Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jun 29;27(3):295–305. doi: 10.1007/s12257-021-0355-z

Recent Progress in Microalgal Squalene Production and Its Cosmetic Application

Çağla Yarkent 1, Suphi S Oncel 1,
PMCID: PMC9244377  PMID: 35789811

Abstract

Squalene, [oxidized form squalane] is a terpenoid with biological activity that produced by animals and plants. In the human body, a significant excretion named as sebum includes squalene in 12 percent. This bioactive compound shows anti-inflammatory, detoxifying, moisturizing and antioxidant effects on the human body. In addition to having these properties, it is known that squalene production decreases as less sebum is produced with age. Because of that, the need for supplementation of squalene through products has arisen. As a result, squalene production has been drawn attention due to its many application possibilities by cosmetic, cosmeceutical and pharmaceutical fields. At this point, approximately 3,000 of sharks, the major and the most popular source of squalene must be killed to obtain 1 ton of squalene. These animals are on the verge of extinction. This situation has caused to focus on finding microalgae strains, which are sustainable producers of squalene as alternative to sharks. This review paper summarizes the recent progresses in the topic of squalene. For this purpose, it contains information on squalene producers, microalgal squalene production and cosmetic evaluation of squalene.

Keywords: squalene, microalgae, microalgal process, bioactive compound, cosmetics

Acknowledgements

This study was funded by TUBITAK (The Scientific and Technological Research Council of Turkey), grant number 221M029 as a part of a PhD thesis in Ege University Bioengineering Department, Microalgal Bioprocess Research Group.

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Footnotes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Rosales-Garcia T, Jimenez-Martinez C, Davila-Ortiz G. Squalene extraction: biological sources and extraction methods. Int. J. Environ. Agric. Biotechnol. 2017;2:1662–1670. [Google Scholar]
  • 2.Patel A, Rova U, Christakopoulos P, Matsakas L. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Sci. Total Environ. 2020;736:139691. doi: 10.1016/j.scitotenv.2020.139691. [DOI] [PubMed] [Google Scholar]
  • 3.Kim S K, Karadeniz F. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 2012;65:223–233. doi: 10.1016/B978-0-12-416003-3.00014-7. [DOI] [PubMed] [Google Scholar]
  • 4.Zhang K, Chen L, Liu J, Gao F, He R, Chen W, Guo W, Chen S, Li D. Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme Microb. Technol. 2017;102:9–15. doi: 10.1016/j.enzmictec.2017.03.007. [DOI] [PubMed] [Google Scholar]
  • 5.Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour. Technol. 2017;244:1269–1280. doi: 10.1016/j.biortech.2017.05.002. [DOI] [PubMed] [Google Scholar]
  • 6.Fagundes M B, Alvarez-Rivera G, Vendruscolo R G, Voss M, da Silva P A, Barin J S, Jacob-Lopes E, Zepka L Q, Wagner R. Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass. Talanta. 2021;224:121793. doi: 10.1016/j.talanta.2020.121793. [DOI] [PubMed] [Google Scholar]
  • 7.Kozlowska J, Prus W, Stachowiak N. Microparticles based on natural and synthetic polymers for cosmetic applications. Int. J. Biol. Macromol. 2019;129:952–956. doi: 10.1016/j.ijbiomac.2019.02.091. [DOI] [PubMed] [Google Scholar]
  • 8.Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Pereira A G, Garcia-Oliveira P, Carpena M, Prieto M A, Simal-Gandara J. Metabolites from macroalgae and its applications in the cosmetic industry: a circular economy approach. Resources. 2020;9:101. doi: 10.3390/resources9090101. [DOI] [Google Scholar]
  • 9.Wang H M D, Chen C C, Huynh P, Chang J S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015;184:355–362. doi: 10.1016/j.biortech.2014.12.001. [DOI] [PubMed] [Google Scholar]
  • 10.Joshi S, Kumari R, Upasani V N. Applications of algae in cosmetics: an overview. Int. J. Innov. Res. Sci. Eng. Technol. 2018;7:1269–1278. [Google Scholar]
  • 11.Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules. 2016;21:551. doi: 10.3390/molecules21050551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dhawan S, Sharma P, Nanda S. Cosmetic nanoformulations and their intended use. In: Nanda A, Nanda S, Nguyen T A, Rajendran S, Slimani Y, editors. Nanocosmetics: Fundamentals, Applications and Toxicity Micro and Nano Technologies. Amsterdam, Netherlands: Elsevier; 2020. pp. 141–169. [Google Scholar]
  • 13.Fagundes M B, Vendruscolo R G, Wagner R. Sterols from microalgae. In: Jacob-Lopes E, Maroneze M M, Queiroz M I, Zepka L Q, editors. Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds. Amsterdam, Netherlands: Academic Press; 2020. pp. 573–596. [Google Scholar]
  • 14.Randhir A, Laird D W, Maker G, Trengove R, Moheimani N R. Microalgae: a potential sustainable commercial source of sterols. Algal Res. 2020;46:101772. doi: 10.1016/j.algal.2019.101772. [DOI] [Google Scholar]
  • 15.Andersen F A. Final report on the safety assessment of 4-Chlororesorcinol. J. Am. Coll. Toxicol. 1996;15:284–294. doi: 10.3109/10915819609008720. [DOI] [Google Scholar]
  • 16.Ryu B M, Himaya S W A, Kim S-K. Applications of microalgae-derived active ingredients as cosmeceuticals. In: Kim S-K, editor. Handbook of Marine Microalgae: Biotechnology Advances. Amsterdam, Netherlands: Academic Press; 2015. pp. 309–316. [Google Scholar]
  • 17.Lozano-Grande M A, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala A L. Plant sources, extraction methods, and uses of squalene. Int. J. Agron. 2018;2018:1829160. doi: 10.1155/2018/1829160. [DOI] [Google Scholar]
  • 18.Hong W K, Heo S Y, Park H M, Kim C H, Sohn J H, Kondo A, Seo J W. Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101. J. Microbiol. Biotechnol. 2013;23:759–765. doi: 10.4014/jmb.1212.12023. [DOI] [PubMed] [Google Scholar]
  • 19.Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog. Lipid Res. 2019;76:101007. doi: 10.1016/j.plipres.2019.101007. [DOI] [PubMed] [Google Scholar]
  • 20.Aasen I M, Ertesvåg H, Heggeset T M B, Liu B, Brautaset T, Vadstein O, Ellingsen T E. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl. Microbiol. Biotechnol. 2016;100:4309–4321. doi: 10.1007/s00253-016-7498-4. [DOI] [PubMed] [Google Scholar]
  • 21.Yarkent Ç, Gürlek C, Oncel S S. Potential of microalgal compounds in trending natural cosmetics: a review. Sustain. Chem. Pharm. 2020;17:100304. doi: 10.1016/j.scp.2020.100304. [DOI] [Google Scholar]
  • 22.Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds compounds: an ecosustainable source of cosmetic ingredients? Cosmetics. 2021;8:8. doi: 10.3390/cosmetics8010008. [DOI] [Google Scholar]
  • 23.Czaplicki S, Ogrodowska D, Zadernowski R, Derewiaka D. Characteristics of biologically-active substances of amaranth oil obtained by various techniques. Pol. J. Food Nutr. Sci. 2012;62:235–239. doi: 10.2478/v10222-012-0054-8. [DOI] [Google Scholar]
  • 24.Yin F W, Guo D S, Ren L J, Ji X J, Huang H. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 2018;266:482–487. doi: 10.1016/j.biortech.2018.06.109. [DOI] [PubMed] [Google Scholar]
  • 25.Bagul V P, Annapure U S. Effect of sequential recycling of spent media wastewater on docosahexaenoic acid production by newly isolated strain Aurantiochytrium sp. ICTFD5. Bioresour. Technol. 2020;306:123153. doi: 10.1016/j.biortech.2020.123153. [DOI] [PubMed] [Google Scholar]
  • 26.Song X, Zhang X, Kuang C, Zhu L, Zhao X. Batch kinetics and modeling of DHA production by S. limacinum OUC88. Food Bioprod. Process. 2010;88:26–30. doi: 10.1016/j.fbp.2009.12.004. [DOI] [Google Scholar]
  • 27.Shirasaka N, Hirai Y, Nakabayashi H, Yoshizumi H. Effect of cyanocobalamin and p-toluic acid on the fatty acid composition of Schizochytrium limacinum (Thraustochytriaceae, Labyrinthulomycota) Mycoscience. 2005;46:358–363. doi: 10.1007/S10267-005-0259-3. [DOI] [Google Scholar]
  • 28.Weete J D, Kim H, Gandhi S R, Wang Y, Dute R. Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185. Lipids. 1997;32:839–845. doi: 10.1007/s11745-997-0107-z. [DOI] [PubMed] [Google Scholar]
  • 29.Spanova M, Daum G. Squalene — biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 2011;113:1299–1320. doi: 10.1002/ejlt.201100203. [DOI] [Google Scholar]
  • 30.Byreddy A R, Gupta A, Barrow C J, Puri M. Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar. Drugs. 2015;13:5111–5127. doi: 10.3390/md13085111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Patil K P, Gogate P R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem. Eng. J. 2015;268:187–196. doi: 10.1016/j.cej.2015.01.050. [DOI] [Google Scholar]
  • 32.Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Cigliano R A, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Res. 2018;35:125–141. doi: 10.1016/j.algal.2018.08.018. [DOI] [Google Scholar]
  • 33.Li D, Zhang K, Chen L, Ding M, Zhao M, Chen S. Selection of Schizochytrium limacinum mutants based on butanol tolerance. Electron. J. Biotechnol. 2017;30:58–63. doi: 10.1016/j.ejbt.2017.08.009. [DOI] [Google Scholar]
  • 34.Panchal B M, Padul M V, Kachole M S. Optimization of biodiesel from dried biomass of Schizochytrium limacinum using methanesulfonic acid-DMC. Renew. Energy. 2016;86:1069–1074. doi: 10.1016/j.renene.2015.09.027. [DOI] [Google Scholar]
  • 35.Kalogeropoulos N, Chiou A, Gavala E, Christea M, Andrikopoulos N K. Nutritional evaluation and bioactive microconstituents (carotenoids, tocopherols, sterols and squalene) of raw and roasted chicken fed on DHA-rich microalgae. Food Res. Int. 2010;43:2006–2013. doi: 10.1016/j.foodres.2010.05.018. [DOI] [Google Scholar]
  • 36.Ishitsuka K, Koide M, Yoshida M, Segawa H, Leproux P, Couderc V, Watanabe M M, Kano H. Identification of intracellular squalene in living algae, Aurantiochytrium mangrovei with hyper-spectral coherent anti-Stokes Raman microscopy using a sub-nanosecond supercontinuum laser source. J. Raman Spectrosc. 2017;48:8–15. doi: 10.1002/jrs.4979. [DOI] [Google Scholar]
  • 37.Ren L J, Ji X J, Huang H, Qu L, Feng Y, Tong Q Q, Ouyang P K. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 2010;87:1649–1656. doi: 10.1007/s00253-010-2639-7. [DOI] [PubMed] [Google Scholar]
  • 38.Du F, Wang Y Z, Xu Y S, Shi T Q, Liu W Z, Sun X M, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol. Adv. 2021;48:107725. doi: 10.1016/j.biotechadv.2021.107725. [DOI] [PubMed] [Google Scholar]
  • 39.Nguyen H C, Su C-H, Yu Y-K, Huong D T M. Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Ind. Crops Prod. 2018;121:99–105. doi: 10.1016/j.indcrop.2018.05.005. [DOI] [Google Scholar]
  • 40.Estudillo-del Castillo C, Gapasin R S, Leaño E M. Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture. 2009;293:57–61. doi: 10.1016/j.aquaculture.2009.04.008. [DOI] [Google Scholar]
  • 41.Yamasaki T, Aki T, Mori Y, Yamamoto T, Shinozaki M, Kawamoto S, Ono K. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls. J. Biosci. Bioeng. 2007;104:200–206. doi: 10.1263/jbb.104.200. [DOI] [PubMed] [Google Scholar]
  • 42.García-Ortega A, Kissinger K R, Trushenski J T. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture. 2016;452:1–8. doi: 10.1016/j.aquaculture.2015.10.020. [DOI] [Google Scholar]
  • 43.Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland A K, Kumar G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021;341:1–20. doi: 10.1016/j.jbiotec.2021.09.003. [DOI] [PubMed] [Google Scholar]
  • 44.Paulo M C, Cardoso C, Coutinho J, Castanho S, Bandarra N M. Microalgal solutions in the cultivation of rotifers and artemia: scope for the modulation of the fatty acid profile. Heliyon. 2020;6:e05415. doi: 10.1016/j.heliyon.2020.e05415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.de Lima Valença R, da Silva Sobrinho A G, Borghi T H, Meza D A R, de Andrade N, Silva L G, Bezerra L R. Performance, carcass traits, physicochemical properties and fatty acids composition of lamb’s meat fed diets with marine microalgae meal (Schizochytrium sp.) Livest. Sci. 2021;243:104387. doi: 10.1016/j.livsci.2020.104387. [DOI] [Google Scholar]
  • 46.Kusmayadi A, Leong Y K, Yen H W, Huang C Y, Chang J S. Microalgae as sustainable food and feed sources for animals and humans — biotechnological and environmental aspects. Chemosphere. 2021;271:129800. doi: 10.1016/j.chemosphere.2021.129800. [DOI] [PubMed] [Google Scholar]
  • 47.Yokoyama R, Honda D. Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience. 2007;48:199–211. doi: 10.1007/S10267-006-0362-0. [DOI] [Google Scholar]
  • 48.Leyland B, Leu S, Boussiba S. Are Thraustochytrids algae? Fungal Biol. 2017;121:835–840. doi: 10.1016/j.funbio.2017.07.006. [DOI] [PubMed] [Google Scholar]
  • 49.Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res. 1998;102:439–448. doi: 10.1017/S0953756297005170. [DOI] [Google Scholar]
  • 50.Dellero Y, Rose S, Metton C, Morabito C, Lupette J, Jouhet J, Maréchal E, Rébeillé F, Amato A. Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer. Environ. Microbiol. 2018;20:3057–3068. doi: 10.1111/1462-2920.14346. [DOI] [PubMed] [Google Scholar]
  • 51.Ganuza E, Yang S, Amezquita M, Giraldo-Silva A, Andersen R A. Genomics, biology and phylogeny Aurantiochytrium acetophilum sp. nov. (Thraustrochytriaceae), including first evidence of sexual reproduction. Protist. 2019;170:209–232. doi: 10.1016/j.protis.2019.02.004. [DOI] [PubMed] [Google Scholar]
  • 52.Fossier Marchan L, Lee Chang K J, Nichols P D, Mitchell W J, Polglase J L, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol. Adv. 2018;36:26–46. doi: 10.1016/j.biotechadv.2017.09.003. [DOI] [PubMed] [Google Scholar]
  • 53.Tani N, Yoneda K, Suzuki I. The effect of thiamine on the growth and fatty acid content of Aurantiochytrium sp. Algal Res. 2018;36:57–66. doi: 10.1016/j.algal.2018.10.012. [DOI] [Google Scholar]
  • 54.Reddy L H, Couvreur P. Squalene: a natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009;61:1412–1426. doi: 10.1016/j.addr.2009.09.005. [DOI] [PubMed] [Google Scholar]
  • 55.Liu T-T, Xiao H, Xiao J-H, Zhong J-J. Impact of oxygen supply on production of terpenoids by microorganisms: state of the art. Chin. J. Chem. Eng. 2021;30:46–53. doi: 10.1016/j.cjche.2020.12.006. [DOI] [Google Scholar]
  • 56.Yu X J, Yu Z Q, Liu Y L, Sun J, Zheng J Y, Wang Z. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Appl. Biochem. Biotechnol. 2015;177:1229–1240. doi: 10.1007/s12010-015-1809-6. [DOI] [PubMed] [Google Scholar]
  • 57.Lewis T E, Nichols P D, McMeekin T A. Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar. Biotechnol. (N.Y.) 2001;3:439–447. doi: 10.1007/s10126-001-0016-3. [DOI] [PubMed] [Google Scholar]
  • 58.Patel A, Rova U, Christakopoulos P, Matsakas L. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnol. Biofuels. 2019;12:255. doi: 10.1186/s13068-019-1593-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Patel A, Liefeldt S, Rova U, Christakopoulos P, Matsakas L. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sci. Rep. 2020;10:1992. doi: 10.1038/s41598-020-58728-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Ren L J, Huang H, Xiao A H, Lian M, Jin L J, Ji X J. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst. Eng. 2009;32:837–843. doi: 10.1007/s00449-009-0310-4. [DOI] [PubMed] [Google Scholar]
  • 61.Fan K W, Aki T, Chen F, Jiang Y. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microbiol. Biotechnol. 2010;26:1303–1309. doi: 10.1007/s11274-009-0301-2. [DOI] [PubMed] [Google Scholar]
  • 62.Ethier S, Woisard K, Vaughan D, Wen Z. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour. Technol. 2011;102:88–93. doi: 10.1016/j.biortech.2010.05.021. [DOI] [PubMed] [Google Scholar]
  • 63.Qu L, Ren L J, Sun G N, Ji X J, Nie Z K, Huang H. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst. Eng. 2013;36:1905–1912. doi: 10.1007/s00449-013-0966-7. [DOI] [PubMed] [Google Scholar]
  • 64.Çaylak B, Vardar Sukan F. Comparison of different production processes for bioethanol. Turk. J. Chem. 1998;22:351–359. [Google Scholar]
  • 65.Rosa S M, Soria M A, Vélez C G, Galvagno M A. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour. Technol. 2010;101:2367–2374. doi: 10.1016/j.biortech.2009.11.056. [DOI] [PubMed] [Google Scholar]
  • 66.Jakobsen A N, Aasen I M, Josefsen K D, Strøm A R. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl. Microbiol. Biotechnol. 2008;80:297–306. doi: 10.1007/s00253-008-1537-8. [DOI] [PubMed] [Google Scholar]
  • 67.Zhu L, Zhang X, Ji L, Song X, Kuang C. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem. 2007;42:210–214. doi: 10.1016/j.procbio.2006.08.002. [DOI] [Google Scholar]
  • 68.Li J, Liu R, Chang G, Li X, Chang M, Liu Y, Jin Q, Wang X. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour. Technol. 2015;177:51–57. doi: 10.1016/j.biortech.2014.11.046. [DOI] [PubMed] [Google Scholar]
  • 69.Ling X, Guo J, Liu X, Zhang X, Wang N, Lu Y, Ng I S. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour. Technol. 2015;184:139–147. doi: 10.1016/j.biortech.2014.09.130. [DOI] [PubMed] [Google Scholar]
  • 70.Zhang L, Zhao H, Lai Y, Wu J, Chen H. Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode. Bioresour. Technol. 2013;142:719–722. doi: 10.1016/j.biortech.2013.05.072. [DOI] [PubMed] [Google Scholar]
  • 71.Huang T Y, Lu W C, Chu I M. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour. Technol. 2012;123:8–14. doi: 10.1016/j.biortech.2012.07.068. [DOI] [PubMed] [Google Scholar]
  • 72.Jiang Y, Fan K W, Wong R T Y, Chen F. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 2004;52:1196–1200. doi: 10.1021/jf035004c. [DOI] [PubMed] [Google Scholar]
  • 73.Leong H Y, Su C-A, Lee B-S, Lan J C-W, Law C L, Chang J-S, Show P L. Development of Aurantiochytrium limacinum SR21 cultivation using salt-rich waste feedstock for docosahexaenoic acid production and application of natural colourant in food product. Bioresour. Technol. 2019;271:30–36. doi: 10.1016/j.biortech.2018.09.093. [DOI] [PubMed] [Google Scholar]
  • 74.Chen G, Fan K W, Lu F P, Li Q, Aki T, Chen F, Jiang Y. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N. Biotechnol. 2010;27:382–389. doi: 10.1016/j.nbt.2010.04.005. [DOI] [PubMed] [Google Scholar]
  • 75.Li Q, Chen G Q, Fan K W, Lu F P, Aki T, Jiang Y. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J. Agric. Food Chem. 2009;57:4267–4272. doi: 10.1021/jf9003972. [DOI] [PubMed] [Google Scholar]
  • 76.Juntila D J, Yoneda K, Suzuki I. Genetic modification of the thraustochytrid Aurantiochytrium sp. 18W-13a for cellobiose utilization by secretory expression of β-glucosidase from Aspergillus aculeatus. Algal Res. 2019;40:101503. doi: 10.1016/j.algal.2019.101503. [DOI] [Google Scholar]
  • 77.Nguyen M T T, Nguyen N T, Awale S. Prenylated dihydrochalcones from Artocarpus altilis as antiausterity agents. Enzymes. 2015;37:95–110. doi: 10.1016/bs.enz.2015.05.005. [DOI] [PubMed] [Google Scholar]
  • 78.Iqbal H M N, Keshavarz T. The challenge of biocompatibility evaluation of biocomposites. In: Ambrosio L, editor. Biomedical Composites. 2nd ed. Oxford, UK: Woodhead Publishing; 2017. pp. 303–334. [Google Scholar]
  • 79.Gürlek C, Yarkent Ç, Köse A, Oral İ, Öncel S Ş, Elibol M. Evaluation of several microalgal extracts as bioactive metabolites as potential pharmaceutical compounds. IFMBE Proc. 2020;73:267–272. doi: 10.1007/978-3-030-17971-7_41. [DOI] [Google Scholar]
  • 80.Gürlek C, Yarkent Ç, Köse A, Tuğcu B, Gebeloğlu I K, Öncel S Ş, Elibol M. Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health Technol. (Berl.) 2020;10:111–117. doi: 10.1007/s12553-019-00388-3. [DOI] [Google Scholar]
  • 81.Hussein H A, Maulidiani M, Abdullah M A. Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon. 2020;6:e05263. doi: 10.1016/j.heliyon.2020.e05263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Warleta F, Campos M, Allouche Y, Sánchez-Quesada C, Ruiz-Mora J, Beltrán G, Gaforio J J. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem. Toxicol. 2010;48:1092–1100. doi: 10.1016/j.fct.2010.01.031. [DOI] [PubMed] [Google Scholar]
  • 83.Kuete V, Karaosmanoğlu O, Sivas H. Anticancer activities of African medicinal spices and vegetables. In: Kuete V, editor. Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases. Amsterdam, Netherlands: Academic Press; 2017. pp. 271–297. [Google Scholar]
  • 84.Wang S, Yu H, Wickliffe J K. Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol. In Vitro. 2011;25:2147–2151. doi: 10.1016/j.tiv.2011.07.007. [DOI] [PubMed] [Google Scholar]
  • 85.Scarcello E, Lambremont A, Vanbever R, Jacques P J, Lison D. Mind your assays: misleading cytotoxicity with the WST-1 assay in the presence of manganese. PLoS One. 2020;15:e0231634. doi: 10.1371/journal.pone.0231634. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES