [DOI] [PubMed] [Google Scholar]
  • 67.Pantiya P., Thonusin C., Chattipakorn N., Chattipakorn S.C. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Mitochondrion. 2020;55:14–47. doi: 10.1016/j.mito.2020.08.003. [DOI] [PubMed] [Google Scholar]
  • 68.Baloyannis S.J. Mitochondrial alterations in Alzheimer’s disease. J. Alzheimers Dis. 2006;9(2):119–126. doi: 10.3233/JAD-2006-9204. [DOI] [PubMed] [Google Scholar]
  • 69.Bonda D.J., Smith M.A., Perry G., Lee H.G., Wang X., Zhu X. The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr. Pharm. Des. 2011;17(31):3374–3380. doi: 10.2174/138161211798072562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta. 2014;1842(8):1219–1231. doi: 10.1016/j.bbadis.2013.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Podlesniy P., Figueiro-Silva J., Llado A., Antonell A., Sanchez-Valle R., Alcolea D., Lleo A., Molinuevo J.L., Serra N., Trullas R. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann. Neurol. 2013;74(5):655–668. doi: 10.1002/ana.23955. [DOI] [PubMed] [Google Scholar]
  • 72.Fiorito V., Chiabrando D., Tolosano E. Mitochondrial targeting in neurodegeneration: A heme perspective. Pharmaceuticals (Basel) 2018;11(3):11. doi: 10.3390/ph11030087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Wang H., Fang B., Peng B., Wang L., Xue Y., Bai H., Lu S., Voelcker N.H., Li L., Fu L., Huang W. Recent advances in chemical biology of mitochondria targeting. Front Chem. 2021;9:683220. doi: 10.3389/fchem.2021.683220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Chan D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi: 10.1016/j.cell.2006.06.010. [DOI] [PubMed] [Google Scholar]
  • 75.Lunnon K., Keohane A., Pidsley R., Newhouse S., Riddoch-Contreras J., Thubron E.B., Devall M., Soininen H., Kłoszewska I., Mecocci P., Tsolaki M., Vellas B., Schalkwyk L., Dobson R., Malik A.N., Powell J., Lovestone S., Hodges A., AddNeuroMed Consortium Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging. 2017;53:36–47. doi: 10.1016/j.neurobiolaging.2016.12.029. [DOI] [PubMed] [Google Scholar]
  • 76.Lopez Sanchez M.I.G., van Wijngaarden P., Trounce I.A. Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer’s disease. Br. J. Pharmacol. 2019;176(18):3464–3474. doi: 10.1111/bph.14554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Du H., Guo L., Yan S., Sosunov A.A., McKhann G.M., Yan S.S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 2010;107(43):18670–18675. doi: 10.1073/pnas.1006586107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Anandatheerthavarada H.K., Devi L. Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist. 2007;13(6):626–638. doi: 10.1177/1073858407303536. [DOI] [PubMed] [Google Scholar]
  • 79.Devi L., Prabhu B.M., Galati D.F., Avadhani N.G., Anandatheerthavarada H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 2006;26(35):9057–9068. doi: 10.1523/JNEUROSCI.1469-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Sorrentino V., Romani M., Mouchiroud L., Beck J.S., Zhang H., D’Amico D., Moullan N., Potenza F., Schmid A.W., Rietsch S., Counts S.E., Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187–193. doi: 10.1038/nature25143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Burté F., Carelli V., Chinnery P.F., Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015;11(1):11–24. doi: 10.1038/nrneurol.2014.228. [DOI] [PubMed] [Google Scholar]
  • 82.Cai Q., Tammineni P. Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 2016;10:24. doi: 10.3389/fncel.2016.00024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Onyango I.G., Dennis J., Khan S.M. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201–214. doi: 10.14336/AD.2015.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010;5(1):121–143. doi: 10.2217/rme.09.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Briston T., Hicks A.R. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem. Soc. Trans. 2018;46(4):829–842. doi: 10.1042/BST20180025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Sarasija S., Norman K.R. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants. 2018;7(9):7. doi: 10.3390/antiox7090111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Maijenburg M.W., van der Schoot C.E., Voermans C. Mesenchymal stromal cell migration: possibilities to improve cellular therapy. Stem Cells Dev. 2012;21(1):19–29. doi: 10.1089/scd.2011.0270. [DOI] [PubMed] [Google Scholar]
  • 88.Mendivil-Perez M., Soto-Mercado V., Guerra-Librero A., Fernandez-Gil B.I., Florido J., Shen Y.Q., Tejada M.A., Capilla-Gonzalez V., Rusanova I., Garcia-Verdugo J.M., Acuña-Castroviejo D., López L.C., Velez-Pardo C., Jimenez-Del-Rio M., Ferrer J.M., Escames G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 2017;63(2):63. doi: 10.1111/jpi.12415. [DOI] [PubMed] [Google Scholar]
  • 89.Zhang W., Gu G.J., Shen X., Zhang Q., Wang G.M., Wang P.J. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol. Aging. 2015;36(3):1282–1292. doi: 10.1016/j.neurobiolaging.2014.10.040. [DOI] [PubMed] [Google Scholar]
  • 90.Ahmadian-Moghadam H., Sadat-Shirazi M.S., Zarrindast M.R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol. Lett. 2020;42(7):1073–1101. doi: 10.1007/s10529-020-02886-1. [DOI] [PubMed] [Google Scholar]
  • 91.Newell C., Sabouny R., Hittel D.S., Shutt T.E., Khan A., Klein M.S., Shearer J. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front. Physiol. 2018;9:1572. doi: 10.3389/fphys.2018.01572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–555. doi: 10.1038/nature18928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Babenko V.A., Silachev D.N., Zorova L.D., Pevzner I.B., Khutornenko A.A., Plotnikov E.Y., Sukhikh G.T., Zorov D.B. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by Cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl. Med. 2015;4(9):1011–1020. doi: 10.5966/sctm.2015-0010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Sheehan J.P., Swerdlow R.H., Miller S.W., Davis R.E., Parks J.K., Parker W.D., Tuttle J.B. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 1997;17(12):4612–4622. doi: 10.1523/JNEUROSCI.17-12-04612.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Schon E.A., Shoubridge E.A., Moraes C.T. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1998;51(1):326–327. doi: 10.1212/WNL.51.1.326. [DOI] [PubMed] [Google Scholar]
  • 96.Chien L., Liang M.Z., Chang C.Y., Wang C., Chen L. Mitochondrial therapy promotes regeneration of injured hippocampal neurons. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(9 Pt B):3001–3012. doi: 10.1016/j.bbadis.2018.06.012. [DOI] [PubMed] [Google Scholar]
  • 97.Williams S.L., Mash D.C., Züchner S., Moraes C.T. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013;9(12):e1003990. doi: 10.1371/journal.pgen.1003990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Wallace D.C., Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013;5(11):a021220. doi: 10.1101/cshperspect.a021220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Wei W., Tuna S., Keogh M.J., Smith K.R., Aitman T.J., Beales P.L., Bennett D.L., Gale D.P., Bitner-Glindzicz M.A.K., Black G.C., Brennan P., Elliott P., Flinter F.A., Floto R.A., Houlden H., Irving M., Koziell A., Maher E.R., Markus H.S., Morrell N.W., Newman W.G., Roberts I., Sayer J.A., Smith K.G.C., Taylor J.C., Watkins H., Webster A.R., Wilkie A.O.M., Williamson C., Ashford S., Penkett C.J., Stirrups K.E., Rendon A., Ouwehand W.H., Bradley J.R., Raymond F.L., Caulfield M., Turro E., Chinnery P.F., NIHR BioResource–Rare Diseases. 100,000 Genomes Project–Rare Diseases Pilot Germline selection shapes human mitochondrial DNA diversity. Science. 2019;364(6442):364. doi: 10.1126/science.aau6520. [DOI] [PubMed] [Google Scholar]
  • 100.Filograna R., Mennuni M., Alsina D., Larsson N.G. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595(8):976–1002. doi: 10.1002/1873-3468.14021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Frahm T., Mohamed S.A., Bruse P., Gemünd C., Oehmichen M., Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech. Ageing Dev. 2005;126(11):1192–1200. doi: 10.1016/j.mad.2005.06.008. [DOI] [PubMed] [Google Scholar]
  • 102.Ross J.M., Stewart J.B., Hagström E., Brené S., Mourier A., Coppotelli G., Freyer C., Lagouge M., Hoffer B.J., Olson L., Larsson N.G. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501(7467):412–415. doi: 10.1038/nature12474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Grazina M., Pratas J., Silva F., Oliveira S., Santana I., Oliveira C. Genetic basis of Alzheimer’s dementia: role of mtDNA mutations. Genes Brain Behav. 2006;5(Suppl. 2):92–107. doi: 10.1111/j.1601-183X.2006.00225.x. [DOI] [PubMed] [Google Scholar]
  • 104.Rai P.K., Craven L., Hoogewijs K., Russell O.M., Lightowlers R.N. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem. 2018;62(3):455–465. doi: 10.1042/EBC20170113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Gammage P.A., Moraes C.T., Minczuk M. Mitochondrial genome engineering: The revolution may not be CRISPR-Ized. Trends Genet. 2018;34(2):101–110. doi: 10.1016/j.tig.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Pereira C.V., Bacman S.R., Arguello T., Zekonyte U., Williams S.L., Edgell D.R., Moraes C.T. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol. Med. 2018;10(9):e8084. doi: 10.15252/emmm.201708084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Peeva V., Blei D., Trombly G., Corsi S., Szukszto M.J., Rebelo-Guiomar P., Gammage P.A., Kudin A.P., Becker C., Altmüller J., Minczuk M., Zsurka G., Kunz W.S. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 2018;9(1):1727. doi: 10.1038/s41467-018-04131-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Viscomi C. Toward a therapy for mitochondrial disease. Biochem. Soc. Trans. 2016;44(5):1483–1490. doi: 10.1042/BST20160085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Mok B.Y., de Moraes M.H., Zeng J., Bosch D.E., Kotrys A.V., Raguram A., Hsu F., Radey M.C., Peterson S.B., Mootha V.K., Mougous J.D., Liu D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–637. doi: 10.1038/s41586-020-2477-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Viscomi C., Bottani E., Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim. Biophys. Acta. 2015;1847(6-7):544–557. doi: 10.1016/j.bbabio.2015.03.001. [DOI] [PubMed] [Google Scholar]
  • 111.Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006;116(3):615–622. doi: 10.1172/JCI27794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta. 2011;1813(7):1269–1278. doi: 10.1016/j.bbamcr.2010.09.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA. 1994;91(4):1309–1313. doi: 10.1073/pnas.91.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Picca A., Lezza A.M. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67–75. doi: 10.1016/j.mito.2015.10.001. [DOI] [PubMed] [Google Scholar]
  • 115.Oyewole A.O., Birch-Machin M.A. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–4771. doi: 10.1096/fj.15-275404. [DOI] [PubMed] [Google Scholar]
  • 116.Fang Y., Hu X.H., Jia Z.G., Xu M.H., Guo Z.Y., Gao F.H. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas. J. Dermatol. 2012;53(3):172–180. doi: 10.1111/j.1440-0960.2012.00912.x. [DOI] [PubMed] [Google Scholar]
  • 117.Piermarocchi S., Saviano S., Parisi V., Tedeschi M., Panozzo G., Scarpa G., Boschi G., Lo Giudice G., Carmis Study Group Carotenoids in Age-related Maculopathy Italian Study (CARMIS): two-year results of a randomized study. Eur. J. Ophthalmol. 2012;22(2):216–225. doi: 10.5301/ejo.5000069. [DOI] [PubMed] [Google Scholar]
  • 118.Hafez H.A., Kamel M.A., Osman M.Y., Osman H.M., Elblehi S.S., Mahmoud S.A. Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol. Cell. Biochem. 2021;476(5):2233–2249. doi: 10.1007/s11010-021-04079-4. [DOI] [PubMed] [Google Scholar]
  • 119.Santonocito D., Raciti G., Campisi A., Sposito G., Panico A., Siciliano E.A., Sarpietro M.G., Damiani E., Puglia C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel) 2021;11(2):391. doi: 10.3390/nano11020391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Wu W., Wang X., Xiang Q., Meng X., Peng Y., Du N., Liu Z., Sun Q., Wang C., Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5(1):158–166. doi: 10.1039/C3FO60400D. [DOI] [PubMed] [Google Scholar]
  • 121.Smith R.A., Murphy M.P. Mitochondria-targeted antioxidants as therapies. Discov. Med. 2011;11(57):106–114. [PubMed] [Google Scholar]
  • 122.Nissanka N., Moraes C.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020;21(3):e49612. doi: 10.15252/embr.201949612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Bacman S.R., Williams S.L., Pinto M., Peralta S., Moraes C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013;19(9):1111–1113. doi: 10.1038/nm.3261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Yang Y., Wu H., Kang X., Liang Y., Lan T., Li T., Tan T., Peng J., Zhang Q., An G., Liu Y., Yu Q., Ma Z., Lian Y., Soh B.S., Chen Q., Liu P., Chen Y., Sun X., Li R., Zhen X., Liu P., Yu Y., Li X., Fan Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell. 2018;9(3):283–297. doi: 10.1007/s13238-017-0499-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Zakirova E.G., Muzyka V.V., Mazunin I.O., Orishchenko K.E. Natural and artificial mechanisms of mitochondrial genome elimination. Life (Basel) 2021;11(2):76. doi: 10.3390/life11020076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Bacman S.R., Kauppila J.H.K., Pereira C.V., Nissanka N., Miranda M., Pinto M., Williams S.L., Larsson N.G., Stewart J.B., Moraes C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 2018;24(11):1696–1700. doi: 10.1038/s41591-018-0166-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Gammage P.A., Rorbach J., Vincent A.I., Rebar E.J., Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 2014;6(4):458–466. doi: 10.1002/emmm.201303672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Craven L., Alston C.L., Taylor R.W., Turnbull D.M. Recent advances in mitochondrial Disease. Annu. Rev. Genomics Hum. Genet. 2017;18:257–275. doi: 10.1146/annurev-genom-091416-035426. [DOI] [PubMed] [Google Scholar]
  • 129.Chang J.C., Wu S.L., Liu K.H., Chen Y.H., Chuang C.S., Cheng F.C., Su H.L., Wei Y.H., Kuo S.J., Liu C.S. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl. Res. 2016;170:40–56.e3. doi: 10.1016/j.trsl.2015.12.003. [DOI] [PubMed] [Google Scholar]
  • 130.Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012;13(12):878–890. doi: 10.1038/nrg3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Schon E.A., Przedborski S. Mitochondria: the next (neurode)generation. Neuron. 2011;70(6):1033–1053. doi: 10.1016/j.neuron.2011.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Corral-Debrinski M., Horton T., Lott M.T., Shoffner J.M., McKee A.C., Beal M.F., Graham B.H., Wallace D.C. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics. 1994;23(2):471–476. doi: 10.1006/geno.1994.1525. [DOI] [PubMed] [Google Scholar]
  • 133.Coskun P.E., Beal M.F., Wallace D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA. 2004;101(29):10726–10731. doi: 10.1073/pnas.0403649101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Chocron E.S., Munkácsy E., Pickering A.M. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865(2):285–297. doi: 10.1016/j.bbadis.2018.09.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Swerdlow R.H., Koppel S., Weidling I., Hayley C., Ji Y., Wilkins H.M. Mitochondria, cybrids, aging, and Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2017;146:259–302. doi: 10.1016/bs.pmbts.2016.12.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Lin M.T., Simon D.K., Ahn C.H., Kim L.M., Beal M.F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum. Mol. Genet. 2002;11(2):133–145. doi: 10.1093/hmg/11.2.133. [DOI] [PubMed] [Google Scholar]
  • 137.Duarte-Jurado A.P., Gopar-Cuevas Y., Saucedo-Cardenas O., Loera-Arias M.J., Montes-de-Oca-Luna R., Garcia-Garcia A., Rodriguez-Rocha H. Antioxidant therapeutics in Parkinson’s disease: Current challenges and opportunities. Antioxidants. 2021;10(3):453. doi: 10.3390/antiox10030453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Polyzos A.A., Wood N.I., Williams P., Wipf P., Morton A.J., McMurray C.T. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS One. 2018;13(4):e0194580. doi: 10.1371/journal.pone.0194580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Jin H., Kanthasamy A., Ghosh A., Anantharam V., Kalyanaraman B., Kanthasamy A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta. 2014;1842(8):1282–1294. doi: 10.1016/j.bbadis.2013.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Xun Z., Rivera-Sánchez S., Ayala-Peña S., Lim J., Budworth H., Skoda E.M., Robbins P.D., Niedernhofer L.J., Wipf P., McMurray C.T. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep. 2012;2(5):1137–1142. doi: 10.1016/j.celrep.2012.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Reiter R.J., Rosales-Corral S., Tan D.X., Jou M.J., Galano A., Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 2017;74(21):3863–3881. doi: 10.1007/s00018-017-2609-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Carter H.N., Chen C.C., Hood D.A. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2015;30(3):208–223. doi: 10.1152/physiol.00039.2014. [DOI] [PubMed] [Google Scholar]
  • 143.Flannery P.J., Trushina E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol. Cell. Neurosci. 2019;98:109–120. doi: 10.1016/j.mcn.2019.06.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360. [DOI] [PubMed] [Google Scholar]
  • 145.Reiter R., Tang L., Garcia J.J., Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60(25):2255–2271. doi: 10.1016/S0024-3205(97)00030-1. [DOI] [PubMed] [Google Scholar]
  • 146.Hock M.B., Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 2009;71:177–203. doi: 10.1146/annurev.physiol.010908.163119. [DOI] [PubMed] [Google Scholar]
  • 147.Ma K., Chen G., Li W., Kepp O., Zhu Y., Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 2020;8:467. doi: 10.3389/fcell.2020.00467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Gureev A.P., Shaforostova E.A., Popov V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019;10:435. doi: 10.3389/fgene.2019.00435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Mishra P., Chan D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016;212(4):379–387. doi: 10.1083/jcb.201511036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 2016;73(4):775–795. doi: 10.1007/s00018-015-2087-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Morabito R, Remigante A, Marino A. Melatonin protects band 3 protein in human erythrocytes against H2O2 induced oxidative stress. Molecules. 2019;24:2741. doi: 10.3390/molecules24152741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Reiter R.J., Tan D., Kim S.J., Manchester L.C., Qi W., Garcia J.J., Cabrera J.C., El-Sokkary G., Rouvier-Garay V. Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech. Ageing Dev. 1999;110(3):157–173. doi: 10.1016/S0047-6374(99)00058-5. [DOI] [PubMed] [Google Scholar]
  • 153.R., H., Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules. 2021;26:4015. doi: 10.3390/molecules26134105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Tan D.X., Manchester L.C., Burkhardt S., Sainz R.M., Mayo J.C., Kohen R., Shohami E., Huo Y.S., Hardeland R., Reiter R.J. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001;15(12):2294–2296. doi: 10.1096/fj.01-0309fje. [DOI] [PubMed] [Google Scholar]
  • 155.Tan D.X., Reiter R.J., Manchester L.C., Yan M.T., El-Sawi M., Sainz R.M., Mayo J.C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002;2(2):181–197. doi: 10.2174/1568026023394443. [DOI] [PubMed] [Google Scholar]
  • 156.Ressmeyer A.R., Mayo J.C., Zelosko V., Sáinz R.M., Tan D.X., Poeggeler B., Antolín I., Zsizsik B.K., Reiter R.J., Hardeland R. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8(4):205–213. doi: 10.1179/135100003225002709. [DOI] [PubMed] [Google Scholar]
  • 157.Butterfield D.A., Boyd-Kimball D. Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. 2004;14(4):426–432. doi: 10.1111/j.1750-3639.2004.tb00087.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.García S., Martín Giménez V.M., Mocayar Marón F.J., Reiter R.J., Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol. Histopathol. 2020;35(8):789–800. doi: 10.14670/HH-18-212. [DOI] [PubMed] [Google Scholar]
  • 159.Rosales-Corral S.A., Acuña-Castroviejo D., Coto-Montes A., Boga J.A., Manchester L.C., Fuentes-Broto L., Korkmaz A., Ma S., Tan D.X., Reiter R.J. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J. Pineal Res. 2012;52(2):167–202. doi: 10.1111/j.1600-079X.2011.00937.x. [DOI] [PubMed] [Google Scholar]
  • 160.Joshi A.U., Minhas P.S., Liddelow S.A., Haileselassie B., Andreasson K.I., Dorn G.W., II, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 2019;22(10):1635–1648. doi: 10.1038/s41593-019-0486-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Palmer C.S., Osellame L.D., Laine D., Koutsopoulos O.S., Frazier A.E., Ryan M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–573. doi: 10.1038/embor.2011.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Chen H., Chan D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 2009;18(R2):R169–R176. doi: 10.1093/hmg/ddp326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Knott A.B., Perkins G., Schwarzenbacher R., Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 2008;9(7):505–518. doi: 10.1038/nrn2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Jensen M.B., Jasper H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 2014;20(2):214–225. doi: 10.1016/j.cmet.2014.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Nargund A.M., Fiorese C.J., Pellegrino M.W., Deng P., Haynes C.M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell. 2015;58(1):123–133. doi: 10.1016/j.molcel.2015.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Tian Y., Merkwirth C., Dillin A. Mitochondrial UPR: a double-edged sword. Trends Cell Biol. 2016;26(8):563–565. doi: 10.1016/j.tcb.2016.06.006. [DOI] [PubMed] [Google Scholar]
  • 167.Pellegrino M.W., Nargund A.M., Haynes C.M. Signaling the mitochondrial unfolded protein response. Biochimica et Biophysica Acta. 2013;(1833):410–6. doi: 10.1016/j.bbamcr.2012.02.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Cassidy-Stone A., Chipuk J.E., Ingerman E., Song C., Yoo C., Kuwana T., Kurth M.J., Shaw J.T., Hinshaw J.E., Green D.R., Nunnari J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell. 2008;14(2):193–204. doi: 10.1016/j.devcel.2007.11.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Joshi A.U., Saw N.L., Shamloo M., Mochly-Rosen D. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget. 2017;9(5):6128–6143. doi: 10.18632/oncotarget.23640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Walsh J.G., Muruve D.A., Power C. Inflammasomes in the CNS. Nat. Rev. Neurosci. 2014;15(2):84–97. doi: 10.1038/nrn3638. [DOI] [PubMed] [Google Scholar]
  • 171.Liu Q., Zhang D., Hu D., Zhou X., Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol. 2018;103:115–124. doi: 10.1016/j.molimm.2018.09.010. [DOI] [PubMed] [Google Scholar]
  • 172.Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663. [DOI] [PubMed] [Google Scholar]
  • 173.Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12(3):222–230. doi: 10.1038/ni.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Bahat A., MacVicar T., Langer T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 2021;9:720490. doi: 10.3389/fcell.2021.720490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell Death Differ. 2013;153(2):348–361. doi: 10.1016/j.cell.2013.02.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Yan X., Wang B., Hu Y., Wang S., Zhang X. Abnormal mitochondrial quality control in neurodegenerative diseases. Front. Cell. Neurosci. 2020;14:138. doi: 10.3389/fncel.2020.00138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Bai H., Zhang Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol. 2021;12:701282. doi: 10.3389/fimmu.2021.701282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Wilkins H.M., Carl S.M., Weber S.G., Ramanujan S.A., Festoff B.W., Linseman D.A., Swerdlow R.H. Mitochondrial lysates induce inflammation and Alzheimer’s disease-relevant changes in microglial and neuronal cells. J. Alzheimers Dis. 2015;45(1):305–318. doi: 10.3233/JAD-142334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., Rentsendorj A., Vargas M., Guerrero C., Wang Y., Fitzgerald K.A., Underhill D.M., Town T., Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. doi: 10.1016/j.immuni.2012.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., Sadler J.J., Knepper-Adrian V., Han R., Qiao L., Eisenbarth S.C., Nauseef W.M., Cassel S.L., Sutterwala F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39(2):311–323. doi: 10.1016/j.immuni.2013.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Lonskaya I., Hebron M.L., Desforges N.M., Schachter J.B., Moussa C.E. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. (Berl.) 2014;92(4):373–386. doi: 10.1007/s00109-013-1112-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Friedman L.G., Qureshi Y.H., Yu W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):94–108. doi: 10.1007/s13311-014-0320-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–695. doi: 10.1016/j.cell.2011.07.030. [DOI] [PubMed] [Google Scholar]
  • 184.Gómez Morillas A., Besson V.C., Lerouet D. Microglia and neuroinflammation: What place for P2RY12? Int. J. Mol. Sci. 2021;22(4):1636. doi: 10.3390/ijms22041636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Inoue K. Microglial activation by purines and pyrimidines. Glia. 2002;40(2):156–163. doi: 10.1002/glia.10150. [DOI] [PubMed] [Google Scholar]
  • 186.Faroqi A.H., Lim M.J., Kee E.C., Lee J.H., Burgess J.D., Chen R., Di Virgilio F., Delenclos M., McLean P.J. In vivo detection of extracellular adenosine triphosphate in a mouse model of traumatic brain injury. J. Neurotrauma. 2021;38(5):655–664. doi: 10.1089/neu.2020.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8(6):752–758. doi: 10.1038/nn1472. [DOI] [PubMed] [Google Scholar]
  • 188.Moon S., Muniyappan S., Lee S.B., Lee B.H. Small-molecule inhibitors targeting proteasome-associated deubiquitinases. Int. J. Mol. Sci. 2021;22(12):6213. doi: 10.3390/ijms22126213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., Wilson S.M., King R.W., Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Myeku N., Clelland C.L., Emrani S., Kukushkin N.V., Yu W.H., Goldberg A.L., Duff K.E. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 2016;22(1):46–53. doi: 10.1038/nm.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Bluhm A., Schrempel S., von Hörsten S., Schulze A., Roßner S. Proteolytic α-synuclein cleavage in health and disease. Int. J. Mol. Sci. 2021;22(11):5450. doi: 10.3390/ijms22115450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Huang L., Ho P., Chen C.H. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett. 2007;581(25):4955–4959. doi: 10.1016/j.febslet.2007.09.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Trippier P.C., Zhao K.T., Fox S.G., Schiefer I.T., Benmohamed R., Moran J., Kirsch D.R., Morimoto R.I., Silverman R.B. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem. Neurosci. 2014;5(9):823–829. doi: 10.1021/cn500147v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Outeiro T.F., Putcha P., Tetzlaff J.E., Spoelgen R., Koker M., Carvalho F., Hyman B.T., McLean P.J. Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One. 2008;3(4):e1867. doi: 10.1371/journal.pone.0001867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Sahu I., Glickman M.H. Structural insights into substrate recognition and processing by the 20S proteasome. Biomolecules. 2021;11(2):148. doi: 10.3390/biom11020148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Leestemaker Y., de Jong A., Witting K.F., Penning R., Schuurman K., Rodenko B., Zaal E.A., van de Kooij B., Laufer S., Heck A.J.R., Borst J., Scheper W., Berkers C.R., Ovaa H. Proteasome activation by small molecules. Cell Chem. Biol. 2017;24(6):725–736.e7. doi: 10.1016/j.chembiol.2017.05.010. [DOI] [PubMed] [Google Scholar]
  • 197.Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018;26(10):2700–2707. doi: 10.1016/j.bmc.2017.06.052. [DOI] [PubMed] [Google Scholar]
  • 198.Gillette T.G., Kumar B., Thompson D., Slaughter C.A., DeMartino G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008;283(46):31813–31822. doi: 10.1074/jbc.M805935200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Dal Vechio F.H., Cerqueira F., Augusto O., Lopes R., Demasi M. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic. Biol. Med. 2014;67:304–313. doi: 10.1016/j.freeradbiomed.2013.11.017. [DOI] [PubMed] [Google Scholar]
  • 200.Villavicencio Tejo F., Quintanilla R.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants. 2021;10(7):1069. doi: 10.3390/antiox10071069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Kwak M.K., Wakabayashi N., Greenlaw J.L., Yamamoto M., Kensler T.W. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 2003;23(23):8786–8794. doi: 10.1128/MCB.23.23.8786-8794.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Ryu D., Mouchiroud L., Andreux P.A., Katsyuba E., Moullan N., Nicolet-Dit-Félix A.A., Williams E.G., Jha P., Lo Sasso G., Huzard D., Aebischer P., Sandi C., Rinsch C., Auwerx J. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016;22(8):879–888. doi: 10.1038/nm.4132. [DOI] [PubMed] [Google Scholar]
  • 203.Pietrocola F., Lachkar S., Enot D.P., Niso-Santano M., Bravo-San Pedro J.M., Sica V., Izzo V., Maiuri M.C., Madeo F., Mariño G., Kroemer G. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2015;22(3):509–516. doi: 10.1038/cdd.2014.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Qi Y., Qiu Q., Gu X., Tian Y., Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci. Rep. 2016;6:24700. doi: 10.1038/srep24700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., Tong M., Ruckenstuhl C., Dammbrueck C., Gross A.S., Herbst V., Magnes C., Trausinger G., Narath S., Meinitzer A., Hu Z., Kirsch A., Eller K., Carmona-Gutierrez D., Büttner S., Pietrocola F., Knittelfelder O., Schrepfer E., Rockenfeller P., Simonini C., Rahn A., Horsch M., Moreth K., Beckers J., Fuchs H., Gailus-Durner V., Neff F., Janik D., Rathkolb B., Rozman J., de Angelis M.H., Moustafa T., Haemmerle G., Mayr M., Willeit P., von Frieling-Salewsky M., Pieske B., Scorrano L., Pieber T., Pechlaner R., Willeit J., Sigrist S.J., Linke W.A., Mühlfeld C., Sadoshima J., Dengjel J., Kiechl S., Kroemer G., Sedej S., Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016;22(12):1428–1438. doi: 10.1038/nm.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Gupta V.K., Scheunemann L., Eisenberg T., Mertel S., Bhukel A., Koemans T.S., Kramer J.M., Liu K.S., Schroeder S., Stunnenberg H.G., Sinner F., Magnes C., Pieber T.R., Dipt S., Fiala A., Schenck A., Schwaerzel M., Madeo F., Sigrist S.J. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 2013;16(10):1453–1460. doi: 10.1038/nn.3512. [DOI] [PubMed] [Google Scholar]
  • 207.Chondrogianni N., Voutetakis K., Kapetanou M., Delitsikou V., Papaevgeniou N., Sakellari M., Lefaki M., Filippopoulou K., Gonos E.S. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 2015;23(Pt A):37–55. doi: 10.1016/j.arr.2014.12.003. [DOI] [PubMed] [Google Scholar]
  • 208.Losón O.C., Song Z., Chen H., Chan D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell. 2013;24(5):659–667. doi: 10.1091/mbc.e12-10-0721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Palmer C.S., Elgass K.D., Parton R.G., Osellame L.D., Stojanovski D., Ryan M.T. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 2013;288(38):27584–27593. doi: 10.1074/jbc.M113.479873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Zhang L., Zhang S., Maezawa I., Trushin S., Minhas P., Pinto M., Jin L.W., Prasain K., Nguyen T.D., Yamazaki Y., Kanekiyo T., Bu G., Gateno B., Chang K.O., Nath K.A., Nemutlu E., Dzeja P., Pang Y.P., Hua D.H., Trushina E. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease. EBioMedicine. 2015;2(4):294–305. doi: 10.1016/j.ebiom.2015.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Lin L., Huang Q.X., Yang S.S., Chu J., Wang J.Z., Tian Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci. 2013;14(7):14575–14593. doi: 10.3390/ijms140714575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Espino J., Bejarano I., Redondo P.C., Rosado J.A., Barriga C., Reiter R.J., Pariente J.A., Rodríguez A.B. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J. Membr. Biol. 2010;233(1-3):105–118. doi: 10.1007/s00232-010-9230-0. [DOI] [PubMed] [Google Scholar]
  • 213.Liu P., Smith B.R., Montonye M.L., Kemper L.J., Leinonen-Wright K., Nelson K.M., Higgins L., Guerrero C.R., Markowski T.W., Zhao X., Petersen A.J., Knopman D.S., Petersen R.C., Ashe K.H. A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci. Rep. 2020;10(1):3869. doi: 10.1038/s41598-020-60777-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Shimohama S., Tanino H., Fujimoto S. Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem. Biophys. Res. Commun. 1999;256(2):381–384. doi: 10.1006/bbrc.1999.0344. [DOI] [PubMed] [Google Scholar]
  • 215.Louneva N., Cohen J.W., Han L.Y., Talbot K., Wilson R.S., Bennett D.A., Trojanowski J.Q., Arnold S.E. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 2008;173(5):1488–1495. doi: 10.2353/ajpath.2008.080434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Kim W., Ma L., Lomoio S., Willen R., Lombardo S., Dong J., Haydon P.G., Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol. Neurodegener. 2018;13(1):6. doi: 10.1186/s13024-018-0239-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Hossain M.F., Uddin M.S., Uddin G.M.S., Sumsuzzman D.M., Islam M.S., Barreto G.E., Mathew B., Ashraf G.M. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol. 2019;56(12):8255–8276. doi: 10.1007/s12035-019-01660-3. [DOI] [PubMed] [Google Scholar]
  • 218.Tesco G., Koh Y.H., Kang E.L., Cameron A.N., Das S., Sena-Esteves M., Hiltunen M., Yang S.H., Zhong Z., Shen Y., Simpkins J.W., Tanzi R.E. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007;54(5):721–737. doi: 10.1016/j.neuron.2007.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Ling X., Zhang L.M., Lu S.D., Li X.J., Sun F.Y. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Chung Kuo Yao Li Hsueh Pao. 1999;20(5):409–414. [PubMed] [Google Scholar]
  • 220.Tadokoro K., Ohta Y., Inufusa H., Loon A.F.N., Abe K. Prevention of cognitive decline in Alzheimer’s disease by novel antioxidative supplements. Int. J. Mol. Sci. 2020;21(6):1974. doi: 10.3390/ijms21061974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Poeggeler B., Miravalle L., Zagorski M.G., Wisniewski T., Chyan Y.J., Zhang Y., Shao H., Bryant-Thomas T., Vidal R., Frangione B., Ghiso J., Pappolla M.A. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry. 2001;40(49):14995–15001. doi: 10.1021/bi0114269. [DOI] [PubMed] [Google Scholar]
  • 222.Feng Z., Zhang J.T. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic. Biol. Med. 2004;37(11):1790–1801. doi: 10.1016/j.freeradbiomed.2004.08.023. [DOI] [PubMed] [Google Scholar]
  • 223.Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol. Res. 2018;134:223–237. doi: 10.1016/j.phrs.2018.06.011. [DOI] [PubMed] [Google Scholar]
  • 224.Li Y., Zhang J., Wan J., Liu A., Sun J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother. 2020;132:110887. doi: 10.1016/j.biopha.2020.110887. [DOI] [PubMed] [Google Scholar]
  • 225.Feng Z., Qin C., Chang Y., Zhang J.T. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic. Biol. Med. 2006;40(1):101–109. doi: 10.1016/j.freeradbiomed.2005.08.014. [DOI] [PubMed] [Google Scholar]
  • 226.Pappolla M.A., Chyan Y.J., Poeggeler B., Frangione B., Wilson G., Ghiso J., Reiter R.J. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J. Neural Transm. (Vienna) 2000;107(2):203–231. doi: 10.1007/s007020050018. [DOI] [PubMed] [Google Scholar]
  • 227.Matsubara E., Bryant-Thomas T., Pacheco Quinto J., Henry T.L., Poeggeler B., Herbert D., Cruz-Sanchez F., Chyan Y.J., Smith M.A., Perry G., Shoji M., Abe K., Leone A., Grundke-Ikbal I., Wilson G.L., Ghiso J., Williams C., Refolo L.M., Pappolla M.A., Chain D.G., Neria E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 2003;85(5):1101–1108. doi: 10.1046/j.1471-4159.2003.01654.x. [DOI] [PubMed] [Google Scholar]
  • 228.Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–166. doi: 10.1016/j.tins.2017.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Martín-Maestro P., Gargini R., Perry G., Avila J., García-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum. Mol. Genet. 2016;25(4):792–806. doi: 10.1093/hmg/ddv616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Wang Y., Liu N., Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019;25(7):859–875. doi: 10.1111/cns.13140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Devine M.J., Kittler J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19(2):63–80. doi: 10.1038/nrn.2017.170. [DOI] [PubMed] [Google Scholar]
  • 233.Springer M.Z., Macleod K.F. In Brief: Mitophagy: mechanisms and role in human disease. J. Pathol. 2016;240(3):253–255. doi: 10.1002/path.4774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Kann O., Kovács R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007;292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006. [DOI] [PubMed] [Google Scholar]
  • 235.Brini M., Calì T., Ottolini D., Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 2014;71(15):2787–2814. doi: 10.1007/s00018-013-1550-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Depp C., Bas-Orth C., Schroeder L., Hellwig A., Bading H. Synaptic activity protects neurons against calciummediated oxidation and contraction of mitochondria during excitotoxicity. Antioxid. Redox Signal. 2018;29(12):1109–1124. doi: 10.1089/ars.2017.7092. [DOI] [PubMed] [Google Scholar]
  • 237.Silzer T.K., Phillips N.R. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria. Mitochondrion. 2018;43:16–24. doi: 10.1016/j.mito.2018.04.004. [DOI] [PubMed] [Google Scholar]
  • 238.Kubli D.A., Gustafsson Å.B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 2012;111(9):1208–1221. doi: 10.1161/CIRCRESAHA.112.265819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Song Y.M., Lee Y.H., Kim J.W., Ham D.S., Kang E.S., Cha B.S., Lee H.C., Lee B.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2015;11(1):46–59. doi: 10.4161/15548627.2014.984271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.East D.A., Fagiani F., Crosby J., Georgakopoulos N.D., Bertrand H., Schaap M., Fowkes A., Wells G., Campanella M. PMI: a ΔΨm independent pharmacological regulator of mitophagy. Chem. Biol. 2014;21(11):1585–1596. doi: 10.1016/j.chembiol.2014.09.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Yogalingam G., Hwang S., Ferreira J.C., Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J. Biol. Chem. 2013;288(26):18947–18960. doi: 10.1074/jbc.M113.466870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Ross J.M., Olson L., Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int. J. Mol. Sci. 2015;16(8):19458–19476. doi: 10.3390/ijms160819458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Riederer B.M., Leuba G., Vernay A., Riederer I.M. The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp. Biol. Med. (Maywood) 2011;236(3):268–276. doi: 10.1258/ebm.2010.010327. [DOI] [PubMed] [Google Scholar]
  • 244.Bonet-Costa V., Pomatto L.C., Davies K.J. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 2016;25(16):886–901. doi: 10.1089/ars.2016.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Dantuma N.P., Bott L.C. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014;7:70. doi: 10.3389/fnmol.2014.00070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 2014;171(8):2029–2050. doi: 10.1111/bph.12461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Wu J., Zhang M., Li H., Sun X., Hao S., Ji M., Yang J., Li K. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav. Brain Res. 2016;305:115–121. doi: 10.1016/j.bbr.2016.02.036. [DOI] [PubMed] [Google Scholar]
  • 248.Calkins M.J., Manczak M., Reddy P.H. Mitochondria-targeted antiox- idant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel) 2012;5(10):1103–1119. doi: 10.3390/ph5101103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Colell A., García-Ruiz C., Lluis J.M., Coll O., Mari M., Fernández-Checa J.C. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem. 2003;278(36):33928–33935. doi: 10.1074/jbc.M210943200. [DOI] [PubMed] [Google Scholar]
  • 250.Kennedy B.E., Madreiter C.T., Vishnu N., Malli R., Graier W.F., Karten B. Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J. Biol. Chem. 2014;289(23):16278–16289. doi: 10.1074/jbc.M114.559914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Martin L.A., Kennedy B.E., Karten B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J. Bioenerg. Biomembr. 2016;48(2):137–151. doi: 10.1007/s10863-014-9592-6. [DOI] [PubMed] [Google Scholar]
  • 252.Yu W., Gong J.S., Ko M., Garver W.S., Yanagisawa K., Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J. Biol. Chem. 2005;280(12):11731–11739. doi: 10.1074/jbc.M412898200. [DOI] [PubMed] [Google Scholar]
  • 253.Echegoyen S., Oliva E.B., Sepulveda J., Díaz-Zagoya J.C., Espinosa-García M.T., Pardo J.P., Martínez F. Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology. Biochem. J. 1993;289(Pt 3):703–708. doi: 10.1042/bj2890703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Marí M., Caballero F., Colell A., Morales A., Caballeria J., Fernandez A., Enrich C., Fernandez-Checa J.C., García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006. [DOI] [PubMed] [Google Scholar]
  • 255.Garcia-Ruiz C., Mari M., Colell A., Morales A., Caballero F., Montero J., Terrones O., Basañez G., Fernández-Checa J.C. Mitochondrial cholesterol in health and disease. Histol. Histopathol. 2009;24(1):117–132. doi: 10.14670/HH-24.117. [DOI] [PubMed] [Google Scholar]
  • 256.Aufschnaiter A., Kohler V., Diessl J., Peselj C., Carmona-Gutierrez D., Keller W., Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res. 2017;367(1):125–140. doi: 10.1007/s00441-016-2463-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Barbero-Camps E., Fernández A., Baulies A., Martinez L., Fernández-Checa J.C., Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am. J. Pathol. 2014;184(7):2066–2081. doi: 10.1016/j.ajpath.2014.03.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Barbero-Camps E., Fernández A., Martínez L., Fernández-Checa J.C., Colell A. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum. Mol. Genet. 2013;22(17):3460–3476. doi: 10.1093/hmg/ddt201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Rosales-Corral S.A., Lopez-Armas G., Cruz-Ramos J., Melnikov V.G., Tan D.X., Manchester L.C., Munoz R., Reiter R.J. Alterations in lipid levels of mitochondrial membranes induced by amyloid-β: A protective role of melatonin. Int. J. Alzheimers Dis. 2012;2012:459806. doi: 10.1155/2012/459806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Kågedal K., Kim W.S., Appelqvist H., Chan S., Cheng D., Agholme L., Barnham K., McCann H., Halliday G., Garner B. Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801(8):831–838. doi: 10.1016/j.bbalip.2010.05.005. [DOI] [PubMed] [Google Scholar]
  • 261.Arenas F., Castro F., Nuñez S., Gay G., Garcia-Ruiz C., Fernandez-Checa J.C. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer’s disease and Down syndrome. Aging (Albany NY) 2020;12(1):571–592. doi: 10.18632/aging.102641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Webber K.M., Stocco D.M., Casadesus G., Bowen R.L., Atwood C.S., Previll L.A., Harris P.L., Zhu X., Perry G., Smith M.A. Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Mol. Neurodegener. 2006;1:14. doi: 10.1186/1750-1326-1-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Singhal A., Szente L., Hildreth J.E.K., Song B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis. 2018;9(10):1019. doi: 10.1038/s41419-018-1056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Yalcin A., Soddu E., Turunc Bayrakdar E., Uyanikgil Y., Kanit L., Armagan G., Rassu G., Gavini E., Giunchedi P. Neuroprotective effects of engineered polymeric nasal microspheres containing hydroxypropyl-β-cyclodextrin on β-amyloid (1-42)-induced toxicity. J. Pharm. Sci. 2016;105(8):2372–2380. doi: 10.1016/j.xphs.2016.05.017. [DOI] [PubMed] [Google Scholar]
  • 265.Djelti F., Braudeau J., Hudry E., Dhenain M., Varin J., Bièche I., Marquer C., Chali F., Ayciriex S., Auzeil N., Alves S., Langui D., Potier M.C., Laprevote O., Vidaud M., Duyckaerts C., Miles R., Aubourg P., Cartier N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain. 2015;138(Pt 8):2383–2398. doi: 10.1093/brain/awv166. [DOI] [PubMed] [Google Scholar]
  • 266.Paumgartner G., Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology. 2002;36(3):525–531. doi: 10.1053/jhep.2002.36088. [DOI] [PubMed] [Google Scholar]
  • 267.Zangerolamo L., Vettorazzi J.F., Rosa L.R.O., Carneiro E.M., Barbosa H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021;272:119252. doi: 10.1016/j.lfs.2021.119252. [DOI] [PubMed] [Google Scholar]
  • 268.Nũnes A.F., Amaral J.D., Lo A.C., Fonseca M.B., Viana R.J., Callaerts-Vegh Z., D’Hooge R., Rodrigues C.M. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol. 2012;45(3):440–454. doi: 10.1007/s12035-012-8256-y. [DOI] [PubMed] [Google Scholar]
  • 269.Lo A.C., Callaerts-Vegh Z., Nunes A.F., Rodrigues C.M., D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol. Dis. 2013;50:21–29. doi: 10.1016/j.nbd.2012.09.003. [DOI] [PubMed] [Google Scholar]
  • 270.Viana R.J., Nunes A.F., Castro R.E., Ramalho R.M., Meyerson J., Fossati S., Ghiso J., Rostagno A., Rodrigues C.M. Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell. Mol. Life Sci. 2009;66(6):1094–1104. doi: 10.1007/s00018-009-8746-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Ramalho R.M., Borralho P.M., Castro R.E., Solá S., Steer C.J., Rodrigues C.M. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J. Neurochem. 2006;98(5):1610–1618. doi: 10.1111/j.1471-4159.2006.04007.x. [DOI] [PubMed] [Google Scholar]
  • 272.Dionísio P.A., Amaral J.D., Ribeiro M.F., Lo A.C., D’Hooge R., Rodrigues C.M. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol. Aging. 2015;36(1):228–240. doi: 10.1016/j.neurobiolaging.2014.08.034. [DOI] [PubMed] [Google Scholar]
  • 273.Bell S.M., Barnes K., Clemmens H., Al-Rafiah A.R., Al-Ofi E.A., Leech V., Bandmann O., Shaw P.J., Blackburn D.J., Ferraiuolo L., Mortiboys H. Ursodeoxycholic acid improves mitochondrial function and redistributes Drp1 in fibroblasts from patients with either sporadic or familial Alzheimer’s disease. J. Mol. Biol. 2018;430(21):3942–3953. doi: 10.1016/j.jmb.2018.08.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Delgado-Morales R., Agís-Balboa R.C., Esteller M., Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics. 2017;9:67. doi: 10.1186/s13148-017-0365-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Griñán-Ferré C., Sarroca S., Ivanova A., Puigoriol-Illamola D., Aguado F., Camins A., Sanfeliu C., Pallàs M. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY) 2016;8(4):664–684. doi: 10.18632/aging.100906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Yang J., He J., Ismail M., Tweeten S., Zeng F., Gao L., Ballinger S., Young M., Prabhu S.D., Rowe G.C., Zhang J., Zhou L., Xie M. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2019;130:36–48. doi: 10.1016/j.yjmcc.2019.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Maes T., et al. First-in-human phase I results show safety, tolerability and brain penetrance of ORY-2001, an epigenetic drug targeting LSD1 and MAO-B. Alzheimers Dement. 2017;13:P1573–P1574. doi: 10.1016/j.jalz.2017.07.739. [DOI] [Google Scholar]
  • 278.Colman R.J., Beasley T.M., Kemnitz J.W., Johnson S.C., Weindruch R., Anderson R.M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 2014;5:3557. doi: 10.1038/ncomms4557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Cerqueira F.M., Cunha F.M., Laurindo F.R., Kowaltowski A.J. Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO•-mediated mechanism: impact on neuronal survival. Free Radic. Biol. Med. 2012;52(7):1236–1241. doi: 10.1016/j.freeradbiomed.2012.01.011. [DOI] [PubMed] [Google Scholar]
  • 280.Onyango I.G., Lu J., Rodova M., Lezi E., Crafter A.B., Swerdlow R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys. Acta. 2010;1802(1):228–234. doi: 10.1016/j.bbadis.2009.07.014. [DOI] [PubMed] [Google Scholar]
  • 281.Bhatti G.K., Reddy A.P., Reddy P.H., Bhatti J.S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 2020;11:369. doi: 10.3389/fnagi.2019.00369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Luo H., Chiang H.H., Louw M., Susanto A., Chen D. Nutrient sensing and the oxidative stress response. Trends Endocrinol. Metab. 2017;28(6):449–460. doi: 10.1016/j.tem.2017.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Menshikova E.V., Ritov V.B., Dube J.J., Amati F., Stefanovic-Racic M., Toledo F.G.S., Coen P.M., Goodpaster B.H. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 2017;73(1):81–87. doi: 10.1093/gerona/glw328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Barja G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 2002;1(3):397–411. doi: 10.1016/S1568-1637(02)00008-9. [DOI] [PubMed] [Google Scholar]
  • 285.Civitarese A.E., Carling S., Heilbronn L.K., Hulver M.H., Ukropcova B., Deutsch W.A., Smith S.R., Ravussin E., CALERIE Pennington Team Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. doi: 10.1371/journal.pmed.0040076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Mercken E.M., Crosby S.D., Lamming D.W., JeBailey L., Krzysik-Walker S., Villareal D.T., Capri M., Franceschi C., Zhang Y., Becker K., Sabatini D.M., de Cabo R., Fontana L. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12(4):645–651. doi: 10.1111/acel.12088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Amigo I., Menezes-Filho S.L., Luévano-Martínez L.A., Chausse B., Kowaltowski A.J. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell. 2017;16(1):73–81. doi: 10.1111/acel.12527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Chen W.W., Zhang X., Huang W.J. Role of physical exercise in Alzheimer’s disease. Biomed. Rep. 2016;4(4):403–407. doi: 10.3892/br.2016.607. [Review]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Paillard T., Rolland Y., de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: A narrative review. J. Clin. Neurol. 2015;11(3):212–219. doi: 10.3988/jcn.2015.11.3.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Koo J.H., Kang E-B., Kwon I-S., Jang J.C., Kim E-J., Lee Y., Cho I-H., Cho J-Y. Endurance exercise confers neuroprotective mitochondrial phenotypes in the brain of Alzheimer’s disease mice. FASEB J. 2015;29(S1):1055.35. doi: 10.1096/fasebj.29.1_supplement.1055.35. [DOI] [Google Scholar]
  • 291.Steiner J.L., Murphy E.A., McClellan J.L., Carmichael M.D., Davis J.M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. 2011;111(4):1066–1071. doi: 10.1152/japplphysiol.00343.2011. [DOI] [PubMed] [Google Scholar]
  • 292.Radak Z., Suzuki K., Higuchi M., Balogh L., Boldogh I., Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016;98:187–196. doi: 10.1016/j.freeradbiomed.2016.01.024. [DOI] [PubMed] [Google Scholar]
  • 293.Intlekofer K.A., Cotman C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 2013;57:47–55. doi: 10.1016/j.nbd.2012.06.011. [DOI] [PubMed] [Google Scholar]
  • 294.Andrews Z.B., Diano S., Horvath T.L. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 2005;6(11):829–840. doi: 10.1038/nrn1767. [DOI] [PubMed] [Google Scholar]
  • 295.Wang R., Holsinger R.M.D. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 2018;48:109–121. doi: 10.1016/j.arr.2018.10.002. [DOI] [PubMed] [Google Scholar]
  • 296.Vaynman S., Ying Z., Wu A., Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–1234. doi: 10.1016/j.neuroscience.2006.01.062. [DOI] [PubMed] [Google Scholar]
  • 297.Gusdon A.M., Callio J., Distefano G., O’Doherty R.M., Goodpaster B.H., Coen P.M., Chu C.T. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp. Gerontol. 2017;90:1–13. doi: 10.1016/j.exger.2017.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Wang Z., Guo Y., Myers K.G., Heintz R., Peng Y.H., Maarek J.M., Holschneider D.P. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats. Neurobiol. Aging. 2015;36(1):536–544. doi: 10.1016/j.neurobiolaging.2014.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Braga R.R., Crisol B.M., Brícola R.S., Sant’ana M.R., Nakandakari S.C.B.R., Costa S.O., Prada P.O., da Silva A.S.R., Moura L.P., Pauli J.R., Cintra D.E., Ropelle E.R. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPRmt in the hypothalamus of mice. Sci. Rep. 2021;11(1):3813. doi: 10.1038/s41598-021-82352-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Taylor M.K., Swerdlow R.H., Burns J.M., Sullivan D.K. An experimental ketogenic diet for Alzheimer disease was nutritionally dense and rich in vegetables and avocado. Curr. Dev. Nutr. 2019;3(4):nzz003. doi: 10.1093/cdn/nzz003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Cahill G.F.J., Jr, Herrera M.G., Morgan A.P., Soeldner J.S., Steinke J., Levy P.L., Reichard G.A., Jr, Kipnis D.M. Hormone-fuel interrelationships during fasting. J. Clin. Invest. 1966;45(11):1751–1769. doi: 10.1172/JCI105481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Yang H., Shan W., Zhu F., Wu J., Wang Q. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Front. Neurol. 2019;10:585. doi: 10.3389/fneur.2019.00585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 303.Gasior M., Rogawski M.A., Hartman A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 2006;17(5-6):431–439. doi: 10.1097/00008877-200609000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.McNally M.A., Hartman A.L. Ketone bodies in epilepsy. J. Neurochem. 2012;121(1):28–35. doi: 10.1111/j.1471-4159.2012.07670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.McDonald T.J.W., Cervenka M.C. Ketogenic diets for adult neurological disorders. Neurotherapeutics. 2018;15(4):1018–1031. doi: 10.1007/s13311-018-0666-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Van der Auwera I., Wera S., Van Leuven F., Henderson S.T. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr. Metab. (Lond.) 2005;2:28. doi: 10.1186/1743-7075-2-28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 307.Hughes S.D., Kanabus M., Anderson G., Hargreaves I.P., Rutherford T., O’Donnell M., Cross J.H., Rahman S., Eaton S., Heales S.J. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem. 2014;129(3):426–433. doi: 10.1111/jnc.12646. [DOI] [PubMed] [Google Scholar]
  • 308.Rho J.M., Rogawski M.A. The ketogenic diet: stoking the powerhouse of the cell. Epilepsy Curr. 2007;7(2):58–60. doi: 10.1111/j.1535-7511.2007.00170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 309.Yin J.X., Maalouf M., Han P., Zhao M., Gao M., Dharshaun T., Ryan C., Whitelegge J., Wu J., Eisenberg D., Reiman E.M., Schweizer F.E., Shi J. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging. 2016;39:25–37. doi: 10.1016/j.neurobiolaging.2015.11.018. [DOI] [PubMed] [Google Scholar]
  • 310.Swerdlow R.H. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid. Redox Signal. 2012;16(12):1434–1455. doi: 10.1089/ars.2011.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 311.Hasebe N., Fujita Y., Ueno M., Yoshimura K., Fujino Y., Yamashita T. Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One. 2013;8(12):e82321. doi: 10.1371/journal.pone.0082321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 312.Bough K.J., Wetherington J., Hassel B., Pare J.F., Gawryluk J.W., Greene J.G., Shaw R., Smith Y., Geiger J.D., Dingledine R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006;60(2):223–235. doi: 10.1002/ana.20899. [DOI] [PubMed] [Google Scholar]
  • 313.Masino S.A., Kawamura M., Wasser C.D., Pomeroy L.T., Ruskin D.N. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr. Neuropharmacol. 2009;7(3):257–268. doi: 10.2174/157015909789152164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Kovács Z., Brunner B., Ari C. Beneficial effects of exogenous ketogenic supplements on aging processes and age-related neurodegenerative diseases. Nutrients. 2021;13(7):2197. doi: 10.3390/nu13072197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K., Veech R.L. D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2000;97(10):5440–5444. doi: 10.1073/pnas.97.10.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 316.Lilamand M., Porte B., Cognat E., Hugon J., Mouton-Liger F., Paquet C. Are ketogenic diets promising for Alzheimer’s disease? A translational review. Alzheimers Res. Ther. 2020;12(1):42. doi: 10.1186/s13195-020-00615-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 317.Yao J., Chen S., Mao Z., Cadenas E., Brinton R.D. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One. 2011;6(7):e21788. doi: 10.1371/journal.pone.0021788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 318.Chen Q., Prior M., Dargusch R., Roberts A., Riek R., Eichmann C., Chiruta C., Akaishi T., Abe K., Maher P., Schubert D. A novel neurotrophic drug for cognitive enhancement and Alzheimer’s disease. PLoS One. 2011;6(12):e27865. doi: 10.1371/journal.pone.0027865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 319.Prior M., Dargusch R., Ehren J.L., Chiruta C., Schubert D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res. Ther. 2013;5(3):25. doi: 10.1186/alzrt179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 320.Daugherty D., Goldberg J., Fischer W., Dargusch R., Maher P., Schubert D. A novel Alzheimer’s disease drug candidate targeting inflammation and fatty acid metabolism. Alzheimers Res. Ther. 2017;9(1):50. doi: 10.1186/s13195-017-0277-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 321.Rusek M., Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci. 2019;20(16):20. doi: 10.3390/ijms20163892. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Current Alzheimer Research are provided here courtesy of Bentham Science Publishers

RESOURCES