Abstract
Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.

Keywords: Functional nucleic acid, Xeno nucleic acid, Chemical modification, Biomedical application
Acknowledgements
This work was supported by the National Natural Science Foundation of China(Nos.22122403, 21977027, 21890744) and the Natural Science Foundation of Hunan Province, China(Nos. 2021JJ10012, 2019RS1031).
Footnotes
Conflicts of Interest
The authors declare no conflicts of interest.
Contributor Information
Shuangyan Huan, Email: syhuan@hnu.edu.cn.
Guoliang Ke, Email: glke@hnu.edu.cn.
References
- [1].Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Chem. Rev. 2015;115:12491. doi: 10.1021/acs.chemrev.5b00428. [DOI] [PubMed] [Google Scholar]
- [2].Zhao Y, Zuo X, Li Q, Chen F, Chen Y R, Deng J, Han D, Hao C, Huang F, Huang Y. Sci. China Chem. 2021;64:171. doi: 10.1007/s11426-020-9864-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Kolodiazhnyi O I. Symmetry. 2021;13:889. doi: 10.3390/sym13050889. [DOI] [Google Scholar]
- [4].Xu W T, He W C, Du Z H, Zhu L Y, Huang K L, Lu Y, Luo Y B. Angew. Chem. Int. Ed. 2021;60:6890. doi: 10.1002/anie.201909927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Samanta D, Ebrahimi S B, Mirkin C A. Adv. Mater. 2020;32:1901743. doi: 10.1002/adma.201901743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Wang F, Liu L S, Li P, Leung H M, Tam D Y, Lo P K. Mol. Ther. Nucleic Acids. 2022;27:787. doi: 10.1016/j.omtn.2021.12.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Xiao F, Fang X F, Li H Y, Xue H B, Wei Z X, Zhang W K, Zhu Y L, Lin L, Zhao Y, Wu C F, Tian L L. Angew. Chem. Int. Ed. 2022;61:e202115812. doi: 10.1002/anie.202115812. [DOI] [PubMed] [Google Scholar]
- [8].Li C, Hu X L, Lu J Y, Mao X X, Xiang Shu Y Q, Li G X. Chem. Sci. 2018;9:979. doi: 10.1039/C7SC04663D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Das J, Ivanov I, Safaei T S, Sargent E H, Kelley S O. Angew. Chem. Int. Ed. 2018;130:3773. doi: 10.1002/ange.201800455. [DOI] [PubMed] [Google Scholar]
- [10].Melnychuk N, Klymchenko A S. J. Am. Chem. Soc. 2018;140:10856. doi: 10.1021/jacs.8b05840. [DOI] [PubMed] [Google Scholar]
- [11].Weng Y H, Huang Q Q, Li C H, Yang Y F, Wang X X, Yu J, Huang Y Y, Liang X J. Mol. Ther. Nucleic Acids. 2020;19:581. doi: 10.1016/j.omtn.2019.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Murayama K, Asanuma H. ChemBioChem. 2021;22:2507. doi: 10.1002/cbic.202100184. [DOI] [PubMed] [Google Scholar]
- [13].Khvorova A, Watts J K. Nat. Biotechnol. 2017;35:238. doi: 10.1038/nbt.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Gong L, Zhao Z L, Lv Y F, Huan S Y, Fu T, Zhang X B, Shen G L, Yu R Q. Chem. Comm. 2015;51:979. doi: 10.1039/C4CC06855F. [DOI] [PubMed] [Google Scholar]
- [15].Wang F, Li P, Chu H C, Lo P K. Biosensors. 2022;12:93. doi: 10.3390/bios12020093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Herdewijn P, Marliere P. Chem. Biodiversity. 2009;6:791. doi: 10.1002/cbdv.200900083. [DOI] [PubMed] [Google Scholar]
- [17].Pinheiro V B, Holliger P. Curr. Opin. Chem. Biol. 2012;16:245. doi: 10.1016/j.cbpa.2012.05.198. [DOI] [PubMed] [Google Scholar]
- [18].Chaput J C, Herdewijn P. Angew. Chem. Int. Ed. 2019;58:11570. doi: 10.1002/anie.201905999. [DOI] [PubMed] [Google Scholar]
- [19].Inoue H, Hayase Y, Imura A, Iwai S, Miura K, Ohtsuka E. Nucleic Acids Res. 1987;15:6131. doi: 10.1093/nar/15.15.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Kawasaki A M, Casper M D, Freier S M, Lesnik E A, Zounes M C, Cummins L L, Gonzalez C, Cook P D. J. Med. Chem. 1993;36:831. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
- [21].Pieken W A, Olsen D B, Benseler F, Aurup H, Eckstein F. Science. 1991;253:314. doi: 10.1126/science.1857967. [DOI] [PubMed] [Google Scholar]
- [22].Elzagheid M I, Viazovkina E, Damha M J. Current Protocols in Nucleic Acid Chemistry. 2002;10:1. doi: 10.1002/0471142700.nc0107s10. [DOI] [PubMed] [Google Scholar]
- [23].Zhou C Z, Chattopadhyaya J. Curr. Opin. Drug Discov. 2009;12:876. [PubMed] [Google Scholar]
- [24].Sharma V K, Rungta P, Maikhuri V K, Prasad A K. Sustain. Chem. Process. 2015;3:1. doi: 10.1186/s40508-015-0028-3. [DOI] [Google Scholar]
- [25].Campbell M A, Wengel J. Chem. Soc. Rev. 2011;40:5680. doi: 10.1039/c1cs15048k. [DOI] [PubMed] [Google Scholar]
- [26].Mei H, Shi C H, Jimenez R M, Wang Y J, Kardouh M, Chaput J C. Nucleic Acids Res. 2017;45:5629. doi: 10.1093/nar/gkx368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Li Q F, Maola V A, Chim N, Hussain J, Lozoya-Colinas A, Chaput J C. J. Am. Chem. Soc. 2021;143:17761. doi: 10.1021/jacs.1c08649. [DOI] [PubMed] [Google Scholar]
- [28].Sau S P, Fahmi N E, Liao J Y, Bala S, Chaput J C. J. Org. Chem. 2016;81:2302. doi: 10.1021/acs.joc.5b02768. [DOI] [PubMed] [Google Scholar]
- [29].Mei H, Wang Y, Yik E J, Chaput J C. Biopolymers. 2021;112:e23388. doi: 10.1002/bip.23388. [DOI] [PubMed] [Google Scholar]
- [30].Dunn M R, Otto C, Fenton K E, Chaput J C. ACS Chem. Biol. 2016;11:1210. doi: 10.1021/acschembio.5b00949. [DOI] [PubMed] [Google Scholar]
- [31].Chim N, Shi C H, Sau S P, Nikoomanzar A, Chaput J C. Nat. Commun. 2017;8:1810. doi: 10.1038/s41467-017-02014-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Byun J. Life. 2021;11:193. doi: 10.3390/life11030193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Int. J. Mol. Sci. 2020;21:3252. doi: 10.3390/ijms21093252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Ng E W M, Shima D T, Calias P, Cunningham E T, Guyer D R, Adamis A P. Nat. Rev. Drug Discov. 2006;5:123. doi: 10.1038/nrd1955. [DOI] [PubMed] [Google Scholar]
- [35].Soldevilla M M, Villanueva H, Bendandi M, Inoges S, Cerio A L D, Pastor F. Biomaterials. 2015;67:274. doi: 10.1016/j.biomaterials.2015.07.020. [DOI] [PubMed] [Google Scholar]
- [36].Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D, Groaz E, Herdewijn P. Nucleic Acids Res. 2019;47:4927. doi: 10.1093/nar/gkz252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Mei H, Liao J Y, Jimenez R M, Wang Y J, Bala S, McCloskey C, Switzer C, Chaput J C. J. Am. Chem. Soc. 2018;140:5706. doi: 10.1021/jacs.7b13031. [DOI] [PubMed] [Google Scholar]
- [38].Dunn M R, McCloskey C M, Buckley P, Rhea K, Chaput J C. J. Am. Chem. Soc. 2020;142:7721. doi: 10.1021/jacs.0c00641. [DOI] [PubMed] [Google Scholar]
- [39].Ferreira-Bravo I A, Cozens C, Holliger P, DeStefano J J. Nucleic Acids Res. 2015;43:9587. doi: 10.1093/nar/gkv1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Thirunavukarasu D, Chen T J, Liu Z X, Hongdilokkul N, Romesberg F E. J. Am. Chem. Soc. 2017;139:2892. doi: 10.1021/jacs.6b13132. [DOI] [PubMed] [Google Scholar]
- [41].Alves Ferreira-Bravo I, DeStefano J J. Viruses. 2021;13:1983. doi: 10.3390/v13101983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Ababneh N, Alshaer W, Allozi O, Mahafzah A, El-Khateeb M, Hillaireau H, Noiray M, Fattal E, Ismail S. Nucleic Acid Ther. 2013;23:401. doi: 10.1089/nat.2013.0423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Bioconjugate Chem. 2015;26:1307. doi: 10.1021/bc5004313. [DOI] [PubMed] [Google Scholar]
- [44].Alshaer W, Hillaireau H, Vergnaud J, Mura S, Delomenie C, Sauvage F, Ismail S, Fattal E. J. Control. Release. 2018;271:98. doi: 10.1016/j.jconrel.2017.12.022. [DOI] [PubMed] [Google Scholar]
- [45].Catuogno S, Martino M T D, Nuzzo S, Esposito C L, Tassone P, Franciscis V. Mol. Ther.: Nucl. Acids. 2019;18:981. doi: 10.1016/j.omtn.2019.10.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Li X T, Li Z, Yu H Y. Chem. Commun. 2020;56:14653. doi: 10.1039/D0CC06032A. [DOI] [PubMed] [Google Scholar]
- [47].Fan H H, Zhang X B, Lu Y. Sci. Chi. Chem. 2017;60:591. doi: 10.1007/s11426-016-0472-1. [DOI] [Google Scholar]
- [48].Ke G L, Wang C M, Ge Y, Zheng N F, Zhu Z, James Yang C Y. J. Am. Chem. Soc. 2012;134:18908. doi: 10.1021/ja3082439. [DOI] [PubMed] [Google Scholar]
- [49].Wang Y J, Liu X L, Shehabat M, Chim N, Chaput J C. Nucleic Acids Res. 2021;49:11438. doi: 10.1093/nar/gkab923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Taylor A I, Pinheiro V B, Smola M J, Morgunov A S, Peak-Chew S, Cozens C, Weeks K M, Herdewijn P, Holliger P. Nature. 2015;518:427. doi: 10.1038/nature13982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Wang Y Y, Wang Y, Song D F, Sun X, Li Z, Chen J Y, Yu H Y. Nat. Chem. 2022;14:350. doi: 10.1038/s41557-021-00847-3. [DOI] [PubMed] [Google Scholar]
- [52].Nguyen K, Wang Y J, England E W, Chaput J C, Spitale R C. J. Am. Chem. Soc. 2021;143:4519. doi: 10.1021/jacs.0c11353. [DOI] [PubMed] [Google Scholar]
- [53].Yang K F, Chaput J C. J. Am. Chem. Soc. 2021;143:8957. doi: 10.1021/jacs.1c02664. [DOI] [PubMed] [Google Scholar]
- [54].Mokany E, Bone S M, Young P E, Doan T B, Todd A V. J. Am. Chem. Soc. 2010;132:1051. doi: 10.1021/ja9076777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Tyagi S, Kramer F R. Nat. Biotechnol. 1996;14:303. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
- [56].Wang K, Tang Z W, Yang C Y J, Kim Y M, Fang X H, Li W, Wu Y R, Medley C D, Cao Z H, Li J, Colon P, Lin H, Tan W H. Angew. Chem. Int. Ed. 2009;48:856. doi: 10.1002/anie.200800370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [57].Xiong M Y, Liu L, Ke G L, Zhang X B. Spectrochim. Acta A. 2021;247:119038. doi: 10.1016/j.saa.2020.119038. [DOI] [PubMed] [Google Scholar]
- [58].Tyagi S, Marras S A E, Kramer F R. Nat. Biotechnol. 2000;18:1191. doi: 10.1038/81192. [DOI] [PubMed] [Google Scholar]
- [59].Yu S R, Li F C, Huang X Y, Dong C Q, Ren J C. Anal. Chem. 2020;92:2988. doi: 10.1021/acs.analchem.9b03934. [DOI] [PubMed] [Google Scholar]
- [60].Tan W H, Wang K M, Drake T J. Curr. Opin. Chem. Biol. 2004;8:547. doi: 10.1016/j.cbpa.2004.08.010. [DOI] [PubMed] [Google Scholar]
- [61].Chen A K, Behlke M A, Tsourkas A. Nucleic Acids Res. 2007;35:e105. doi: 10.1093/nar/gkm593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Wang Q, Chen L, Long Y T, Tian H, Wu J C. Theranostics. 2013;3:395. doi: 10.7150/thno.5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Hu J, Xiao K, Jin B R, Zheng X Y, Ji F P, Bai D. Biotechnol. Bioeng. 2019;116:2764. doi: 10.1002/bit.27106. [DOI] [PubMed] [Google Scholar]
- [64].Morandia L, Ferrarib D, Lombardob C, Pessiona A, Tallini G. J. Virol. Methods. 2007;140:148. doi: 10.1016/j.jviromet.2006.11.014. [DOI] [PubMed] [Google Scholar]
- [65].Kor K, Turner A P F, Zarei K, Atabati M, Beni V, Mak W C. Anal. Bioanal. Chem. 2016;408:1475. doi: 10.1007/s00216-015-9250-9. [DOI] [PubMed] [Google Scholar]
- [66].Gui Z, Wang Q B, Li J C, Zhu M C, Yu L L, Xun T, Yan F, Ju H X. Talanta. 2016;154:520. doi: 10.1016/j.talanta.2016.04.008. [DOI] [PubMed] [Google Scholar]
- [67].Zhang K, Yang X J, Zhang T T, Li X L, Chen H Y, Xu J J. Anal. Chim. Acta. 2019;1079:146e152. doi: 10.1016/j.aca.2019.06.016. [DOI] [PubMed] [Google Scholar]
