Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
letter
. 2022 May 23;60(6):e00152-22. doi: 10.1128/jcm.00152-22

Limitation of ctrA as a Target for Neisseria meningitidis Identification and Potential Alternative Targets

Imogen Sirluck-Schroeder a, Ghada N Al-Rawahi b,c,d,, Vijay Gadkar b,c, Linda Hoang c,e, Raymond Tsang f, Peter Tilley b,c,d
Editor: Patricia J Simnerg
PMCID: PMC9199397  PMID: 35603533

LETTER

The genetic diversity of Neisseria meningitidis makes reliable laboratory detection of this important pathogen difficult. Although matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been widely adopted for identification of bacteria from clinical samples (13), it does not yet reliably distinguish between N. meningitidis and several nonpathogenic Neisseria species, such as Neisseria cinerea and Neisseria polysaccharea (1, 410). This is most likely due to the high degree of genetic relatedness between N. meningitidis and the commensal Neisseria species. Therefore, the use of complementary laboratory techniques, including PCR, 16S rRNA sequencing, and traditional biochemical tests, is typically recommended for identification of N. meningitidis (3, 5, 7, 8, 1113).

BC Children’s Hospital (BCCH) microbiology laboratory performs PCR directly on EDTA blood and cerebrospinal fluid (CSF) samples as well as using it as a confirmatory tool for clinical isolates identified as N. meningitidis by MALDI-TOF MS (Bruker Daltonik, Bremen, Germany). Previously, BCCH’s PCR targeted ctrA, a capsule transport gene that was thought to be conserved in all invasive strains of N. meningitidis due to the role of the capsule in circumventing complement-mediated killing (14). However, the sensitivity of ctrA in identification of all invasive N. meningitidis isolates has been called into question. Several cases of invasive and sometimes fatal disease caused by capsule-null (cnl) strains lacking ctrA have been described, both in immunocompromised patients and in patients without an identifiable immune deficiency (1518). Two confirmed cnl isolates from invasive disease demonstrated resistance to complement-mediated killing in vitro (15, 16). There is also evidence of capsule-independent virulence determinants that may be transferred horizontally to acapsular strains (15, 16, 19). Furthermore, N. meningitidis has a high degree of genomic diversity fueled by natural competence, frequent horizontal gene transfer, and high rates of rearrangement, which poses a risk to the use of any single gene for identification (2022). Molecular assays targeting ctrA have also yielded false-negative results for invasive isolates that were subsequently confirmed to contain a ctrA allele that had low identity with published sequences (20, 23).

We have recently modified our protocol for the molecular detection of N. meningitidis as a result of a false negative bronchoalveolar lavage (BAL) isolate. We supplemented ctrA-targeted PCR with three noncapsular gene targets, including the superoxide dismutase sodC (19, 24), the phenol metabolism gene metA (25), and the sulfite exporter tauE (25). These PCR targets were validated in direct comparison to ctrA against 32 molecularly and serologically characterized clinical N. meningitidis isolates from different specimen types as well as previouly PCR-positive samples (Table 1). The panel represented a genetically diverse sampling of N. meningitidis strains, including serogroupable, nonserogroupable, commonly invasive, uncommonly invasive, and cnl mutant strains. Of these, PCR targeting ctrA detected only 23 out of the 32 samples tested, while PCR targeting metA, sodC, and tauE successfully detected the 9 ctrA-negative samples. PCR for tauE and sodC each failed to detect 2 samples, whereas metA identified all 32 samples. Further validation of PCR targeted against metA, sodC, and tauE showed 100% specificity when tested against a range of isolates and samples (Table 2), including samples positive for Haemophilus influenzae DNA, which were tested because the sodC gene in N. meningitidis is believed to have been acquired via horizontal transfer from H. influenzae (26).

TABLE 1.

Cycle threshold values of Neisseria meningitidis PCR panel tested for different N. meningitidis gene targets

Sample Specimen typea Serogroupb Serotypeb CT valuesc
ctrA tauE Meta sodC
1 Throat NE 15 Negative 28.34 29.39 32.7
2 Blood NE 15 Negative 29.06 29.75 30.99
3 Sputum NE NT Negative 28.22 28.92 29.88
4 Sputum NE 4 Negative 28.47 29.48 30.13
5 Sputum NE NT Negative 28.7 29.09 30.15
6 Eye NE 19 Negative 29.6 30.16 31.12
7 BAL NE 4 Negative 28.88 29.66 30.36
8 Eye Z NT 29.42 29.4 29.99 31.03
9 Eye Z 4 29.41 29.07 29.73 30.5
10 Sputum AA NT 27.93 28.15 28.9 Negative
11 Eye AA 1,19 29.55 29.02 30.07 30.58
12 Sputum AA 19 28.36 28.1 28.77 29.69
13 Eye AA 15 Negative 28.98 29.6 30.49
14 Eye AA 2a 29.22 28.95 29.73 30.61
15 Eye E NT 28.78 28.38 29.13 29.91
16 Sputum E NT 29.13 Negative 29.56 30.54
17 Eye E 19 29.84 29.49 30.38 31.46
18 Sputum E NT 29.17 28.78 29.67 29.96
19 Eye E 1,19 28.67 28.07 28.94 29.92
20 Wound NG NT 28.65 28.18 28.81 28.87
21 Eye NG NT 29.61 28.88 29.87 29.92
22 Sputum NG 14,19 29.38 28.74 29.6 30.25
23 Urethra NG NT 29.12 28.72 29.44 30.08
24 Eye NG 19 29.18 28.69 29.52 30.23
25 BAL NE 4 Negative 29.82 29.88 31.75
26 Blood (direct) W ND 31.67 31.6 29.55 30.57
27 Blood (direct) NG NT 38.92 38.17 39.02 39.62
28 CSF (direct) B ND 29.27 28.95 32.09 33.17
29 CSF (direct) NG NT 38.39 Negative 39.23 Negative
30 CSF (direct) Y ND 28.91 28.98 28.98 29.97
31 CSF (direct) B ND 27.48 28.67 28.07 29.91
32 CSF (direct) B ND 22.83 22.71 23.46 23.89
a

These are clinical isolates unless otherwise specified (i.e., direct samples).

bAA, autoagglutinable; NE, nonencapsulated; NG, nongroupable by bacterial agglutination; NT, nonserotypeable; ND, not done.

c

CT, cycle threshold.

TABLE 2.

Specificity check using previously characterized samples positive for Haemophilus influenzae, negative for Neisseria meningitidis using ctrA-targeted PCR and cultured isolatesa

Source Characteristic
CSF Haemophilus influenzae DNA detected by PCR
CSF Haemophilus influenzae DNA detected by PCR
CSF Haemophilus influenzae DNA detected by PCR
CSF Haemophilus influenzae DNA detected by PCR
CSF Neisseria meningitidis DNA not detected using ctrA-targeted PCR
CSF Neisseria meningitidis DNA not detected using ctrA-targeted PCR
CSF Neisseria meningitidis DNA not detected using ctrA-targeted PCR
CSF Neisseria meningitidis DNA not detected using ctrA-targeted PCR
Blood Neisseria meningitidis DNA not detected using ctrA-targeted PCR
Blood Neisseria meningitidis DNA not detected using ctrA-targeted PCR
Isolate Neisseria lactamica ATCC 23970
Isolate Neisseria sicca ATCC 29193
Isolate Neisseria subflava ATCC 14799
Isolate Neisseria gonorrhoeae ATCC 43069
Isolate Moraxella catarrhalis
Isolate Moraxella catarrhalis
Isolate Moraxella osloensis
Isolate Eikenella corrodens
Isolate Eikenella corrodens
Isolate Eikenella corrodens
Isolate Eikenella corrodens
Isolate Haemophilus influenzae
Isolate Haemophilus parainfluenzae
Isolate Kingella kingae ATCC 23330
Isolate Achromobacter xylosoxidans
Isolate Escherichia coli
Isolate Serratia marcescens
Isolate Pseudomonas aeruginosa
Isolate Gardnerella vaginalis
Isolate Staphylococcus aureus
Isolate Staphylococcus epidermidis
Isolate Streptococcus agalactiae
Isolate Streptococcus mitis
Isolate Streptococcus pneumoniae ATCC 49619
Isolate Streptococcus pyogenes
Isolate Streptococcus pneumoniae
Isolate Enterococcus faecalis
Isolate Clostridium perfringens
Isolate Cutibacterium acnes
Isolate Fusobacterium nucleatum
Isolate Bacteroides fragilis
Isolate Candida albicans
Isolate Candida parapsilosis
Isolate Cryptococcus neoformans
a

All were negative for tauE, metA, sodC, and ctrA genes.

Neisseria meningitidis is an important human pathogen for which false negative results can have devastating clinical and public health consequences. Laboratories should be aware that some commercial assays may target encapsulated strains only, which are now understood not to represent all strains capable of causing severe and invasive disease. As a result of our findings, our laboratory has adopted the noncapsular genes metA and sodC as complementary targets to ctrA in order to improve detection of N. meningitidis via multiplex PCR. Our results highlight the importance of using multiple complementary gene targets, including noncapsular genes, for the molecular identification of Neisseria meningitidis from clinical samples.

Contributor Information

Ghada N. Al-Rawahi, Email: galrawahi@cw.bc.ca.

Patricia J. Simner, Johns Hopkins

REFERENCES

  • 1.Patel R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 61:100–111. doi: 10.1373/clinchem.2014.221770. [DOI] [PubMed] [Google Scholar]
  • 2.Houlihan CF, Bharucha T, Breuer J. 2019. Advances in molecular diagnostic testing for central nervous system infections. Curr Opin Infect Dis 32:244–250. doi: 10.1097/QCO.0000000000000548. [DOI] [PubMed] [Google Scholar]
  • 3.Unalan-Altintop T, Karagoz A, Hazirolan G. 2020. A diagnostic challenge in clinical laboratory: misidentification of Neisseria subflava as Neisseria meningitidis by MALDI-TOF MS. Acta Microbiol Immunol Hung 67:258–260. doi: 10.1556/030.2020.01039. [DOI] [PubMed] [Google Scholar]
  • 4.Morel F, Jacquier H, Desroches M, Fihman V, Kumanski S, Cambau E, Decousser J-W, Berçot B. 2018. Use of Andromas and Bruker MALDI-TOF MS in the identification of Neisseria. Eur J Clin Microbiol Infect Dis 37:2273–2277. doi: 10.1007/s10096-018-3368-6. [DOI] [PubMed] [Google Scholar]
  • 5.Faron ML, Buchan BW, Hyke J, Madisen N, Lillie JL, Granato PA, Wilson DA, Procop GW, Novak-Weekley S, Marlowe E, Cumpio J, Griego-Fullbright C, Kindig S, Timm K, Young S, Ledeboer NA. 2015. Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinical aerobic gram-negative bacterial isolates. PLoS One 10:e0141350. doi: 10.1371/journal.pone.0141350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ilina EN, Borovskaya AD, Malakhova MM, Vereshchagin VA, Kubanova AA, Kruglov AN, Svistunova TS, Gazarian AO, Maier T, Kostrzewa M, Govorun VM. 2009. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J Mol Diagn 11:75–86. doi: 10.2353/jmoldx.2009.080079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cunningham SA, Mainella JM, Patel R. 2014. Misidentification of Neisseria polysaccharea as Neisseria meningitidis with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 52:2270–2271. doi: 10.1128/JCM.00664-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kawahara-Matsumizu M, Yamagishi Y, Mikamo H. 2018. Misidentification of Neisseria cinerea as Neisseria meningitidis by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Jpn J Infect Dis 71:85–87. doi: 10.7883/yoken.JJID.2017.183. [DOI] [PubMed] [Google Scholar]
  • 9.Schulthess B, Bloemberg GV, Zbinden A, Mouttet F, Zbinden R, Böttger EC, Hombach M. 2016. Evaluation of the Bruker MALDI Biotyper for identification of fastidious Gram-negative rods. J Clin Microbiol 54:543–548. doi: 10.1128/JCM.03107-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hong E, Bakhalek Y, Taha MK. 2019. Identification of Neisseria meningitidis by MALDI-TOF MS may not be reliable. Clin Microbiol Infect 25:717–722. doi: 10.1016/j.cmi.2018.09.015. [DOI] [PubMed] [Google Scholar]
  • 11.Khoder M, Osman M, Diene SM, Okdah L, Lalaoui R, Al Achkar M, Mallat H, Hamze M, Rolain J-M. 2019. Evaluation of different testing tools for the identification of non-gonococcal Neisseria spp. isolated from Lebanese male semen: a strong and significant association with infertility. J Med Microbiol 68:1012–1020. doi: 10.1099/jmm.0.000990. [DOI] [PubMed] [Google Scholar]
  • 12.Buchanan R, Ball D, Dolphin H, Dave J. 2016. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for the identification of Neisseria gonorrhoeae. Clin Microbiol Infect 22:815.e5–815.e7. doi: 10.1016/j.cmi.2016.06.010. [DOI] [PubMed] [Google Scholar]
  • 13.Hanaiwa H, Narita T, Kato K, Yokoo A, Shinto K, Funashima Y, Sato K, Nagasawa Z, Umemura T. 2019. Reliability of the identification result of score value ≧2.000 with the MALDI Biotyper: what kind of polymicrobial species are included. Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi 29:1–9. (In Japanese.) [PubMed] [Google Scholar]
  • 14.Nolfi-Donegan D, Konar M, Vianzon V, MacNeil J, Cooper J, Lurie P, Sedivy J, Wang X, Granoff DM, McNamara L. 2018. Fatal nongroupable Neisseria meningitidis disease in vaccinated patient receiving eculizumab. Emerg Infect Dis 24:1561–1564. doi: 10.3201/eid2408.180228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ganesh K, Allam M, Wolter N, Bratcher HB, Harrison OB, Lucidarme J, Borrow R, de Gouveia L, Meiring S, Birkhead M, Maiden MCJ, von Gottberg A, Du Plessis M. 2017. Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa. BMC Microbiol 17:40. doi: 10.1186/s12866-017-0942-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Johswich KO, Zhou J, Law DKS, St Michael F, McCaw SE, Jamieson FB, Cox AD, Tsang RSW, Gray-Owen SD. 2012. Invasive potential of nonencapsulated disease isolates of Neisseria meningitidis. Infect Immun 80:2346–2353. doi: 10.1128/IAI.00293-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Findlow H, Vogel U, Mueller JE, Curry A, Njanpop-Lafourcade B-M, Claus H, Gray SJ, Yaro S, Traoré Y, Sangaré L, Nicolas P, Gessner BD, Borrow R. 2007. Three cases of invasive meningococcal disease caused by a capsule null locus strain circulating among healthy carriers in Burkina Faso. J Infect Dis 195:1071–1077. doi: 10.1086/512084. [DOI] [PubMed] [Google Scholar]
  • 18.Hoang LMN, Thomas E, Tyler S, Pollard AJ, Stephens G, Gustafson L, McNabb A, Pocock I, Tsang R, Tan R. 2005. Rapid and fatal meningococcal disease due to a strain of Neisseria meningitidis containing the capsule null locus. Clin Infect Dis 40:e38–e42. doi: 10.1086/427875. [DOI] [PubMed] [Google Scholar]
  • 19.Dolan Thomas J, Hatcher CP, Satterfield DA, Theodore MJ, Bach MC, Linscott KB, Zhao X, Wang X, Mair R, Schmink S, Arnold KE, Stephens DS, Harrison LH, Hollick RA, Andrade AL, Lamaro-Cardoso J, de Lemos APS, Gritzfeld J, Gordon S, Soysal A, Bakir M, Sharma D, Jain S, Satola SW, Messonnier NE, Mayer LW. 2011. sodC-based real-time PCR for detection of Neisseria meningitidis. PLoS One 6:e19361. doi: 10.1371/journal.pone.0019361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Jaton K, Ninet B, Bille J, Greub G. 2010. False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol 48:4590–4591. doi: 10.1128/JCM.01766-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Higa FT, Fukasawa LO, Gonçalves MG, Salgado MM, Lemos AP, Harrison LH, Oliveira PL, Silva CN, Sacchi CT. 2013. Use of sodC versus ctrA for real-time polymerase chain reaction-based detection of Neisseria meningitidis in sterile body fluids. Mem Inst Oswaldo Cruz 108:246–247. doi: 10.1590/0074-0276108022013020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Brik A, Terrade A, Hong E, Deghmane A, Taha MK, Bouafsoun A, Khmiri M, Boussetta K, Boukhir S, Jaballah NB, Kechrid A, Smaoui H. 2020. Phenotypic and genotypic characterization of meningococcal isolates in Tunis, Tunisia: high diversity and impact on vaccination strategies. Int J Infect Dis 91:73–78. doi: 10.1016/j.ijid.2019.11.013. [DOI] [PubMed] [Google Scholar]
  • 23.Cavrini F, Liguori G, Andreoli A, Sambri V. 2010. Multiple nucleotide substitutions in the Neisseria meningitidis serogroup C ctrA gene cause false-negative detection by real-time PCR. J Clin Microbiol 48:3016–3018. doi: 10.1128/JCM.00103-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Haddad-Boubaker S, Lakhal M, Fathallah C, Bouafsoun A, Kharrat M, Khemiri M, Kechrid A, Smaoui H. 2018. Molecular diagnosis of bacterial meningitis by multiplex real time PCR in Tunisian children. J Infect Dev Ctries 12:235–243. doi: 10.3855/jidc.9650. [DOI] [PubMed] [Google Scholar]
  • 25.Diene SM, Bertelli C, Pillonel T, Jacquier N, Croxatto A, Jaton K, Greub G. 2016. Comparative genomics of Neisseria meningitidis strains: new targets for molecular diagnostics. Clin Microbiol Infect 22:568.e1-7. doi: 10.1016/j.cmi.2016.03.022. [DOI] [PubMed] [Google Scholar]
  • 26.Kroll JS, Wilks KE, Farrant JL, Langford PR. 1998. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci USA 95:12381–12385. doi: 10.1073/pnas.95.21.12381. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES