Skip to main content
ACS Omega logoLink to ACS Omega
. 2022 Jun 3;7(23):20229–20236. doi: 10.1021/acsomega.2c02155

Asymmetric Assembly of Chiral Lanthanide(III) Tetranuclear Cluster Complexes Using Achiral Mixed Ligands: Single-molecule Magnet Behavior and Magnetic Entropy Change

Cai-Ming Liu †,‡,*, Xiang Hao
PMCID: PMC9202287  PMID: 35721968

Abstract

graphic file with name ao2c02155_0007.jpg

It is challenging to use achiral ligands to spontaneously construct chiral molecular magnets. In this work, two new Ln4 cluster complexes based on N,N′-(1,3-propanediyl)bis[N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]amine] (H6L) have been assembled, which are crystallized in a chiral space group due to the asymmetric distribution of acetate (OAc) groups and hexafluoroacetylacetonate (F6acac) groups on both sides of the parallelogram-like Ln4 core. Complex 1, [Dy4(H3L)2(OAc)3(F6acac)3]·5MeOH·2H2O, exhibits single-molecule magnet properties at the zero field with the Ueff/k value of 48.4 K; notably, besides the Orbach process, the Raman process is also prominent for the magnetic relaxation of 1. Complex 2, [Gd4(H3L)2(OAc)3(F6acac)3]·4MeOH·2.5H2O, displays a large magnetocaloric effect, whose largest −ΔSm value is 21.88 J kg–1 K–1 (when T = 2 K and ΔH = 5 T); it thus can be utilized as a good magnetic refrigeration molecular material.

Introduction

Recently, lanthanide(III) cluster complexes have attracted great attention in the field of single-molecule magnets (SMMs)1 and magnetic refrigeration molecular materials,2,3 which is closely related to the large spin value of lanthanide(III) ions. If the specified lanthanide(III) ions such as dysprosium(III) ions have strong magnetic anisotropy, they are suitable for the construction of SMMs, and when the specified lanthanide(III) ions are gadolinium(III) ions, they are suitable for the assembly of magnetic refrigeration molecule materials, owing to the largest ground state spin value (SGd = 7/2) and no magnetic anisotropy.4,5 Because the magnetic axis and the symmetry of each dysprosium(III) ion in the cluster complex are difficult to control,6 the research progress of dysprosium(III) cluster complexes in the SMM field is relatively slow. However, gadolinium(III) cluster complexes have obvious advantages in the study of magnetic refrigeration molecular materials.712

On the other hand, if chirality is introduced into molecular magnets, it will bring valuable physical properties such as nonlinear optics,1316 ferroelectricity,1720 and magneto-optical effects,2127 making them attractive multifunctional molecular materials. The general case is to obtain chiral structured molecule-based magnets by chiral ligand coordination2837 or even by cocrystallizing with chiral organic molecules.38 Another more challenging case is to use achiral ligands to spontaneously construct chiral structured molecule-based magnets, which involve helical chirality,39 Δ/Λ octahedral coordination configuration of transition metal ions,40 and cooperative orientation of anions and cations in the axial direction.41 It is well known that the chirality occurs when different functional groups are attached to the carbon atom in organic chemistry, however, the chirality of cluster SMMs through the asymmetric distribution of different achiral ligands on both sides of the cluster core has never been reported.

Lanthanide(III) tetranuclear clusters with various core structures, which include chain, square, butterfly or rhombus, and cube, might be the most studied clusters in SMMs.4256 They can not only exhibit large energy barrier values but also can be used to study multistep magnetic relaxation behavior. Recently, we constructed a parallelogram-like Dy(III) tetrametallic SMM, [Dy4(H3L)2(OAc)6]·2EtOH,57 using acetate ligands and the bis-tris propane ligand, that is N,N′-(1,3-propanediyl)bis[N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]amine] (H6L, Scheme 1). Interestingly, we further found that if another ligand, hexafluoroacetylacetonate anion (F6acac), was added, we could obtain Ln(III) tetranuclear clusters (Ln = Dy and Gd) crystallized in a chiral space group. Herein we report the room-temperature syntheses, X-ray crystal structures, SMM properties, and magnetic entropy changes of two chiral Ln(III) tetranuclear clusters with the N,N′-(1,3-propanediyl)bis[N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]amine] ligand, the acetate ligand, and the hexafluoroacetylacetonate ligand. [Dy4(H3L)2(OAc)3(F6acac)3]·5MeOH·2H2O (1) and [Gd4(H3L)2(OAc)3(F6acac)3]·4MeOH·2.5H2O (2), both have a parallelogram-like Ln4 cluster core: complex 1 shows SMM properties at the zero field, while complex 2 displays a large magnetocaloric effect.

Scheme 1. Molecule Structure of the Bis-tris Propane Ligand (H6L).

Scheme 1

Experimental Procedures

Dy(F6acac)2Ac·2H2O and Gd(F6acac)2Ac·2H2O were presynthesized by the method described in the literature.5860

Preparation of 1

H6L (0.125 mol), Dy(F6acac)2Ac·2H2O (0.25 mmol), LiOH·H2O (0.50 mmol), and 20 mL of methanol were added to a 50 mL Erlenmeyer flask and stirred for 5 h to obtain a colorless solution. After filtration, the filtrate was left to slowly evaporate the solvent. Colorless small block single crystals of 1 were harvested in about ten days, which were washed with 10 mL of water and 10 mL of methanol in turn, and were then air-dried naturally. Yield (calculated based on Dy): 35%. Anal. calcd for C48H80Dy4F18N4O31 (1): C, 26.19; H, 3.66; N, 2.55%. Found: C, 26.23; H, 3.69; N, 2.52%. IR (KBr, cm–1): 3674 (w), 3397 (br s), 2936 (w), 2884 (w), 1661 (s), 1559 (s), 1529 (m), 1502 (m), 1450 (m), 1347 (w), 1255 (s), 1206 (s), 1144 (s), 1100 (w), 1027 (m), 946 (w), 855 (w), 797 (w), 757 (w), 662 (m), 618 (w), 584 (w), 560 (w), 527 (w), 495 (w), 420 (w).

Preparation of 2

H6L (0.125 mol), Gd(F6acac)2Ac·2H2O (0.25 mmol), LiOH·H2O (0.50 mmol), and 40 mL of MeOH/CH2Cl2 (v/v = 1) were added to a 100 mL Erlenmeyer flask and stirred for 5 h to obtain a colorless solution. After filtration, the filtrate was left to slowly evaporate the solvent. Colourless small block single crystals of 2 were harvested in about ten days, which were washed with 10 mL of water and 10 mL of methanol in turn, and were then air-dried naturally. Yield (calculated based on Gd): 40%. Anal. calcd for C47H79F18Gd4N4O30.5 (2): C, 26.15; H, 3.69; N, 2.59%. Found: C, 26.11; H, 3.73; N, 2.54%. IR (KBr, cm–1): 3676 (w), 3397 (br s), 2940 (w), 2887 (w), 1661 (s), 1559 (s), 1527 (m), 1502 (m), 1448 (m), 1348 (w), 1255 (s), 1206 (s), 1144 (s), 1096 (w), 1026 (m), 950 (w), 854 (w), 797 (w), 741 (w),728 (w), 662 (m), 618 (w), 584 (w), 557 (w), 527 (w), 489 (w), 412 (w).

Result and Discussion

Synthesis

The bis-tris propane ligand is a common polydentate ligand containing not only the N coordination site but also the O coordination site, which had been successfully used to assemble some 3d cluster complexes,61,62 3d-3d heteronuclear cluster complexes,63,64 and 3d–4f heteronuclear cluster complexes.6567 We also recently used it to solvothermally react dysprosium acetate and lithium hydroxide in EtOH at 100 °C, yielding a dysprosium(III) tetranuclear cluster SMM, [Dy4(H3L)2(OAc)6]·2EtOH, which shows double magnetic relaxation behavior at the zero field.57 In this study, we used the bis-tris propane ligand to react with Ln(F6acac)2Ac·2H2O (Ln = Dy and Gd) and lithium hydroxide in MeOH or (MeOH + CH2Cl2) for several hours at room temperature, and then slowly evaporated the solvent to obtain lanthanide(III) tetranuclear cluster compounds 1 and 2. As expected, the hexafluoroacetylacetonate anion from the Ln(F6acac)2Ac·2H2O starting materials participates in the coordination acting as a terminal ligand, being assembled into the structures of complexes 1 and 2, just like the acetate anion does. However, the molecules of complexes 1 and 2 contain three acetate groups and three hexafluoroacetylacetonate groups, and these different ligands have to be asymmetrically distributed on both sides of the Ln4 cluster core, resulting in the loss of centrosymmetry of the entire molecule. Therefore, they are eventually crystallized in the chiral space group P1 (Table 1). Unfortunately, it is known from the process of single-crystal structure analysis that the two chiral isomers in 1 or 2 are combined in the form of twin crystals, so they cannot be separated manually under a polarizing microscope. In contrast, [Dy4(H3L)2(OAc)6]·2EtOH is a centrosymmetric molecule crystallized in the centrosymmetric space group, Pbca,57 because its six acetate anions are symmetrically distributed on both sides of the Dy4 cluster core. This research suggests a new strategy to construct the chiral SMM by the asymmetric distribution of different achiral ligands on both sides of the cluster core.

Table 1. Crystal Data and Structural Refinement Parameters for 1 and 2.

  1 2
formula C48H80Dy4F18N4O31 C47H79F18Gd4N4O30.5
Fw 2201.16 2159.14
crystal system triclinic triclinic
space group P1 P1
a [Å] 11.0727(2) 11.1069(2)
b [Å] 12.9870(2) 12.9886(2)
c [Å] 13.6934(2) 13.7301(2)
α [deg] 69.304(2) 68.973(2)
β [deg] 89.4750(10) 89.2670(10)
γ [deg] 89.9360(10) 89.2490(10)
V [Å3] 1841.97(6) 1848.62(6)
Z 1 1
ρcalc [g cm–3] 1.984 1.939
μ [mm–1] 4.138 3.667
T [K] 170 170
λ (Mo Kα) [Å] 0.71073 0.71073
reflections collected 46,806 47,985
unique reflections 14,449 13,077
observed reflections 13,257 11,850
parameters 955 954
GoF [I ≥ 2σ(I)] 1.040 1.030
R1 [I ≥ 2σ(I)] 0.0262 0.0348
WR2 [I ≥ 2σ(I)] 0.0601 0.0867
Flack parameter (twin) 0.413(19) 0.32(3)

Crystal Structures

The structures of cluster compounds 1 and 2 are very similar (Figure 1), and we, thus, focus on describing the crystal structure of 1. As shown in Figure 1a, complex 1 has an approximately parallelogram-shaped Dy4 core, with the Dy···Dy side lengths of 3.534, 3.822, 3.532, and 3.818 Å, respectively. Two bis-tris propane ligands each provide two η3-CH2O oxygen atoms to bridge the four planar Dy3+ ions from above and below, using the η3311124 coordination mode observed in the SMM [Dy4(H3L)2(OAc)6]·2EtOH.57 Such a [Dy4(OCH2−)4] core is very similar to that in [Dy4(H3L)2(OAc)6]·2EtOH.57 The Dy2 atom and the Dy3 atom are both nine-coordinated, which are coordinated by one bis-tris propane ligand providing four oxygen atoms and two nitrogen atoms, another bis-tris propane ligand offering two η3-CH2O oxygen atoms, and one η2-AcO ligand supplying one oxygen atom. By SHAPE software68 analysis, it can be seen that the coordination configurations of these two Dy(III) ions are both spherical capped square antiprisms, and the deviation values from the C4v symmetry are 1.029 for the Dy2 atom (Table S1) and 0.952 for the Dy3 atom (Table S2). However, both the Dy1 and Dy4 atoms are eight-coordinated: the Dy1 atom is bonded by one oxygen atom of the η3-CH2O group and one oxygen atom of the η2-CH2O group from one H3L3– ligand, one oxygen atom of the η3-CH2O group from another H3L3– ligand, one oxygen atom from the η2-AcO bridging ligand, two oxygen atoms from one AcO terminal ligand, and two oxygen atoms provided by one F6acac terminal ligand; meanwhile, the Dy4 atom is bonded by one oxygen atom of the η3-CH2O group, one oxygen atom of the η2-CH2O group from one H3L3– ligand, one oxygen atom of the η3-CH2O group from another H3L3– ligand, one oxygen atom of one η2-AcO bridging ligand, and four oxygen atoms supplied by two F6acac terminal ligands. After SHAPE software68 analysis, the coordination geometries of the two Dy(III) cations were determined to be the square antiprism, with the deviations from the D4d symmetry of 1.530 for the Dy1 atom (Table S3) and 1.418 for the Dy4 atom (Table S4). The Dy–N bond distances (mean 2.535 Å, Table 2) of 1 are a little shorter than those in [Dy4(H3L)2(OAc)6]·2EtOH (average 2.584 Å),57 and the Dy–O bond distances (mean 2.390 Å, Table 2) of 1 are comparable with those in [Dy4(H3L)2(OAc)6]·2EtOH (average 2.397 Å).57

Figure 1.

Figure 1

Crystal structures of 1 (a) and 2 (b). All H atoms and lattice H2O and MeOH molecules are not shown for clarity.

Table 2. Selected Bond Lengths (Å) and Angles (Deg) for 1 and 2.

complex 1
Dy1–O1 2.442(12) Dy1–O2 2.392(14)
Dy1–O3 2.473(13) Dy1–O4 2.395(8)
Dy1–O5 2.391(14) Dy1–O7 2.324(12)
Dy1–O13 2.268(12) Dy1–O16 2.345(12)
Dy2–O6 2.378(12) Dy2–O7 2.457(11)
Dy2–O8 2.442(12) Dy2–O10 2.367(12)
Dy2–O11 2.295(11) Dy2–O16 2.418(12)
Dy2–O17 2.534(11) Dy2–N1 2.473(14)
Dy2–N2 2.585(15) Dy3–O7 2.512(13)
Dy3–O8 2.411(11) Dy3–O13 2.285(11)
Dy3–O14 2.446(12) Dy3–O16 2.421(11)
Dy3–O17 2.455(12) Dy3–O23 2.318(13)
Dy3–N3 2.572(13) Dy3–N4 2.509(14)
Dy4–O8 2.365(11) Dy4–O11 2.295(11)
Dy4–O17 2.261(12) Dy4–O19 2.410(14)
Dy4–O20 2.433(10) Dy4–O21 2.405(14)
Dy4–O22 2.374(14) Dy4–O24 2.399(12)
N1–Dy2–N2 73.3(4) N4–Dy3–N3 74.6(4)
Dy1–O7–Dy2 106.0(5) Dy1–O7–Dy3 93.7(4)
Dy2–O7–Dy3 84.7(4) Dy3–O8–Dy2 87.3(4)
Dy4–O8–Dy2 94.6(4) Dy4–O8–Dy3 106.3(5)
Dy4–O11–Dy2 101.3(4) Dy1–O13–Dy3 101.7(4)
Dy1–O16–Dy2 106.6(5) Dy1–O16–Dy3 95.6(4)
Dy2–O16–Dy3 87.6(4) Dy3–O17–Dy2 84.3(4)
Dy4–O17–Dy2 94.8(4) Dy4–O17–Dy3 108.2(4)
complex 2
Gd1–O1 2.469(16) Gd1–O2 2.380(16)
Gd1–O3 2.458(18) Gd1–O4 2.412(14)
Gd1–O5 2.462(14) Gd1–O7 2.343(14)
Gd1–O13 2.300(15) Gd1–O16 2.359(14)
Gd2–O6 2.402(16) Gd2–O7 2.508(14)
Gd2–O8 2.465(14) Gd2–O10 2.405(16)
Gd2–O11 2.344(14) Gd2–O16 2.475(14)
Gd2–O17 2.505(14) Gd2–N1 2.509(17)
Gd2–N2 2.593(17) Gd3–O7 2.538(15)
Gd3–O8 2.416(14) Gd3–O13 2.289(14)
Gd3–O14 2.458(14) Gd3–O16 2.430(14)
Gd3–O17 2.464(14) Gd3–O23 2.351(16)
Gd3–N3 2.596(16) Gd3–N4 2.529(17)
Gd4–O8 2.388(14) Gd4–O11 2.289(15)
Gd4–O17 2.325(14) Gd4–O19 2.468(18)
Gd4–O20 2.456(14) Gd4–O21 2.429(18)
Gd4–O22 2.416(18) Gd4–O24 2.392(16)
Gd1–O7–Gd2 105.3(6) Gd1–O7–Gd3 93.7(5)
Gd2–O7–Gd3 84.1(4) Gd3–O8–Gd2 87.7(4)
Gd4–O8–Gd2 94.6(5) Gd4–O8–Gd3 107.2(5)
Gd4–O11–Gd2 100.7(5) Gd3–O13–Gd1 101.9(5)
Gd1–O16–Gd2 105.8(5) Gd1–O16–Gd3 96.2(5)
Gd3–O16–Gd2 87.1(4) Gd3–O17–Gd2 85.7(4)
Gd4–O17–Gd2 95.1(5) Gd4–O17–Gd3 107.6(5)

Moreover, there exist extensive hydrogen bonds between lattice methanol molecules, between lattice water molecules, and between the lattice molecule (MeOH or H2O) and the cluster molecule (Figure S1), these weak intermolecular interactions act to stabilize the crystal structure.

The structure of complex 2 (Figure 1b) is very similar to that of complex 1 (Figure 1a). However, the Gd–N bond lengths for 2 (average 2.557 Å, Table 2) are slightly longer than the Dy–N bond distances for 1 (average 2.536 Å, Table 2), and the Gd–O bond lengths (mean 2.413 Å, Table 2) for 2 are also larger than the Dy–O bond distances for 1 (average 2.390 Å, Table 2) because of the lanthanide contraction effect.

Notably, there are three acetate ligands and three hexafluoroacetylacetonate ligands in the molecules of complexes 1 and 2; these different ligands cannot be symmetrically distributed on both sides of the Ln4 cluster core, which thus causes the whole molecule to lose its centrosymmetry. Complexes 1 and 2 represent the first chiral Ln(III) cluster complexes constructed by the asymmetric distribution of different achiral ligands on both sides of the cluster core.

Magnetic Properties

Variable temperature dc magnetic susceptibilities of both complexes (Figure 2) showed that the χT values at 300 K are 56.61 cm3 kmol–1 for 1 and 31.56 cm3 kmol–1 for 2, which are in good agreement with the calculated values of 56.68 cm3 kmol–1 for the four uncoupled Dy3+ ions and 31.75 cm3 kmol–1 for the four isolated Gd3+ ions, respectively. As the temperature decreases, their χT values start to decrease slowly at first, then decrease sharply at about 25 K, and the values at 2 K are 23.94 cm3 kmol–1 for 1 and 14.19 cm3 kmol–1 for 2. The 1/χ–T data of 2 conform to the Curie–Weiss law (Figure S2). After being fitted, the C value of 31.66 cm3 kmol–1 and the θ value of −2.15 K were given for 2. This negative and small θ value indicates that there exists weak antiferromagnetic coupling among the Gd3+ ions. The 1/χ–T data of 1 can also be fitted using the Curie–Weiss law to obtain the θ value of −4.01 K and the C value of 57.01 cm3 kmol–1 (Figure S3). The negative and small θ value of 1 implies that besides the thermal depopulation of mj levels of the Dy3+ ion, there may also be weak antiferromagnetic coupling among the Ln3+ ions in 1, similar to 2.

Figure 2.

Figure 2

Plots of χT vs T of 1 and 2.

The field-dependent magnetization of both complexes at different temperatures was measured too. For 1, the MH/T plots do not overlap at 2–6 K (Figure S4), indicating that 1 has magnetic anisotropy, which is generally beneficial for SMM properties.

Figure 3a shows the MH plots at 2–10 K of 2, which can be used to evaluate the magnitude of the magnetocaloric effect. According to the Maxwell formula, ΔSm(T)ΔH = ∫[∂M(T,H)/∂T]HdH,69 we could figure out the corresponding magnetic entropy change values of 2 at different temperatures under varied magnetic field differences (ΔH). Figure 3b reveals that the −ΔSm value gradually increases both with increasing ΔH and with decreasing temperature. The largest −ΔSm value of 21.88 J kg–1 K–1 occurs at 2 K when ΔH is 5 T, this value is smaller than the value of 31.43 J kg–1 K–1 calculated using the formula, −ΔSm = nR ln(2S + 1) (n = 4, S = 7/2 and the R value is 8.314 J mol–1 K–1), owing to the antiferromagnetic interaction among Gd3+ ions in 2. This value is larger in magnetic refrigeration molecule materials, and comparable with those of other Gd4 cluster complexes when ΔH is 5 T.7075

Figure 3.

Figure 3

Magnetization vs field plots of 2 at 2–10 K (a); plots of −ΔSm vs T of 2 (b).

As to the magnetic dynamics of 1, we first measured the ac magnetic susceptibility of 1 under zero dc field. The temperature-dependent ac magnetic susceptibility indicates the χ″–T plots display frequency dependence and the trend of double magnetic relaxation, but the peak shape in the high-temperature region is not obvious (Figure S5). In order to investigate whether the existence of quantum tunneling effects prevents such peaks in the high-temperature region from appearing, we measured the magnetic field-dependent ac magnetic susceptibility at 13 K and 997 Hz (Figure S6). However, the optimal magnetic field has not been found. Moreover, we tried to measure the ac magnetic susceptibility at 997 Hz under 1400 and 2000 Oe, and they also cannot form peaks around 13 K, similar to the ac magnetic susceptibility at 0 Oe (Figure S7), the quantum tunneling effect is thus excluded.

However, the frequency-dependent ac magnetic susceptibility at the 0 Oe field reveals that the χ″−ν plots can show a temperature-dependent peak in a wide range of 2–14 K (Figure 4a), although there is also a trend of double magnetic relaxation. Using these data to plot the ln(τ) versus 1/T curve (Figure 4b), it can be seen that the plot deviates significantly from the straight line at lower temperatures, indicating that besides the Orbach process, the magnetic relaxation also has the two-phonon Raman process. Therefore, we fitted this curve with the equation τ–1 = τ0–1 exp(−Ueff/kT) + CTn including both the Raman process and the Orbach process, yielding n = 1.67, C = 12.39 s–1 K–1.67, τ0 = 4.9 × 10–6 s, and Ueff/k = 48.4 K. The large C value of 1 suggests that the Raman process is more prominent in the magnetic relaxation.76 Furthermore, the Raman process can also be seen in the χ″−ν plots (Figure 4a), which show not only the broad peak shape at low temperature but also the high-frequency plateau shape with increasing temperature.7779 The τ0 value of 4.9 × 10–6 s is a normal value for SMMs.1 The Ueff/k value (48.4 K) is comparable with that of the fast Orbach process (44.0 K) but smaller than that of the slow Orbach process in [Dy4(H3L)2(OAc)6]·2EtOH (107.0 K).57

Figure 4.

Figure 4

Frequency dependence of χ″ for 1 at zero dc field (a); ln(τ) vs 1/T plot for 1, the solid line represents the best fitting (b).

In addition, the Cole–Cole curves in the χ″−χ′ plots show partial characteristics of the double magnetic relaxation (Figure S8), which are not surprising because 1 contains Dy3+ ions in two coordination configurations, and the Cole–Cole plots at 2–14 K could be fitted by the formula containing two Debye functions.57,80,81 The fitting results showed that its α1 value range is 0.15–0.41 and its α2 value range is 0.33–0.56 (Table S5). The larger values of α1 and α2 may be closely related to the obvious Raman mechanism in the magnetic relaxation process.38,76 There is no open hysteresis loop for 1 at 1.9 K (Figure S9).

Conclusions

In summary, two chiral Ln4 cluster complexes derived from N,N′-(1,3-propanediyl)bis[N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]amine] were synthesized successfully although no chiral ligands were used. It is the asymmetric distribution of acetate ligands and hexafluoroacetylacetonate ligands on both sides of the parallelogram-like Ln4 core, which leads to the chirality of the whole molecule. The Dy complex exhibits SMM properties at the zero field, including not only the Orbach process but also the Raman process. While the Gd complex has large magnetic entropy changes, it is a potential molecular material for magnetic refrigeration. This work demonstrates that the chiral Ln(III) cluster complexes can be constructed from achiral ligands through the asymmetric distribution of different ligands on both sides of the cluster core. More such chiral cluster molecular materials can be assembled by changing the ligands at both ends of the metal cluster core or changing the metal cluster core itself.

Acknowledgments

We thank the National Natural Science Foundation of China (21871274) for funding this work.

Supporting Information Available

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c02155.

  • Additional experimental details; materials and methods; continuous shape measures calculation for Dy atoms in 1; unit cell packing diagram of 1; χ–1 versus T plots for 1 and 2; M versus H/T plots of 1; temperature dependence of χ″ at a 0 Oe field for 1; ac susceptibilities measured in a 2.5 Oe ac magnetic field with variable dc fields at 997 Hz and 13 K for 1; temperature dependence of χ″ at 997 Hz under different dc fields for 1; Cole–Cole plots and hysteresis loop for 1; and linear combination of two modified Debye model fitting parameters of 1 (PDF)

Accession Codes

www.ccdc.cam.ac.uk/data_request/cif

The authors declare no competing financial interest.

Supplementary Material

ao2c02155_si_001.pdf (775.6KB, pdf)

References

  1. Woodruff D. N.; Winpenny R. E. P.; Layfield R. A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110. 10.1021/cr400018q. [DOI] [PubMed] [Google Scholar]
  2. Zheng X.-Y.; Kong X.-J.; Zheng Z.; Long L.-S.; Zheng L.-S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers. Acc. Chem. Res. 2018, 51, 517. 10.1021/acs.accounts.7b00579. [DOI] [PubMed] [Google Scholar]
  3. Zheng Y.-Z.; Zhou G.-J.; Zheng Z.; Winpenny R. E. P. Molecule-based magnetic coolers. Chem. Soc. Rev. 2014, 43, 1462. 10.1039/c3cs60337g. [DOI] [PubMed] [Google Scholar]
  4. Chang L.-X.; Xiong G.; Wang L.; Cheng P.; Zhao B. A 24-Gd nanocapsule with a large magnetocaloric effect. Chem. Commun. 2013, 49, 1055. 10.1039/c2cc35800j. [DOI] [PubMed] [Google Scholar]
  5. Das C.; Vaidya S.; Gupta T.; Frost J. M.; Righi M.; Brechin E. K.; Affronte M.; Rajaraman G.; Shanmugam M. Single-Molecule Magnetism, Enhanced Magnetocaloric Effect, and Toroidal Magnetic Moments in a Family of Ln4 Squares. Chem.—Eur. J. 2015, 21, 15639. 10.1002/chem.201502720. [DOI] [PubMed] [Google Scholar]
  6. Liu C.-M.; Zhang D.-Q.; Hao X.; Zhu D.-B. Arraying Octahedral {Cr2Dy4} Units into 3D Single-Molecule-Magnet-Like Inorganic Compounds with Sulfate Bridges. Inorg. Chem. 2018, 57, 6803. 10.1021/acs.inorgchem.8b01210. [DOI] [PubMed] [Google Scholar]
  7. Pineda E. M.; Lorusso G.; Zangana K. H.; Palacios E.; Schnack J.; Evangelisti M.; Winpenny R. E. P.; McInnes E. J. L. Observation of the influence of dipolar and spin frustration effects on the magnetocaloric properties of a trigonal prismatic {Gd7} molecular nanomagnet. Chem. Sci. 2016, 7, 4891. 10.1039/c6sc01415a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Luo X.-M.; Hu Z.-B.; Lin Q.-f.; Cheng W.; Cao J.-P.; Cui C.-H.; Mei H.; Song Y.; Xu Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60. J. Am. Chem. Soc. 2018, 140, 11219. 10.1021/jacs.8b07841. [DOI] [PubMed] [Google Scholar]
  9. Peng J.-B.; Zhang Q.-C.; Kong X.-J.; Ren Y.-P.; Long L.-S.; Huang R.-B.; Zheng L.-S.; Zheng Z. A 48-Metal Cluster Exhibiting a Large Magnetocaloric Effect. Angew. Chem., Int. Ed. 2011, 50, 10649. 10.1002/anie.201105147. [DOI] [PubMed] [Google Scholar]
  10. Guo F.-S.; Chen Y.-C.; Mao L.-L.; Lin W.-Q.; Leng J.-D.; Tarasenko R.; Orendáč M.; Prokleška J.; Sechovský V.; Tong M.-L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel. Chem.—Eur. J. 2013, 19, 14876. 10.1002/chem.201302093. [DOI] [PubMed] [Google Scholar]
  11. Liu S.-J.; Zhao J.-P.; Tao J.; Jia J.-M.; Han S.-D.; Li Y.; Chen Y.-C.; Bu X.-H. An Unprecedented Decanuclear GdIII Cluster for Magnetic Refrigeration. Inorg. Chem. 2013, 52, 9163. 10.1021/ic400487m. [DOI] [PubMed] [Google Scholar]
  12. Wang K.; Chen Z.-L.; Zou H.-H.; Hu K.; Li H.-Y.; Zhang Z.; Sun W.-Y.; Liang F.-P. A single-stranded {Gd18} nanowheel with a symmetric polydentate diacylhydrazone ligand. Chem. Commun. 2016, 52, 8297. 10.1039/c6cc02208a. [DOI] [PubMed] [Google Scholar]
  13. Bogani L.; Cavigli L.; Bernot K.; Sessoli R.; Gurioli M.; Gatteschi D. Evidence of intermolecular π-stacking enhancement of second-harmonic generation in a family of single chain magnets. J. Mater. Chem. 2006, 16, 2587. 10.1039/b604985k. [DOI] [Google Scholar]
  14. Train C.; Nuida T.; Gheorghe R.; Gruselle M.; Ohkoshi S.-i. Large Magnetization-Induced Second Harmonic Generation in an Enantiopure Chiral Magnet. J. Am. Chem. Soc. 2009, 131, 16838. 10.1021/ja9061568. [DOI] [PubMed] [Google Scholar]
  15. Wen H.-R.; Hu J.-J.; Yang K.; Zhang J.-L.; Liu S.-J.; Liao J.-S.; Liu C.-M. Family of Chiral ZnII-LnIII (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine-Phenol Ligand Showing Multifunctional Properties. Inorg. Chem. 2020, 59, 2811. 10.1021/acs.inorgchem.9b03164. [DOI] [PubMed] [Google Scholar]
  16. Zhu S.-D.; Hu J.-J.; Dong L.; Wen H.-R.; Liu S.-J.; Lu Y.-B.; Liu C.-M. Multifunctional Zn(ii)-Yb(iii) complex enantiomers showing second-harmonic generation, near-infrared luminescence, single-molecule magnet behaviour and proton conduction. J. Mater. Chem. C 2020, 8, 16032. 10.1039/d0tc03687k. [DOI] [Google Scholar]
  17. Long J.; Rouquette J.; Thibaud J.-M.; Ferreira R. A. S.; Carlos L. D.; Donnadieu B.; Vieru V.; Chibotaru L. F.; Konczewicz L.; Haines J.; Guari Y.; Larionova J. A High-Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Single-Ion-Magnet Behavior and Lanthanide Luminescence. Angew. Chem., Int. Ed. 2015, 54, 2236. 10.1002/anie.201410523. [DOI] [PubMed] [Google Scholar]
  18. Li D.-P.; Wang T.-W.; Li C.-H.; Liu D.-S.; Li Y.-Z.; You X.-Z. Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem. Commun. 2010, 46, 2929. 10.1039/b924547b. [DOI] [PubMed] [Google Scholar]
  19. Li X.-L.; Chen C.-L.; Gao Y.-L.; Liu C.-M.; Feng X.-L.; Gui Y.-H.; Fang S.-M. Modulation of Homochiral Dy III Complexes: Single-Molecule Magnets with Ferroelectric Properties. Chem.—Eur. J. 2012, 18, 14632. 10.1002/chem.201201190. [DOI] [PubMed] [Google Scholar]
  20. Li X.-L.; Hu M.; Yin Z.; Zhu C.; Liu C.-M.; Xiao H.-P.; Fang S. Enhanced single-ion magnetic and ferroelectric properties of mononuclear Dy(iii) enantiomeric pairs through the coordination role of chiral ligands. Chem. Commun. 2017, 53, 3998. 10.1039/c7cc01042g. [DOI] [PubMed] [Google Scholar]
  21. Rikken G. L. J. A.; Raupach E. Observation of magneto-chiral dichroism. Nature 1997, 390, 493. 10.1038/37323. [DOI] [Google Scholar]
  22. Train C.; Gheorghe R.; Krstic V.; Chamoreau L.-M.; Ovanesyan N. S.; Rikken G. L. J. A.; Gruselle M.; Verdaguer M. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nat. Mater. 2008, 7, 729. 10.1038/nmat2256. [DOI] [PubMed] [Google Scholar]
  23. Kitagawa Y.; Segawa H.; Ishii K. Magneto-Chiral Dichroism of Organic Compounds. Angew. Chem., Int. Ed. 2011, 50, 9133. 10.1002/anie.201101809. [DOI] [PubMed] [Google Scholar]
  24. Atzori M.; Santanni F.; Breslavetz I.; Paillot K.; Caneschi A.; Rikken G. L. J. A.; Sessoli R.; Train C. Magnetic Anisotropy Drives Magnetochiral Dichroism in a Chiral Molecular Helix Probed with Visible Light. J. Am. Chem. Soc. 2020, 142, 13908. 10.1021/jacs.0c06166. [DOI] [PubMed] [Google Scholar]
  25. Wang K.; Zeng S.; Wang H.; Dou J.; Jiang J. Magneto-chiral dichroism in chiral mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker SMMs. Inorg. Chem. Front. 2014, 1, 167. 10.1039/c3qi00097d. [DOI] [Google Scholar]
  26. Wang X.; Du M.-H.; Xu H.; Long L.-S.; Kong X.-J.; Zheng L.-S. Cocrystallization of Chiral 3d-4f Clusters {Mn10Ln6} and {Mn6Ln2}. Inorg. Chem. 2021, 60, 5925. 10.1021/acs.inorgchem.1c00333. [DOI] [PubMed] [Google Scholar]
  27. Liu C.-M.; Sun R.; Wang B.-W.; Wu F.; Hao X.; Shen Z. Homochiral Ferromagnetic Coupling Dy2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature. Inorg. Chem. 2021, 60, 12039. 10.1021/acs.inorgchem.1c01218. [DOI] [PubMed] [Google Scholar]
  28. Numata Y.; Inoue K.; Baranov N.; Kurmoo M.; Kikuchi K. Field-Induced Ferrimagnetic State in a Molecule-Based Magnet Consisting of a CoII Ion and a Chiral Triplet Bis(nitroxide) Radical. J. Am. Chem. Soc. 2007, 129, 9902. 10.1021/ja064828i. [DOI] [PubMed] [Google Scholar]
  29. Feng J.-S.; Ren M.; Cai Z.-S.; Fan K.; Bao S.-S.; Zheng L.-M. Enantiopure phosphonic acids as chiral inducers: homochiral crystallization of cobalt coordination polymers showing field-induced slow magnetization relaxation. Chem. Commun. 2016, 52, 6877. 10.1039/c6cc02463g. [DOI] [PubMed] [Google Scholar]
  30. Yao M.-X.; Zheng Q.; Gao F.; Li Y.-Z.; Song Y.; Zuo J.-L. Field-induced slow magnetic relaxation in chiral seven-coordinated mononuclear lanthanide complexes. Dalton Trans. 2012, 41, 13682. 10.1039/c2dt31203d. [DOI] [PubMed] [Google Scholar]
  31. El Rez B.; Liu J.; Béreau V.; Duhayon C.; Horino Y.; Suzuki T.; Coolen L.; Sutter J.-P. Concomitant emergence of circularly polarized luminescence and single-molecule magnet behavior in chiral-at-metal Dy complex. Inorg. Chem. Front. 2020, 7, 4527. 10.1039/d0qi00919a. [DOI] [Google Scholar]
  32. Feng M.; Lyu B.-H.; Wang M.-H.; Wu W.-W.; Chen Y.-C.; Huang G.-Z.; Lin W.-Q.; Wu S.-G.; Liu J.-L.; Tong M.-L. Chiral Erbium(III) Complexes: Single-Molecule Magnet Behavior, Chirality, and Nuclearity Control. Inorg. Chem. 2019, 58, 10694. 10.1021/acs.inorgchem.9b00616. [DOI] [PubMed] [Google Scholar]
  33. Liu C.-M.; Zhang D.-Q.; Zhu D.-B. Field-Induced Single-Ion Magnets Based on Enantiopure Chiral β-Diketonate Ligands. Inorg. Chem. 2013, 52, 8933. 10.1021/ic4011218. [DOI] [PubMed] [Google Scholar]
  34. Lang W.-J.; Kurmoo M.; Zeng M.-H. A Chiral and Polar Single-Molecule Magnet: Synthesis, Structure, and Tracking of Its Formation Using Mass Spectrometry. Inorg. Chem. 2019, 58, 7236. 10.1021/acs.inorgchem.9b00269. [DOI] [PubMed] [Google Scholar]
  35. Casanovas B.; Speed S.; El Fallah M. S.; Vicente R.; Font-Bardía M.; Zinna F.; Di Bari L. Chiral dinuclear Ln(iii) complexes derived from S- and R-2-(6-methoxy-2-naphthyl)propionate. Optical and magnetic properties. Dalton Trans. 2019, 48, 2059. 10.1039/c8dt04149k. [DOI] [PubMed] [Google Scholar]
  36. Liu C.-M.; Zhang D.; Hao X.; Zhu D. Enantiopure Chiral Two-dimensional Sinusoidal Lanthanide(III) Coordination Polymers Based on R-/S-2-Methylglutarate: Luminescence, Magnetic Entropy Change, and Magnetic Relaxation. Cryst. Growth Des. 2019, 19, 4731. 10.1021/acs.cgd.9b00602. [DOI] [Google Scholar]
  37. Zhu Y.-Y.; Guo X.; Cui C.; Wang B.-W.; Wang Z.-M.; Gao S. An enantiopure FeIII4 single-molecule magnet. Chem. Commun. 2011, 47, 8049. 10.1039/c1cc12831k. [DOI] [PubMed] [Google Scholar]
  38. Liu C.-M.; Sun R.; Hao X.; Wang B. Chiral Co-Crystals of (S)- or (R)-1,1′-Binaphthalene-2,2′-diol and Zn2Dy2 Tetranuclear Complexes Behaving as Single-Molecule Magnets. Cryst. Growth Des. 2021, 21, 4346. 10.1021/acs.cgd.1c00246. [DOI] [Google Scholar]
  39. Liu C.-M.; Zhang D.-Q.; Xiong R.-G.; Hao X.; Zhu D.-B. A homochiral Zn-Dy heterometallic left-handed helical chain complex without chiral ligands: anion-induced assembly and multifunctional integration. Chem. Commun. 2018, 54, 13379. 10.1039/c8cc07468b. [DOI] [PubMed] [Google Scholar]
  40. Liu M.-J.; Yuan J.; Wang B.-L.; Wu S.-T.; Zhang Y.-Q.; Liu C.-M.; Kou H.-Z. Spontaneous Resolution of Chiral Co(III)Dy(III) Single-Molecule Magnet Based on an Achiral Flexible Ligand. Cryst. Growth Des. 2018, 18, 7611. 10.1021/acs.cgd.8b01410. [DOI] [Google Scholar]
  41. Liu C.-M.; Zhang D.-Q.; Hao X.; Zhu D.-B. Assembly of chiral 3d-4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorg. Chem. Front. 2020, 7, 3340. 10.1039/d0qi00632g. [DOI] [Google Scholar]
  42. Lin P.-H.; Burchell T. J.; Ungur L.; Chibotaru L. F.; Wernsdorfer W.; Murugesu M. Single-Molecule Magnets. Angew. Chem., Int. Ed. 2009, 48, 9489. 10.1002/anie.200903199. [DOI] [PubMed] [Google Scholar]
  43. Zheng Y.-Z.; Lan Y.; Anson C. E.; Powell A. K. Anion-Perturbed Magnetic Slow Relaxation in Planar {Dy4} Clusters. Inorg. Chem. 2008, 47, 10813. 10.1021/ic8016722. [DOI] [PubMed] [Google Scholar]
  44. Bi Y.; Wang X.-T.; Liao W.; Wang X.; Deng R.; Zhang H.; Gao S. Thiacalix[4]arene-Supported Planar Ln4 (Ln = TbIII, DyIII) Clusters: Toward Luminescent and Magnetic Bifunctional Materials. Inorg. Chem. 2009, 48, 11743. 10.1021/ic9017807. [DOI] [PubMed] [Google Scholar]
  45. Gao Y.; Xu G.-F.; Zhao L.; Tang J.; Liu Z. Observation of Slow Magnetic Relaxation in Discrete Dysprosium Cubane. Inorg. Chem. 2009, 48, 11495. 10.1021/ic901806g. [DOI] [PubMed] [Google Scholar]
  46. Abbas G.; Lan Y.; Kostakis G. E.; Wernsdorfer W.; Anson C. E.; Powell A. K. Series of Isostructural Planar Lanthanide Complexes [LnIII43-OH)2(mdeaH)2(piv)8] with Single Molecule Magnet Behavior for the Dy4 Analogue. Inorg. Chem. 2010, 49, 8067. 10.1021/ic1011605. [DOI] [PubMed] [Google Scholar]
  47. Yan P.-F.; Lin P.-H.; Habib F.; Aharen T.; Murugesu M.; Deng Z.-P.; Li G.-M.; Sun W.-B. Series of Isostructural Planar Lanthanide Complexes [LnIII43-OH)2(mdeaH)2(piv)8] with Single Molecule Magnet Behavior for the Dy4 Analogue. Inorg. Chem. 2011, 50, 7059. 10.1021/ic200566y. [DOI] [PubMed] [Google Scholar]
  48. Guo P.-H.; Liu J.-L.; Zhang Z.-M.; Ungur L.; Chibotaru L. F.; Leng J.-D.; Guo F.-S.; Tong M.-L. The First {Dy4} Single-Molecule Magnet with a Toroidal Magnetic Moment in the Ground State. Inorg. Chem. 2012, 51, 1233. 10.1021/ic202650f. [DOI] [PubMed] [Google Scholar]
  49. Woodruff D. N.; Tuna F.; Bodensteiner M.; Winpenny R. E. P.; Layfield R. A. Single-Molecule Magnetism in Tetrametallic Terbium and Dysprosium Thiolate Cages. Organometallics 2013, 32, 1224. 10.1021/om3010096. [DOI] [Google Scholar]
  50. Acharya J.; Biswas S.; van Leusen J.; Kumar P.; Kumar V.; Narayanan R. S.; Kögerler P.; Chandrasekhar V. Exploring Tuning of Structural and Magnetic Properties by Modification of Ancillary β-Diketonate Co-ligands in a Family of Near-Linear Tetranuclear DyIII Complexes. Cryst. Growth Des. 2018, 18, 4004. 10.1021/acs.cgd.8b00358. [DOI] [Google Scholar]
  51. Langley S. K.; Chilton N. F.; Gass I. A.; Moubaraki B.; Murray K. S. Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation. Dalton Trans. 2011, 40, 12656. 10.1039/c1dt11750e. [DOI] [PubMed] [Google Scholar]
  52. Gass I. A.; Moubaraki B.; Langley S. K.; Batten S. R.; Murray K. S. A π–π 3D network of tetranuclear μ23-carbonato Dy(III) bis-pyrazolylpyridine clusters showing single molecule magnetism features. Chem. Commun. 2012, 48, 2089. 10.1039/c2cc16946k. [DOI] [PubMed] [Google Scholar]
  53. Xue S.; Zhao L.; Guo Y.-N.; Deng R.; Guo Y.; Tang J. A series of tetranuclear lanthanide complexes comprising two edge-sharing triangular units with field-induced slow magnetic relaxation for Dy4 species. Dalton Trans. 2011, 40, 8347. 10.1039/c1dt10654f. [DOI] [PubMed] [Google Scholar]
  54. Wu S.-Q.; Xie Q.-W.; An G.-Y.; Chen X.; Liu C.-M.; Cui A.-L.; Kou H.-Z. Supramolecular lanthanide metallogrids exhibiting field-induced single-ion magnetic behavior. Dalton Trans. 2013, 42, 4369. 10.1039/c3dt50265a. [DOI] [PubMed] [Google Scholar]
  55. Wang W.-M.; Wu Z.-L.; Zhang Y.-X.; Wei H.-Y.; Gao H.-L.; Cui J.-Z. Self-assembly of tetra-nuclear lanthanide clusters via atmospheric CO2 fixation: interesting solvent-induced structures and magnetic relaxation conversions. Inorg. Chem. Front. 2018, 5, 2346. 10.1039/c8qi00573g. [DOI] [Google Scholar]
  56. Liu C.-M.; Zhang D.-Q.; Hao X.; Zhu D.-B. Syntheses, Crystal Structures, and Magnetic Properties of Two p-tert-Butylsulfonylcalix[4]arene Supported Cluster Complexes with a Totally Disordered Ln4(OH)4 Cubane Core. Cryst. Growth Des. 2012, 12, 2948. 10.1021/cg300173t. [DOI] [Google Scholar]
  57. Liu C.-M.; Zhang D.-Q.; Zhu D.-B. A single-molecule magnet featuring a parallelogram [Dy4(OCH2−)4] core and two magnetic relaxation processes. Dalton Trans. 2013, 42, 14813. 10.1039/c3dt51785c. [DOI] [PubMed] [Google Scholar]
  58. Xu H.-B.; Zhong Y.-T.; Zhang W.-X.; Chen Z.-N.; Chen X.-M. Syntheses, structures and photophysical properties of heterotrinuclear Zn2Ln clusters (Ln = Nd, Eu, Tb, Er, Yb). Dalton Trans. 2010, 39, 5676. 10.1039/c000783h. [DOI] [PubMed] [Google Scholar]
  59. Liu C.-M.; Zhang D.-Q.; Hao X.; Zhu D.-B. Zn2Ln2 complexes with carbonate bridges formed by the fixation of carbon dioxide in the atmosphere: single-molecule magnet behaviour and magnetocaloric effect. Dalton Trans. 2020, 49, 2121. 10.1039/c9dt04480a. [DOI] [PubMed] [Google Scholar]
  60. Liu C.-M.; Zhang D.-Q.; Zhu D.-B. Hexanuclear [Ni2Ln4] clusters exhibiting enhanced magnetocaloric effect and slow magnetic relaxation. RSC Adv. 2014, 4, 53870. 10.1039/c4ra07882a. [DOI] [Google Scholar]
  61. Ferguson A.; Darwish A.; Graham K.; Schmidtmann M.; Parkin A.; Murrie M. Bis-Tris Propane as a New Polydentate Linker in the Synthesis of Iron(III) and Manganese(II/III) Complexes. Inorg. Chem. 2008, 47, 9742. 10.1021/ic8015386. [DOI] [PubMed] [Google Scholar]
  62. Ferguson A.; Schmidtmann M.; Brechin E. K.; Murrie M. Bis-tris propane as a new multidentate ligand for nickel- and cobalt-based spin clusters. Dalton Trans. 2011, 40, 334. 10.1039/c0dt01090a. [DOI] [PubMed] [Google Scholar]
  63. Milway V. A.; Tuna F.; Farrell A. R.; Sharp L. E.; Parsons S.; Murrie M. Directed Synthesis of {Mn18Cu6} Heterometallic Complexes. Angew. Chem., Int. Ed. 2013, 52, 1949. 10.1002/anie.201208781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Iman K.; Raza M. K.; Ansari M.; Monika A.; Ansari A.; Ahmad M.; Ahamad M. N.; Qasem K. M. A.; Hussain S.; Akhtar M. N.; Shahid M. Novel {Cu4} and {Cu4Cd6} clusters derived from flexible aminoalcohols: synthesis, characterization, crystal structures, and evaluation of anticancer properties. Dalton Trans. 2021, 50, 11941. 10.1039/d1dt00324k. [DOI] [PubMed] [Google Scholar]
  65. Heras Ojea M. J.; Milway V. A.; Velmurugan G.; Thomas L. H.; Coles S. J.; Wilson C.; Wernsdorfer W.; Rajaraman G.; Murrie M. Enhancement of TbIII-CuII Single-Molecule Magnet Performance through Structural Modification. Chem.—Eur. J. 2016, 22, 12839. 10.1002/chem.201601971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Liu C.-M.; Zhang D.-Q.; Zhu D.-B. Fine Tuning the Energy Barrier of Molecular Nanomagnets via Lattice Solvent Molecules. Sci. Rep. 2017, 7, 15483. 10.1038/s41598-017-15852-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Han S.-D.; Liu S.-J.; Wang Q.-L.; Miao X.-H.; Hu T.-L.; Bu X.-H. Synthesis and Magnetic Properties of a Series of Octanuclear [Fe6Ln2] Nanoclusters. Cryst. Growth Des. 2015, 15, 2253. 10.1021/acs.cgd.5b00024. [DOI] [Google Scholar]
  68. Casanova D.; Llunell M.; Alemany P.; Alvarez S. The Rich Stereochemistry of Eight-Vertex Polyhedra: a Continuous Shape Measures Study. Chem.—Eur. J. 2005, 11, 1479. 10.1002/chem.200400799. [DOI] [PubMed] [Google Scholar]
  69. Pecharsky V. K.; Gschneidner K. A. Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 1999, 200, 44. 10.1016/s0304-8853(99)00397-2. [DOI] [Google Scholar]
  70. Chen H.-M.; Wang W.-M.; Li X.-Q.; Chu X.-Y.; Nie Y.-Y.; Liu Z.; Huang S.-X.; Shen H.-Y.; Cui J.-Z.; Gao H.-L. Luminescence and magnetocaloric effect of Ln4 clusters (Ln = Eu, Gd, Tb, Er) bridged by CO32– deriving from the spontaneous fixation of carbon dioxide in the atmosphere. Inorg. Chem. Front. 2018, 5, 394. 10.1039/c7qi00658f. [DOI] [Google Scholar]
  71. Gao H.-L.; Zhou X.-P.; Bi Y.-X.; Shen H.-Y.; Wang W.-M.; Wang N.-N.; Chang Y.-X.; Zhang R.-X.; Cui J.-Z. A Dy4 single-molecule magnet and its Gd(iii), Tb(iii), Ho(iii), and Er(iii) analogues encapsulated by an 8-hydroxyquinoline Schiff base derivative and β-diketonate coligand. Dalton Trans. 2017, 46, 4669. 10.1039/c7dt00118e. [DOI] [PubMed] [Google Scholar]
  72. Wang W.-M.; Wu Z.-L.; Cui J.-Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: disparate magnetocaloric effects and single-molecule magnet behaviours. Dalton Trans. 2021, 50, 12931. 10.1039/d1dt01344k. [DOI] [PubMed] [Google Scholar]
  73. Rasamsetty A.; Das C.; Sañudo E. C.; Shanmugam M.; Baskar V. Effect of coordination geometry on the magnetic properties of a series of Ln2 and Ln4 hydroxo clusters. Dalton Trans. 2018, 47, 1726. 10.1039/c7dt00172j. [DOI] [PubMed] [Google Scholar]
  74. Sheikh J. A.; Adhikary A.; Konar S. Magnetic refrigeration and slow magnetic relaxation in tetranuclear lanthanide cages (Ln = Gd, Dy) with in situ ligand transformation. New J. Chem. 2014, 38, 3006. 10.1039/c4nj00349g. [DOI] [Google Scholar]
  75. Wang W.-M.; Wang M.-J.; Hao S.-S.; Shen Q.-Y.; Wang M.-L.; Liu Q.-L.; Guan X.-F.; Zhang X.-T.; Wu Z.-L. ‘Windmill’-shaped LnIII4 (LnIII = Gd and Dy) clusters: magnetocaloric effect and single-molecule-magnet behavior. New J. Chem. 2020, 44, 4631. 10.1039/c9nj05317d. [DOI] [Google Scholar]
  76. Lacelle T.; Brunet G.; Holmberg R. J.; Gabidullin B.; Murugesu M. Holmberg, Bulat Gabidullin, and Muralee Murugesu, Unprecedented Octanuclear DyIII Cluster Exhibiting Single-Molecule Magnet Behavior. Cryst. Growth Des. 2017, 17, 5044. 10.1021/acs.cgd.7b01015. [DOI] [Google Scholar]
  77. Long J.; Tolpygin A. O.; Cherkasov A. V.; Lyssenko K. A.; Guari Y.; Larionova J.; Trifonov A. A. Investigation of the slow relaxation of the magnetization dynamics in homoleptic ene-diamido organodysprosium(III) complexes with K+/arene interactions. CrystEngComm 2020, 22, 4260. 10.1039/d0ce00611d. [DOI] [Google Scholar]
  78. Long J.; Tolpygin A. O.; Cherkasov A. V.; Lyssenko K. A.; Guari Y.; Larionova J.; Trifonov A. A. Single-Molecule Magnet Behavior in Dy3+ Half-Sandwich Complexes Based on Ene-Diamido and Cp* Ligands. Organometallics 2019, 38, 748. 10.1021/acs.organomet.8b00901. [DOI] [Google Scholar]
  79. Long J.; Shestakov B. G.; Liu D.; Chibotaru L. F.; Guari Y.; Cherkasov A. V.; Fukin G. K.; Trifonov A. A.; Larionova J. An organolanthanide(iii) single-molecule magnet with an axial crystal-field: influence of the Raman process over the slow relaxation. Chem. Commun. 2017, 53, 4706. 10.1039/c7cc02213a. [DOI] [PubMed] [Google Scholar]
  80. Guo Y.-N.; Xu G.-F.; Gamez P.; Zhao L.; Lin S.-Y.; Deng R.; Tang J.; Zhang H.-J. Two-Step Relaxation in a Linear Tetranuclear Dysprosium(III) Aggregate Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2010, 132, 8538. 10.1021/ja103018m. [DOI] [PubMed] [Google Scholar]
  81. Langley S. K.; Chilton N. F.; Moubaraki B.; Murray K. S. Single-Molecule Magnetism in Three Related {CoIII2DyIII2}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Inorg. Chem. 2013, 52, 7183. 10.1021/ic400789k. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ao2c02155_si_001.pdf (775.6KB, pdf)

Articles from ACS Omega are provided here courtesy of American Chemical Society

RESOURCES