Skip to main content
Scientific Reports logoLink to Scientific Reports
letter
. 2022 Jun 21;12:10415. doi: 10.1038/s41598-022-12873-3

The breakup of a long-period comet is not a likely match to the Chicxulub impactor

Steven J Desch 1,, Alan P Jackson 1, Jessica L Noviello 2, Ariel D Anbar 1,3
PMCID: PMC9213478  PMID: 35729176

arising from: A. Siraj and A. Loeb; Scientific Reports https://doi.org/10.1038/s41598-021-82320-2 (2021).

Introduction

Since the discovery of Ir in the clay layer at the K-Pg boundary1, scientists have sought to constrain the origin of the extraterrestrial impactor that triggered the end-Cretaceous mass extinction of the non-avian dinosaurs and other species. While the first proposal was for an asteroid1, for a while some theories invoked a cometary impactor to explain perceived periodicities in mass extinctions2. Such models have long been disfavored by the mass of Ir in the layer, inferred to be 2.0-2.8×1011g3. The size of the Chicxulub crater leads to an estimated asteroid impactor diameter, D10km1,4,5. Comets typically impact at higher speeds, reducing the impactor mass for the same impact energy4. Although it is increasingly recognized that a continuum exists between comets and asteroids, ’comets’ are considered to be more ice-rich (estimates for 67P/Churyumov-Gerasimenko are about 20%;6), implying lower Ir contents per impactor mass. A carbonaceous chondrite-like asteroid of the appropriate size would likely deliver 2.3×1011g of Ir4, in the center of the estimated mass range of the global Ir layer; but a comet would only deliver 0.1×1011g, because it would be less massive. Although these conclusions are long standing, Siraj and Loeb7 have recently argued anew in favor of a comet over an asteroid, based on dynamical and geochemical evidence. Here we demonstrate that their arguments are based on misinterpretations of the literature, and that an asteroid is in fact still highly favored over a comet.

Geochemical arguments

Siraj and Loeb7 cite good evidence that the Chicxulub impactor was carbonaceous chondrite-like, but then assert that 100% of comets satisfy this constraint but only 10% of asteroids do. This assertion conflates carbonaceous chondrites with specific types (CB, CH, CI, CM, CO, CR, CV) of carbonaceous chondrites. It underestimates the fraction of asteroids that match the Chicxulub impactor’s composition, and/or overestimates the fraction of comets that would.

Siraj and Loeb7, citing Bottke et al.8, claim only 30% of asteroids are C-type (spectrally resembling carbonaceous chondrites) and appear to imply that only 40% of carbonaceous chondrites are the specific type CM associated with the impactor. In fact the fraction of near-Earth asteroids that are C-type is 40-50%9. As well, the Chicxulub impactor could be CM- or CR-like. Siraj and Loeb7 cite evidence from a fossil meteorite in the K-Pg clay layer, which demands the impactor be CV, CO, CR, or possibly CM, but not CI10. They also cite evidence from the ϵ54Cr isotopic anomaly in the K-Pg clay clayer, which argues the impactor was CM (and CR, CH, and CB have the same ϵ54Cr), but argues against CV, CO, and CI11. The authors could have cited equally strong arguments from platinum-group element patterns, which favor CM or CO (and allow CR), but rule out CI12. The composition of the Chicxulub impactor is a match to either CM or CR chondrites. Siraj and Loeb7 argue that CM chondrites comprise a fraction 40% of all carbonaceous chondrites, based on statistics of intact falls; but a larger fraction of C-type asteroids may match CM or CR chondrites. At a minimum, 40-50% of near-Earth asteroids are carbonaceous chondrite-like, and >20% of asteroids striking Earth match the specific composition of the Chicxulub impactor.

Siraj and Loeb7 claim 100% of comets are carbonaceous chondrite-like, which may be loosely true; but comets are not definitively associated with any particular subtype of carbonaceous chondrite. They are most strongly associated with carbonaceous chondrites of type CI, based on their low albedo, friability, lack of chondrules, presence of anhydrous silicates, and low impact rate on Earth13. A comet-like origin has been argued for CI chondrites like Orgueil14, and indeed the reflectance spectrum of the refractory crust of 67P/Churyumov-Gerasimenko is most similar to the insoluble organic material of Orgueil15. There nevertheless remain significant differences between 67P and CI chondrites and carbonaceous chondrites in general15, and comets do not need to conform to any carbonaceous chondrite; but of them, they most closely resemble CI chondrites. Notably, none of the lines of geochemical evidence above is consistent with CI chondrites, indicating that while 100% of comets may be carbonaceous chondrite-like, possibly 0% of them match the specific composition of the Chicxulub impactor in detail.

The net effect is that Siraj and Loeb7 applied differing standards to the geochemical evidence for asteroids and comets. If the impactor must simply be carbonaceous chondrite-like, then comets are more likely (for a given impact rate) by a factor of 2, not 10. If the impactor must specifically match a CM or CR composition, then >20% of asteroids provide a match, but perhaps no comets do.

Crucially, the mass of Ir in the clay layer likewise is a match to an asteroidal impactor, but not a comet.

Dynamical arguments

Siraj and Loeb7 downplay the frequency with which asteroids impact Earth, and overestimate the likelihood of a comet impact. The authors state that the Chicxulub impact was the single largest impact in the last 250 Myr, and that asteroids with D=10 km should impact the Earth with mean rate once per 350 Myr. Therefore by their own numbers the probability of a D>10 km asteroid impacting Earth in the last 250 Myr is >50%. Whatever the probability of a comet impact, an asteroid impactor is a probable event.

The main point of Siraj and Loeb7 is that a significant fraction, 20%, of long-period comets (LPCs) impacting the Earth will have first passed through the Sun’s Roche limit and fragmented into a number, N, of smaller comets, potentially increasing the probability one will strike Earth. A comet N times more massive than the final Chicxulub impactor is rarer than an undisrupted LPC with the size of the Chicxulub impactor, by a factor of (N1/3)1-q, where q2.0-2.7; but because there are more fragments, this would increase the rate of Chicxulub-scale impactors by a factor 0.2×N×N(1-q)/3, which is 15 for q=2 and N=630 (equivalent to a 60 km-diameter comet breaking up into ones with diameter 7 km). The authors state that undisrupted LPCs the size of the Chicxulub impactor (D=7 km) are expected to impact Earth once every 3.8–11 Gyr, so only if N103, enhancing the fluxes by factors >15, is the collision timescale < 250 Myr and comparable to asteroids.

Despite its central importance, the choice of N630 appears unjustified. The analytical treatment of Hahn & Rettig16 shows the number of fragments generated is fixed during the encounter, by the relative timescales of spreading and gravitational contraction, which are functions of the comet’s density, ρ0, and its perihelion distance, r0. The contraction timescale, tcontr, in units of the encounter timescale, τ=(Gρc)-1/2, is tcontr/τ0.94(ρc/ρ0)1/2N1/2, where ρc=(1M)/r03. The spreading timescale in units of the encounter timescale is found by numerical simulation and appears to be tspread/τ0.7N0.85, assuming the dimensionless treatment applies to the Sun as well as Jupiter. A disrupted comet coalesces into fragments when these timescales are equal, which is when N2.3(ρc/ρ0)1.43. The closer to the Sun the comet penetrates, the more fragments are produced, but the minimum value of r0, 1R, corresponds to ρc=5.9gcm-3. Assuming the authors’ ρ0=0.7gcm-3, the maximum number of fragments that can be produced by tidal disruption is 50, for comets unrealistically skimming the Sun’s photosphere. Assuming a more typical r00.7× the Roche limit, N12 is more likely. That this is similar to the number of fragments produced in the tidal disruption of Shoemaker-Levy 9 is unsurprising since Jupiter and the Sun are of similar density. Note that17, cited by Siraj and Loeb7 for cometary density, actually give a range of 0.5–0.7 g cm-3 and data from the Rosetta spacecraft has shown 67P/Churyumov-Gerasimenko to have a density of 0.538 g cm-318. The estimate N103 made by Siraj and Loeb7 appears to be based on a misinterpretation of Hahn and Rettig16, somehow incorrectly and mistakenly setting N equal to t/τ, where t is the time for the fragments to reach Earth.

In addition, applying the formalism of Hahn and Rettig16 to the case of a D=60 km comet rounding the Sun, the length of the debris chain once it reaches Earth would be roughly 50 Earth diameters. Earth would have to intercept roughly 1/50 of the fragments, so if there were 630 fragments in the debris chain, Earth would intercept roughly 13 of them. This would demand that the Chicxulub impact be one of a chain of 13 equally large craters on Earth, which is not observed.

Considering observed instances of tidal disruption, the tidal disruption of comet Shoemaker-Levy 9 by Jupiter produced roughly 20 fragments. Similarly, 13 crater chains on Ganymede and Callisto have been interpreted as resulting from impacts by tidally disrupted comets, with each consisting of between 6 and 25 craters (with a mean of 11)19. Perhaps the most directly relevant to the case at hand are the sungrazing comets. The Kreutz family of sungrazing comets has 9 known large members, believed to have been created through a succession of disruption events over the last few thousand years20,21. There are many more small (<100 m diameter) members of the Kreutz family, but these account for a small fraction of the total mass22. All of the available evidence suggests that tidal disruption events produce a small number, nowhere near 630, of large fragments.

Summary

Siraj and Loeb7 make a valid point that a Chicxulub-scale cometary impactor (D=7 km) may be not quite as uncommon as previously thought, because some fraction of comets may be tidally disrupted by passage within the Sun’s Roche limit. Similar ideas were expressed 30 years ago by Bailey et al.23. But even setting q=2 and r0=1R, so that N=50, the enhancement in flux is only a factor <4; and using the more likely N=12, the enhancement is only a factor of 2. The mean timescale for an impact with a Chicxulub-scale comet is most likely >2 Gyr, while the mean timescale with an asteroid remains 350 Myr.

Siraj and Loeb7 effectively applied different standards to the geochemical evidence for comets and asteroids. If only a loose match to a carbonaceous chondrite is demanded, then comets are only a factor of 2, not 10, more likely than asteroids (for the same impact rate). If it is demanded that the impactors match a CM or CR carbonaceous chondrite composition, then >20% of asteroids, but possibly 0% of comets, are a match. As well, Siraj and Loeb7 cite Alvarez et al.1 but do not even discuss the evidence from the iridium in the K-Pg clay layer that is the point of that paper, which favors an asteroidal impactor but strongly disfavors a comet, which only supplies about 4% as much iridium as an asteroid4.

There is a >50% probability a D=10 km asteroid would have hit the Earth in the last 250 Myr. Among Earth-crossing asteroids, 40-50% are C-type, associated with carbonaceous chondrites. At least 40% of C-type asteroids, possibly more, will be of the type CM or CR that match the Chicxulub impactor. In contrast, even after including tidal disruption, the mean timescale for impacts by D=7 km comets is >2 Gyr, in tension with the recency of the Chicxulub impact, as there is only a 10% probability of such an impact in the last 250 Myr. Because of the flaws in their interpretation of the literature, the dynamical and geochemical arguments presented by Siraj and Loeb7 do not change the consensus that an asteroid, not a comet, struck the Earth 66 Myr ago.

Author contributions

S.D. led the writing of this manuscript. A.J., J.N., and A.A. contributed ideas. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Alvarez LW, Alvarez W, Asaro F, Michel HV. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980;208:1095–1108. doi: 10.1126/science.208.4448.1095. [DOI] [PubMed] [Google Scholar]
  • 2.Rampino MR, Stothers RB. Terrestrial mass extinctions, cometary impacts and the sun’s motion perpendicular to the galactic plane. Nature. 1984;308:709–712. doi: 10.1038/308709a0. [DOI] [Google Scholar]
  • 3.Artemieva N, Morgan J. Modeling the formation of the K-Pg boundary layer. Icarus. 2009;201:768–780. doi: 10.1016/j.icarus.2009.01.021. [DOI] [Google Scholar]
  • 4.Brittan J. Iridium at the K/T boundary—the impact strikes back. Astron. Geophys. 1997;38:19–21. doi: 10.1093/astrog/38.4.19. [DOI] [Google Scholar]
  • 5.Ivanov BA. Numerical modeling of the largest terrestrial meteorite craters. Solar Syst. Res. 2005;39:381–409. doi: 10.1007/s11208-005-0051-0. [DOI] [Google Scholar]
  • 6.Choukroun M, et al. Dust-to-gas and refractory-to-ice mass ratios of comet 67P/Churyumov-Gerasimenko from Rosetta observations. Space Sci. Rev. 2020;216:44. doi: 10.1007/s11214-020-00662-1. [DOI] [Google Scholar]
  • 7.Siraj A, Loeb A. Breakup of a long-period comet as the origin of the dinosaur extinction. Sci. Rep. 2021;11:3803. doi: 10.1038/s41598-021-82320-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bottke WF, Vokrouhlický D, Nesvorný D. An asteroid breakup 160Myr ago as the probable source of the K/T impactor. Nature. 2007;449:48–53. doi: 10.1038/nature06070. [DOI] [PubMed] [Google Scholar]
  • 9.Morbidelli A, et al. Debiased albedo distribution for Near Earth Objects. Icarus. 2020;340:113631. doi: 10.1016/j.icarus.2020.113631. [DOI] [Google Scholar]
  • 10.Kyte FT. A meteorite from the Cretaceous/Tertiary boundary. Nature. 1998;396:237–239. doi: 10.1038/24322. [DOI] [Google Scholar]
  • 11.Trinquier A, Birck JL, Jean Allègre C. The nature of the KT impactor. A 54Cr reappraisal. Earth Planet. Sci. Lett. 2006;241:780–788. doi: 10.1016/j.epsl.2005.11.006. [DOI] [Google Scholar]
  • 12.Goderis S, et al. Reevaluation of siderophile element abundances and ratios across the Cretaceous-Paleogene (K-Pg) boundary: Implications for the nature of the projectile. Geochim. Cosmochim. Acta. 2013;120:417–446. doi: 10.1016/j.gca.2013.06.010. [DOI] [Google Scholar]
  • 13.Campins H, Swindle TD. Expected characteristics of cometary meteorites. Meteoritics Planet. Sci. 1998;33:1201–1211. doi: 10.1111/j.1945-5100.1998.tb01305.x. [DOI] [Google Scholar]
  • 14.Gounelle M, Spurný P, Bland PA. The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics Planet. Sci. 2006;41:135–150. doi: 10.1111/j.1945-5100.2006.tb00198.x. [DOI] [Google Scholar]
  • 15.Quirico E, et al. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus. 2016;272:32–47. doi: 10.1016/j.icarus.2016.02.028. [DOI] [Google Scholar]
  • 16.Hahn JM, Rettig TW. Tidal disruption of strengthless rubble piles—a dimensional analysis. Planet. Space Sci. 1998;46:1677–1682. doi: 10.1016/S0032-0633(98)00055-5. [DOI] [Google Scholar]
  • 17.Weissman PR, Lowry SC. Structure and density of cometary nuclei. Meteoritics Planet. Sci. 2008;43:1033–1047. doi: 10.1111/j.1945-5100.2008.tb00691.x. [DOI] [Google Scholar]
  • 18.Pätzold M, et al. The Nucleus of comet 67P/Churyumov-Gerasimenko—Part I: The global view—nucleus mass, mass-loss, porosity, and implications. Monthly Notices R. Astron. Soc. 2019;483:2337–2346. doi: 10.1093/mnras/sty3171. [DOI] [Google Scholar]
  • 19.Schenk PM, Asphaug E, McKinnon WB, Melosh HJ, Weissman PR. Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus. 1996;121:249–274. doi: 10.1006/icar.1996.0084. [DOI] [Google Scholar]
  • 20.Sekanina Z, Chodas PW. Fragmentation hierarchy of bright sungrazing comets and the birth and orbital evolution of the Kreutz system. I. Two-superfragment model. Astrophys. J. 2004;607:620–639. doi: 10.1086/383466. [DOI] [Google Scholar]
  • 21.Jones GH, et al. The science of sungrazers, sunskirters, and other near-sun comets. Space Sci. Rev. 2018;214:20. doi: 10.1007/s11214-017-0446-5. [DOI] [Google Scholar]
  • 22.Knight MM, et al. Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005. Astron. J. 2010;139:926–949. doi: 10.1088/0004-6256/139/3/926. [DOI] [Google Scholar]
  • 23.Bailey ME, Chambers JE, Hahn G. Origin of sungrazers—A frequent cometary end-state. Astron. Astrophys. 1992;257:315–322. [Google Scholar]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES