Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jun 21;27(4):607–614. doi: 10.1007/s12257-022-0044-6

Affinity Peptide-based Electrochemical Biosensor for the Highly Sensitive Detection of Bovine Rotavirus

Chae Hwan Cho 1, Tae Jung Park 2, Jong Pil Park 1,
PMCID: PMC9209633  PMID: 35755619

Abstract

Bovine diarrhea is a major concern in the global bovine industry because it can cause significant financial damage. Of the many potential infectious agents that can lead to bovine diarrhea, bovine rotavirus (BRV) is a particular problem due to its high transmissibility and infectivity. Therefore, it is important to prevent the proliferation of BRV using an early detection system. This study developed an affinity peptide-based electrochemical method for use as a rapid detection system for BRV. A BRV-specific peptide was identified via the phage display technique and chemically synthesized. The synthetic peptide was immobilized on a gold electrode through thiol-gold interactions. The performance of the BRV specific binding peptides was evaluated using square wave voltammetry. The developed detection system exhibited a low detection limit (5 copies/mL) and limit of quantitation (2.14 × 102 copies/mL), indicating that it is a promising sensor platform for the monitoring of BRV.

Keywords: bovine diarrhea, bovine rotavirus, phage display, affinity peptide, electrochemical sensor

Acknowledgements

This research was supported by the Chung-Ang University Graduate Research Scholarship, 2021. This study was also supported by the Animal Disease Management Technology Development Program, Ministry of Agriculture, Food and Rural Affairs (120090-2) (T.J. Park).

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Footnotes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Kim M W, Park H-J, Park C Y, Kim J H, Cho C H, Phan L, Park J P, Kailasa S K, Lee C-H, Park T J. Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus via signal enhancement by copper polyhedral nanoshells. RSC Adv. 2020;10:29759–29764. doi: 10.1039/D0RA03677C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Beksisa U, Melese E, Helen A, Tamirat S, Markos T, Temesgen K, Neima A. Antigen detection of bovine rotavirus infection in diarrheic crossbred dairy calves reared by Holeta Research Center, Oromiya Region Ethiopia. Biomed. J. Sci. Tech. Res. 2020;30:23242–23246. [Google Scholar]
  • 3.Cho Y-I, Yoon K-J. An overview of calf diarrhea — infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014;15:1–17. doi: 10.4142/jvs.2014.15.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kim W-I, Cho Y-I, Kang S-J, Hur T-Y, Jung Y-H, Kim N-S. Simultaneous detection of major pathogens causing bovine diarrhea by multiplex real-time PCR panel. J. Vet. Clin. 2012;29:377–383. [Google Scholar]
  • 5.Liu X, Yan N, Yue H, Wang Y, Zhang B, Tang C. Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. J. Vet. Sci. 2021;22:e69. doi: 10.4142/jvs.2021.22.e69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wang M, Yan Y, Wang R, Wang L, Zhou H, Li Y, Tang L, Xu Y, Jiang Y, Cui W, Qiao X. Simultaneous detection of bovine rotavirus, bovine parvovirus, and bovine viral diarrhea virus using a gold nanoparticle-assisted PCR assay with a dual-priming oligonucleotide system. Front. Microbiol. 2019;10:2884. doi: 10.3389/fmicb.2019.02884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Holland R E. Some infectious causes of diarrhea in young farm animals. Clin. Microbiol. Rev. 1990;3:345–375. doi: 10.1128/CMR.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Dhama K, Chauhan R S, Mahendran M, Malik S V. Rotavirus diarrhea in bovines and other domestic animals. Vet. Res. Commun. 2009;33:1–23. doi: 10.1007/s11259-008-9070-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kim J H, Cho C H, Shin J H, Hyun M S, Hwang E, Park T J, Park J P. Biomimetic isolation of affinity peptides for electrochemical detection of influenza virus antigen. Sens. Actuators B Chem. 2021;343:130161. doi: 10.1016/j.snb.2021.130161. [DOI] [Google Scholar]
  • 10.Hwang H J, Ryu M Y, Park C Y, Ahn J, Park H G, Choi C, Ha S-D, Park T J, Park J P. High sensitive and selective electrochemical biosensor: label-free detection of human norovirus using affinity peptide as molecular binder. Biosens. Bioelectron. 2017;87:164–170. doi: 10.1016/j.bios.2016.08.031. [DOI] [PubMed] [Google Scholar]
  • 11.Gerasimov J Y, Lai R Y. An electrochemical peptide-based biosensing platform for HIV detection. Chem. Commun. (Camb.) 2010;46:395–397. doi: 10.1039/B919070H. [DOI] [PubMed] [Google Scholar]
  • 12.Choudhary M, Arora K. Electrochemical biosensors for early detection of cancer. In: Khan R, Parihar A, Sanghi S K, editors. Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics. London, UK: Academic Press; 2022. pp. 123–151. [Google Scholar]
  • 13.Cho C H, Kim J H, Song D-K, Park T J, Park J P. An affinity peptide-incorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin. Biosens. Bioelectron. 2019;142:111482. doi: 10.1016/j.bios.2019.111482. [DOI] [PubMed] [Google Scholar]
  • 14.Pacheco J G, Rebelo P, Freitas M, Nouws H P A, Delerue-Matos C. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens. Actuators B Chem. 2018;273:1008–1014. doi: 10.1016/j.snb.2018.06.113. [DOI] [Google Scholar]
  • 15.Cho C H, Son S-Y, Bang J K, Jeon Y H, Park J P. Biophysical and electrochemical approaches for studying molecular recognition of IL-33 binding peptides identified via phage display. Anal. Chim. Acta. 2022;1197:339522. doi: 10.1016/j.aca.2022.339522. [DOI] [PubMed] [Google Scholar]
  • 16.Cho C H, Kim J H, Kim J, Yun J W, Park T J, Park J P. Re-engineering of peptides with high binding affinity to develop an advanced electrochemical sensor for colon cancer diagnosis. Anal. Chim. Acta. 2021;1146:131–139. doi: 10.1016/j.aca.2020.11.011. [DOI] [PubMed] [Google Scholar]
  • 17.Chen A, Shah B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal. Methods. 2013;5:2158–2173. doi: 10.1039/c3ay40155c. [DOI] [Google Scholar]
  • 18.Ben Hassine A, Raouafi N, Moreira F T C. Novel electrochemical molecularly imprinted polymer-based biosensor for Tau protein detection. Chemosensors. (Basel). 2021;9:238. doi: 10.3390/chemosensors9090238. [DOI] [Google Scholar]
  • 19.Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Li H, Dong J, Huang A, Fang T, Jiang Y, Zhu L, Lou X, Li S, Shao N. Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens. Bioelectron. 2018;110:162–167. doi: 10.1016/j.bios.2018.03.047. [DOI] [PubMed] [Google Scholar]
  • 20.Li J, Wang J, Guo X, Zheng Q, Peng J, Tang H, Yao S. Carbon nanotubes labeled with aptamer and horseradish peroxidase as a probe for highly sensitive protein biosensing by postelectropolymerization of insoluble precipitates on electrodes. Anal. Chem. 2015;87:7610–7617. doi: 10.1021/acs.analchem.5b00640. [DOI] [PubMed] [Google Scholar]
  • 21.Puiu M, Idili A, Moscone D, Ricci F, Bala C. A modular electrochemical peptide-based sensor for antibody detection. Chem. Commun. (Camb.) 2014;50:8962–8965. doi: 10.1039/C4CC02858A. [DOI] [PubMed] [Google Scholar]
  • 22.Lin D, Pillai R G, Lee W E, Jemere A B. An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Mikrochim. Acta. 2019;186:169. doi: 10.1007/s00604-019-3282-3. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES