Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Jun 20;42(6):929–936. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.06.18

低氧环境可体外促进人诱导多能干细胞分化为拟胚体

Hypoxia promotes differentiation of human induced pluripotent stem cells into embryoid bodies in vitro

Lijun FANG 1, Zibei FENG 2, Jingyi MEI 3, Jiahui ZHOU 1, Zhanyi LIN 1,*
PMCID: PMC9257350  PMID: 35790445

Abstract

Objective

To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms.

Methods

EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment.

Results

The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05).

Conclusion

Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.

Keywords: human-induced pluripotent stem cells, hypoxia, embryoid body, differentiation, HIF-1α


人诱导多能干细胞在再生医学和疾病建模领域,都具有巨大的应用价值[1, 2]。与胚胎干细胞不同的是,它们可在保留原宿主遗传信息的情况下进行多向分化,而且不引发伦理问题[3]。目前,拟胚体形成法是人诱导多能干细胞分化为成体细胞的主要方法之一,该方法模拟了早期胚胎发育的生理过程[4]

在体外悬浮培养系统中,人诱导多能干细胞因细胞间重力和张力作用自发形成的细胞聚集体即为拟胚体,具有向三胚层分化的潜力[5]。拟胚体分化过程需要相对较长的培养时间,细胞外部培养环境可对细胞分化、形态和增殖等生物学行为产生深远的影响[6-8]。目前,人诱导多能干细胞主要采用21%氧气条件进行拟胚体分化,但在正常的人体生理状态下,干细胞主要生存于低氧环境,氧气浓度范围在1%~9%[9, 10]。因此有必要深入了解低氧环境是否有助于干细胞向拟胚体分化。目前低氧环境对不同来源干细胞形成拟胚体过程的影响结论不一,有研究显示人胚胎干细胞形成拟胚体过程中,低氧环境可以促进细胞的分化过程,但是会增加了细胞凋亡而减缓拟胚体生长速度[11];但也有不同的研究结果显示,低氧环境能促进人胚胎干细胞或鼠诱导多能干细胞更高效地向拟胚体分化[12, 13];还有研究使用牛诱导多能干细胞形成拟胚体,发现拟胚体的形成并不受到低氧环境的影响[14]。在低氧条件下,细胞主要受HIF-1α和其他相关信号通路的调节,例如Wnt/β-catenin和VEGFA信号通路,均可参与调节细胞的增殖、分化和存活[15, 16]。关于低氧环境是否有利于人诱导多能干细胞通过拟胚体法进行分化,以及不同时间点上产生何种影响等问题,目前均未有明确结论。

本研究拟采用人诱导多能干细胞作为研究对象,通过设计正常氧气浓度及低氧两种不同环境,结合分化过程的时间轴获得不同阶段变化结果,对分化过程中拟胚体的形成、成熟、粘附、扩增和三胚层分化潜力的功能特性进行分析判断,并且进一步检测低氧信号通路相关分子的表达情况。

1. 材料和方法

1.1. 主要试剂和仪器

mTeSR1培养基、ReLeSR、Dispase、L-谷氨酰胺、1%非必需氨基酸、0.1%明胶(STEMCELL);低生长因子-基质胶、超低吸附六孔板(BD Corning);高糖DMEM、胎牛血清FBS、PBS(Gibco);β-巯基乙醇、多聚甲醛(Sigma);HIF-1α特异性抑制剂Echinomycin、抗OCT4、SOX2、NANOG抗体(Abcam);Image-iT TM Green缺氧检测试剂、Alexa Fluor 488二抗、4', 6-二脒基-2-苯基吲哚(DAPI)、Trizol试剂(Invitrogen);预混型定量用反转录试剂盒、TB Green染料法标准型定量试剂盒(宝日医公司);SDS-PAGE凝胶快速配制试剂盒、细胞总蛋白提取试剂盒、超敏ECL化学发光试剂盒(碧云天公司);抗体HIF-1α、β-catenin、VEGFA、Tublin(Abcam);THUNDER 3D细胞显微镜(Leica);低氧培养箱、全波长酶标仪(Thermo Scientific);荧光定量PCR仪(qTOWER3G);SDS-PAGE电泳仪(Bio-Rad)化学发光成像仪(ImageQuant LAS 500)。

1.2. 实验分组

将第15~18代的人诱导多能干细胞接种于普通六孔板中,细胞生长至80%后用Dispase消化成细胞团块,平均分到两个超低吸附六孔板的孔中,分别在21%氧气(悬浮常氧组)和5%氧气(悬浮低氧组)条件下培养5 d,随后取将悬浮低氧组的拟胚体平均分到两个明胶包被的六孔板中,一组继续在5%氧气条件下培养2 d(贴壁低氧组),另一组先在5%氧气条件下培养1 d后加入1 nmol/L Echinomycin(贴壁低氧组+Echinomycin),继续培养1 d;从常氧培养的悬浮拟胚体中取与贴壁低氧组等量的悬浮拟胚体,继续在21%氧气条件下培养2 d(贴壁常氧组),每组至少重复3次实验。

1.3. 人诱导多能干细胞的培养

将Cellapy公司购买的人诱导多能干细胞接种于表面涂有低生长因子-基质胶的培养皿上,并在21%氧气条件下用mTeSR1培养基培养,每天更换培养基,每4天使用ReLeSR将细胞以团块形式消化传代。

1.4. 悬浮期和贴壁期拟胚体的低氧检测

分别在21%和5%氧气条件下,取适量悬浮期第5天以及贴壁期第2天的拟胚体到玻璃培养皿,将ImageiTTM Green缺氧检测试剂加入到细胞培养基,使其浓度达到5 µmol/L,接着继续在原条件下孵育1 h,用DAPI进行核染色,最后在荧光显微镜下观察细胞的荧光表达强度。

1.5. 人诱导多能干细胞分化形成悬浮拟胚体

当人诱导多能干细胞生长达到培养皿的80%时,利用Dispase消化7 min后机械刮取细胞,确保初始细胞团块大小相似,排除初始细胞密度和大小对后续拟胚体发育的影响,随后均匀分到两个超低吸附六孔板中,分别21%和5%氧气条件下,在mTeSR1培养基中形成悬浮拟胚体,在整个分化过程中,氧气浓度始终保持不变。拟胚体悬浮阶段,mTeSR1培养基逐渐转为拟胚体培养基(高糖DMEM、10% FBS、2 mmol/L L-谷氨酰胺、1%非必需氨基酸、0.012 mmol/L β-巯基乙醇),悬浮期mTeSR1培养基和拟胚体培养基配比为:第1天2∶1,第2天1∶1,第3天1∶2,第4天和第5天100%拟胚体培养基。

1.6. 拟胚体的贴壁培养

将等量21%和5%氧气条件下培养了5 d的拟胚体接种到涂有0.1%明胶的培养皿上,加入2 mL拟胚体培养基培养,1 d后吸走未贴壁的拟胚体,计算拟胚体贴壁率;继续在21%和5%氧气条件下培养1 d,显微镜下观察从拟胚体4周爬出的细胞,通过与第1天贴壁时的拟胚体直径相比,评估拟胚体贴壁后的增殖速率。

1.7. 细胞免疫荧光

将人诱导多能干细胞接种在装有玻璃载玻片的六孔板中,当细胞生长到30%时,用PBS轻轻洗涤3次,室温条件下用4%多聚甲醛固定30 min,然后用含有10% FBS的PBST(含有0.3% Triton X-100的PBS)通透封闭45 min,接着细胞与待测的一抗在4 ℃下孵育过夜。一抗孵育后PBS洗3次,常温下再与相应的二抗孵育1 h,PBS漂洗,随后对细胞核进行DAPI染色。最后用荧光显微镜观察染色细胞,并使用Image J软件完成图像处理和分析。

1.8. RT-PCR检测相关基因的表达

使用Trizol试剂抽提人诱导多能干细胞、21%和5%氧气条件下悬浮期第5天拟胚体以及贴壁期第2天各组拟胚体的总RNA,每个样本取1 μg RNA,根据反转录试剂盒的使用说明书进行cDNA反转录。以cDNA为模板,引物序列见表 1,分别扩增内胚层相关基因(AFP, FOXA2, GATA6)、中胚层相关基因(ACTA, LPL, SPP)和外胚层相关基因(PAX6, VIMENTIN, NESTIN),低氧相关信号通路(HIF-1α、β-catenin、VEGFA),以β-actin作为内参基因。两步法PCR扩增的标准程序为:预变性95 ℃ 30 s,1个循环;PCR反应:95 ℃ 5 s,60 ℃ 30 s,40个循环;熔解:95 ℃ 15 s,60 ℃ 1 min。

1.

RT-PCR基因引物序列

Primer sequences for RT-PCR

Gene Primer sequences
AFP Forward: 5'-AAGTTTAGCTGACCTGGCTAC-3'
Reverse: 5'-AAAGTGGGATCGATGCTGGAG-3'
FOXA2 Forward: 5'-AAATCTCAGCCTCCCAACCG-3'
Reverse: 5'-CACCGCTCCCAGCATACTTT -3'
GATA-6 Forward: 5'-TCAAAGACTTGCTCTGGTAATAGC-3'
Reverse: 5'-GTTCTCGGGATTGGTGCTCT-3'
ACTA Forward: 5'-TCCGGGACATCAAGGAGAAACT-3'
Reverse: 5'-CCCATCAGGCAACTCGTAACTC-3'
LPL Forward: 5'-CCTCCTCCTCAAGGGAAAGC-3'
Reverse: 5'-AATCTCTTCTTTGGTCGGCG-3'
SPP Forward: 5'-ACGCCGACCAAGGAAAACTC-3'
Reverse: 5'-TGCTTCTGAGATGGGTCAGG-3'
PAX6 Forward: 5'-CCATCACCAATCAGCATAGGA-3'
Reverse: 5'-GCTCGAATATGGGGCTCTGA-3'
VIMENTIN Forward: 5'-GGATGCCCTTAAAGGAACCAATGA-3'
Reverse: 5'-GGAGGAAAAGTTTGGAAGAGGC-3'
NESTIN Forward: 5'-GCCTACAGAGCCAGATCGC-3'
Reverse: 5'-CTCCAGCTTGGGGTCCTGAAA-3'
HIF-1α Forward: 5'-CTGCAACATGGAAGGTATTGC-3'
Reverse: 5'-GGCTCATATCCCATCAATTCGGT-3'
β-catenin Forward: 5'-GAGGAGCAGCTTCAGTCCC-3'
Reverse: 5'-TCCAACTCCATCAAATCAGCTTG-3'
VEGFA Forward: 5'-ACAACAAATGTGAATGCAGACCA-3'
Forward: 5'-TCACATCTGCAAGTACGTTCG-3'
β-actin Forward: 5'-GCCGCCAGCTCACCAT-3'
Reverse: 5'-TCGTCGCCCACATAGGAATC-3'

1.9. Western blot检测HIF-1α、β-catenin和VEGFA蛋白表达情况

收集贴壁2 d的拟胚体,预冷PBS洗涤3次后加入细胞蛋白裂解液,冰上裂解30 min,提取样本总蛋白,BCA法检测各组样本蛋白浓度,按每孔20 μg蛋白进行凝胶电泳,然后转膜至PVDF膜上,室温封闭1 h,TBST洗膜3次,随后加入相应一抗,4 ℃条件下孵育过夜。第2天回收一抗,TBST洗膜3次后加入相应二抗4 ℃孵育2 h,再次洗膜3次后,利用增强型化学发光试剂(ECL)检测显影,使用ImageJ软件进行灰度值定量分析,以Tublin作为内部参考。

1.10. 统计学方法

本研究采用软件SPSS 27.0进行统计学分析,采用均数±标准差表示计量资料,两组独立样本采用t检验进行组间比较,多组样本间比较采用单因素方差分析,P < 0.05为差异有统计学意义。

2. 结果

2.1. 人诱导多能干细胞的鉴定

本实验观察到人诱导多能干细胞是以集落样生长方式为主,边界清晰,集落形态呈圆形、椭圆形或不规则形,集落中的细胞紧密地聚集在一起,且细胞核质比高。人诱导多能干细胞具有多能性,通过免疫荧光法检测相关干性标志物,发现集落内的细胞均发出红色荧光,强烈表达OCT4、SOX2、NANOG(图 1)。

1.

1

人诱导多能干细胞的干性标志物检测

Detection of stemness markers in human induced pluripotent stem cells (hiPSCs) by immunofluorescence staining for OCT4, SOX2 and NANOG (red). The nuclei were stained with DAPI (blue). Scale bars=100 μm.

2.2. 拟胚体悬浮期和贴壁期低氧环境的检测

利用Image-iTTM Green缺氧检测试剂检测细胞低氧情况,与21%氧气条件下培养的细胞相比,实验发现当细胞置于5%氧气条件时绿色荧光强度明显增强(图 2)。

2.

2

检测21%和5%氧气条件下悬浮期和贴壁期拟胚体的低氧反应

Hypoxic response of the embryoid bodies under 21% and 5% O2 conditions in suspension and adherent stages. The cells were stained with 5 µmol/L Image-iTTM Hypoxia Green probe (green), and the nuclei were counterstained with DAPI (blue). Scale bars=50 μm.

2.3. 低氧环境能够促进悬浮拟胚体的形成和成熟

利用显微镜观察人诱导多能干细胞形成拟胚体过程的形态变化,在常氧和低氧条件下,悬浮培养1 d后的拟胚体直径大约在100 μm,结构均较为简单,主要由紧密排列的人诱导多能干细胞组成。悬浮培养的第3天,低氧组出现内部颜色较深的拟胚体即为囊性拟胚体,是拟胚体成熟的重要标志,而在常氧组,悬浮期第4天才可观察到少量囊性拟胚体。悬浮培养5 d后,几乎所有低氧条件下的拟胚体发生囊腔化,边缘光滑整齐,大小颜色相对一致,而在常氧条件下可观察到大小不同的拟胚体,且未完全呈现囊腔化。在5天的悬浮期里,随着拟胚体内部细胞的不断生长,常氧组和低氧组的平均拟胚体直径逐渐增长到200 μm左右,二者无明显差异。此外还可以观察到悬浮期内常氧组的拟胚体周围每天都会有较多的细胞碎片,大多是凋亡的人诱导多能干细胞,而低氧条件下,细胞碎片明显减少(图 3),低氧可促进悬浮期内拟胚体的形成和后续的成熟。

3.

3

光镜下悬浮期拟胚体在21%和5%氧气条件下的形态变化

Morphological changes of the embryoid bodies under 21% and 5% O2 conditions in suspension stage observed under a light microscope (Original magnification: × 40). The white arrows indicate cystic embryoid bodies. Scale bars: 200 μm.

2.4. 21%和5%氧气条件下形成的拟胚体均具有向三胚层分化的潜力

通过RT-PCR检测人诱导多能干细胞、21%和5% 氧气条件下拟胚体的三胚层标记基因表达情况,实验结果提示人诱导多能干细胞形成拟胚体后各胚层的基因表达均上调,包括内胚层标记基因AFP、FOXA2和GATA6(图 4A),中胚层标记基因ACTA、LPL和SPP(图 4B),外胚层标记基因PAX6、VIMENTIN和NESTIN(图 4C)。

4.

4

21%和5%氧气条件下拟胚体三胚层标记基因的表达

Expression of markers for the 3 germ layers in the embryoid bodies (EBs) cultured under 21% O2 and 5% O2. A: Endodermal markers (AFP, FOXA2, and GATA6). B: Mesodermal markers (ACTA, LPL, and SPP). C: Ectodermal markers (PAX6, VIMENTIN, and NESTIN). *P < 0.05 vs hiPSC.

2.5. 低氧环境有利于提升拟胚体贴壁率以及贴壁后细胞从拟胚体边缘向外生长

拟胚体贴壁1 d后,会有部分拟胚体无法粘附到培养皿上,常氧和低氧组的拟胚体粘附率分别为71.67% 和81.67%,差异有统计学意义(图 5ABP < 0.05)。拟胚体粘附后,开始有不规则的多边形细胞从拟胚体边缘爬出,计算粘附第2天与第1天拟胚体边缘生长出细胞的直径比值,在常氧和低氧条件下直径分别增加了2.75倍和6.39倍,差异具有统计学意义(图 5CDP < 0.05)。

5.

5

光镜下贴壁期拟胚体在21%和5%氧气条件下贴壁第1天与第2天的不同变化

Morphological changes of the embryoid bodies on the first and second day of adherent culture in 21% and 5% O2 conditions. A: Embryoid bodies on the first day of adherent phase. The white arrows indicate the embryoid bodies that are not adherent (scale bars=200 μm). B: Adhesion rates of embryoid bodies on the first day of the adhesion phase under 21% and 5% O2, *P < 0.05. C: Embryoid bodies on the second day of adherent phase. D: Ratio of the diameters on the second day to that on the first day. *P < 0.05.

2.6. 21%和5%氧气条件下贴壁拟胚体HIF-1α、β-catenin、VEGFA的表达

拟胚体贴壁2 d后,利用RT-PCR检测21%和5%氧气条件下HIF-1α、β-catenin、VEGFA基因的表达情况,可见不同氧气条件下HIF-1α的mRNA水平没有明显差异(P>0.05),而低氧条件下β-catenin和VEGFA基因的表达上调,差异具有统计学意义(图 6AP < 0.05)。接着,利用Western blot检测2种氧气条件下HIF-1α、β-catenin和VEGFA蛋白的表达情况,实验结果显示,与21%氧气条件组相比,低氧条件可上调HIF-1α、β-catenin和VEGFA蛋白的表达,差异具有统计学意义(图 6BCP < 0.05)。

6.

6

在21%和5%氧气条件下贴壁期第2天拟胚体HIF-1α、β-catenin和VEGFA的mRNA和蛋白表达情况

The mRNA and protein expressions of HIF-1α, β-catenin and VEGFA in the embryoid bodies on the second day of adherent culture in 21% and 5% O2 detected by RTPCR (A) and Western blotting (B). C: Tublin-normalized HIF-1α, β-catenin and VEGFA proteins level. *P < 0.05.

2.7. 5%氧气条件下HIF1α抑制剂Echinomycin对贴壁拟胚体的β-catenin和VEGFA表达的影响

Echinomycin是HIF-1α的特异性抑制剂,使用1 nM的Echinomycin处理5%氧气条件下的贴壁拟胚体1 d后,利用Western blot可检测到HIF-1α明显下调,β-catenin和VEGFA也显著下调(图 7ABP < 0.05)。

7.

7

各组贴壁期拟胚体HIF-1α、β-catenin和VEGFA的蛋白表达情况

Changes of protein expressions of HIF-1α, β-catenin and VEGFA in embryoid bodies during adherent culture in response to hypoxia and echinomycin treatment. A: Western blots of HIF-1α, β-catenin and VEGFA proteins in the embryoid bodies. B: Relative expressions of HIF-1α, β-catenin and VEGFA proteins. *P<0.05 vs 21% O2 group, #P<0.05 vs 5% O2 group.

3. 讨论

氧气是胚胎发育的一种基本生理条件,其早期阶段是在一个相对低氧的环境中进行的,可能是因为早期循环系统没有完全建立,血液氧气扩散受到限制,也可能是胚胎时期的细胞处于快速增殖期,氧气消耗量大[17-19]。据文献报道,低氧浓度可显著促进胚胎发育至囊胚期,从而提高胚胎质量[20]。由此推断,生理低氧浓度应该会对人诱导多能干细胞向拟胚体分化过程产生影响[21]。本研究的实验结果明确证实这一推断,发现低氧环境有利于生成大量贴壁性能高、增殖速度快且大小分布较均匀的拟胚体,且低氧条件不影响拟胚体三胚层分化潜力。

有学者提出在干细胞向拟胚体分化的过程中,细胞内线粒体的代谢副产物活性氧会急剧增加,活性氧对细胞毒性很大,会导致细胞凋亡[22, 23]。推测低氧可以抑制线粒体功能,减少有害的活性氧的过度产生,降低细胞凋亡,从而加强悬浮拟胚体中细胞间的相互联系[12, 24]。本研究结果也显示低氧环境促进人诱导多能干细胞形成大小较均匀的、成熟比例增多的拟胚体,证明低氧环境对均匀成熟拟胚体的形成以及进一步稳定分化的可行性和重要性。

我们发现,低氧组获得的悬浮拟胚体与培养皿的粘附性较常氧组强,且相同时间内向外扩增的距离更大,提示低氧可以促进拟胚体的粘附和增殖性能。这可能与分化的成熟拟胚体较多,细胞分泌的促粘附细胞因子增多有密切关系[25]。此外,低氧还可促进干细胞分化过程中细胞的增殖能力,其机制可能与HIF-1α及其下游等相关信号通路被激活有关[26, 27]。本研究还发现,HIF-1α主要在蛋白质水平而不是在mRNA水平上发挥作用,这与之前的研究结果一致[28]。我们还发现,β-catenin和VEGFA的mRNA和蛋白质水平均可在低氧条件下上调,这些分子均可受HIF-1α激活调控,参与多种细胞生物学行为,包括细胞存活、粘附和扩增[29]。因此,有理由认为,适当的低氧更好地模拟了拟胚体发育的微环境,为细胞扩增提供了更合适的生存条件。当然,为了获取足够数量的细胞,研究者们还尝试通过改善细胞外基质、施加力学刺激和优化培养基质等方法来改善细胞粘附性能,提高后续细胞增殖速度[30]

综上所述,低氧环境的设计可以明显促进人诱导多能干细胞分化为拟胚体的过程,且目前很多干细胞分化方案都是基于拟胚体分化体系建立的,可通过调节氧气浓度或者HIF-1α/β-catenin/VEGFA通路控制拟胚体的分化方向,从而提高干细胞的分化效率,这将为进一步推动其应用研究提供实验证据。

Biography

方丽君,在读硕士研究生,E-mail: dragonfly0118@163.com

Funding Statement

高水平医院“登峰计划”科研项目(DFJH201904);季华实验室科研项目(X210111TD210)

Contributor Information

方 丽君 (Lijun FANG), Email: dragonfly0118@163.com.

林 展翼 (Zhanyi LIN), Email: linzhanyi@hotmail.com.

References

  • 1.Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's disease through personalized medicine and induced pluripotent stem cells. Cells. 2019;8(1):26. doi: 10.3390/cells8010026. [Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's disease through personalized medicine and induced pluripotent stem cells [J]. Cells, 2019, 8(1): 26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Cong XQ, Zhang SM, Batty L, et al. Application of human induced pluripotent rafts. Stem Cells Dev. 2019;28(24):1581–94. doi: 10.1089/scd.2019.0234. [Cong XQ, Zhang SM, Batty L, et al. Application of human induced pluripotent rafts[J]. Stem Cells Dev, 2019, 28(24): 1581-94.] [DOI] [PubMed] [Google Scholar]
  • 3.Zha S, Tay JC, Zhu S, et al. Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived beta2 Microglobulin Knockout Induced Pluripotent Stem Cells. Cell Transplant. 2020;29 doi: 10.1177/0963689720965529. [Zha S, Tay JC, Zhu S, et al. Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived beta2 Microglobulin Knockout Induced Pluripotent Stem Cells[J]. Cell Transplant, 2020, 29. doi: 10.1177/0963689720965529.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Guo NN, Liu LP, Zheng YW, et al. Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. World J Stem Cells. 2020;12(1):25–34. doi: 10.4252/wjsc.v12.i1.25. [Guo NN, Liu LP, Zheng YW, et al. Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach[J]. World J Stem Cells, 2020, 12(1): 25-34.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Wei M, Li S, Le WD. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology. 2017;15(1):75. doi: 10.1186/s12951-017-0310-5. [Wei M, Li S, Le WD. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms [J]. J Nanobiotechnology, 2017, 15(1): 75.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhang SC, Liu P, Chen L, et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 2015;41:15–25. doi: 10.1016/j.biomaterials.2014.11.019. [Zhang SC, Liu P, Chen L, et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential[J]. Biomaterials, 2015, 41: 15-25.] [DOI] [PubMed] [Google Scholar]
  • 7.Lee YN, Yi HJ, Goh H, et al. Spheroid fabrication using concave microwells enhances the differentiation efficacy and function of insulin-producing cells via cytoskeletal changes. Cells. 2020;9(12):2551. doi: 10.3390/cells9122551. [Lee YN, Yi HJ, Goh H, et al. Spheroid fabrication using concave microwells enhances the differentiation efficacy and function of insulin-producing cells via cytoskeletal changes[J]. Cells, 2020, 9 (12): 2551.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bao M, Xie J, Piruska A, et al. 3D microniches reveal the importance of cell size and shape. Nat Commun. 2017;8(1):1962. doi: 10.1038/s41467-017-02163-2. [Bao M, Xie J, Piruska A, et al. 3D microniches reveal the importance of cell size and shape[J]. Nat Commun, 2017, 8(1): 1962.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Chen Y, Zhao Q, Yang X, et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Cell Stress Chaperones. 2019;24(3):527–38. doi: 10.1007/s12192-019-00981-5. [Chen Y, Zhao Q, Yang X, et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Cell Stress Chaperones, 2019, 24(3): 527-38.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kim C, Park JM, Song Y, et al. HIF1alpha-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy. Aging Cell. 2019;18(2):e12909. doi: 10.1111/acel.12909. [Kim C, Park JM, Song Y, et al. HIF1alpha-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy[J]. Aging Cell, 2019, 18(2): e12909.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Okada R, Onodera K, Ito T, et al. Modulation of oxygen tension, acidosis, and cell density is crucial for neural differentiation of human induced pluripotent stem cells. Neurosci Res. 2021;163:34–42. doi: 10.1016/j.neures.2020.01.015. [Okada R, Onodera K, Ito T, et al. Modulation of oxygen tension, acidosis, and cell density is crucial for neural differentiation of human induced pluripotent stem cells[J]. Neurosci Res, 2021, 163: 34-42.] [DOI] [PubMed] [Google Scholar]
  • 12.Chen HF, Kuo HC, Lin SP, et al. Hypoxic culture maintains selfrenewal and enhances embryoid body formation of human embryonic stem cells. Tissue Eng Part A. 2010;16(9):2901–13. doi: 10.1089/ten.tea.2009.0722. [Chen HF, Kuo HC, Lin SP, et al. Hypoxic culture maintains selfrenewal and enhances embryoid body formation of human embryonic stem cells[J]. Tissue Eng Part A, 2010, 16(9): 2901-13.] [DOI] [PubMed] [Google Scholar]
  • 13.Bae D, Mondragon-Teran P, Hernandez D, et al. Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells. Stem Cells Dev. 2012;21(8):1344–55. doi: 10.1089/scd.2011.0225. [Bae D, Mondragon-Teran P, Hernandez D, et al. Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells[J]. Stem Cells Dev, 2012, 21 (8): 1344-55.] [DOI] [PubMed] [Google Scholar]
  • 14.Bessi BW, Botigelli RC, Pieri NCG, et al. Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation. Cells. 2021;10(6):1531. doi: 10.3390/cells10061531. [Bessi BW, Botigelli RC, Pieri NCG, et al. Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation[J]. Cells, 2021, 10(6): 1531.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Moriyama H, Moriyama M, Isshi H, et al. Role of Notch signaling in the maintenance of human mesenchymal stem cells under hypoxic conditions. Stem Cells Dev. 2014;23(18):2211–24. doi: 10.1089/scd.2013.0642. [Moriyama H, Moriyama M, Isshi H, et al. Role of Notch signaling in the maintenance of human mesenchymal stem cells under hypoxic conditions[J]. Stem Cells Dev, 2014, 23(18): 2211-24.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Banerjee ER, Laflamme MA, Papayannopoulou T, et al. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 2012;7(3):e33165. doi: 10.1371/journal.pone.0033165. [Banerjee ER, Laflamme MA, Papayannopoulou T, et al. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model[J]. PLoS One, 2012, 7(3): e33165.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Houghton FD. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxic regulation of preimplantation embryos: lessons from human embryonic stem cells. Reproduction. 2021;161(1):F41–F51. doi: 10.1530/REP-20-0322. [Houghton FD. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxic regulation of preimplantation embryos: lessons from human embryonic stem cells[J]. Reproduction, 2021, 161(1): F41-F51.] [DOI] [PubMed] [Google Scholar]
  • 18.Abdollahi H, Harris LJ, Zhang P, et al. The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res. 2011;165(1):112–7. doi: 10.1016/j.jss.2009.09.057. [Abdollahi H, Harris LJ, Zhang P, et al. The role of hypoxia in stem cell differentiation and therapeutics[J]. J Surg Res, 2011, 165(1): 112-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tanaka N, Kato H, Tsuda H, et al. Development of a high-efficacy reprogramming method for generating human induced pluripotent stem (iPS) cells from pathologic and senescent somatic cells. Int J Mol Sci. 2020;21(18):6764. doi: 10.3390/ijms21186764. [Tanaka N, Kato H, Tsuda H, et al. Development of a high-efficacy reprogramming method for generating human induced pluripotent stem (iPS) cells from pathologic and senescent somatic cells[J]. Int J Mol Sci, 2020, 21(18): 6764.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Christianson MS, Zhao YL, Shoham G, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Webbased survey. J Assist Reprod Genet. 2014;31(8):1029–36. doi: 10.1007/s10815-014-0250-z. [Christianson MS, Zhao YL, Shoham G, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Webbased survey[J]. J Assist Reprod Genet, 2014, 31(8): 1029-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Pettinato G, Wen XJ, Zhang N. Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells. Stem Cells Dev. 2015;24(14):1595–609. doi: 10.1089/scd.2014.0427. [Pettinato G, Wen XJ, Zhang N. Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells [J]. Stem Cells Dev, 2015, 24(14): 1595-609.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Armstrong L, Tilgner K, Saretzki G, et al. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010;28(4):661–73. doi: 10.1002/stem.307. [Armstrong L, Tilgner K, Saretzki G, et al. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells[J]. Stem Cells, 2010, 28(4): 661-73.] [DOI] [PubMed] [Google Scholar]
  • 23.Zhu CP, Hu W, Wu H, et al. No evident dose-response relationship between cellular ROS level and its cytotoxicity: a paradoxical issue in ROS-based cancer therapy. Sci Rep. 2014;4:5029. doi: 10.1038/srep05029. [Zhu CP, Hu W, Wu H, et al. No evident dose-response relationship between cellular ROS level and its cytotoxicity: a paradoxical issue in ROS-based cancer therapy[J]. Sci Rep, 2014, 4: 5029.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Xie Y, Zhang J, Lin Y, et al. Defining the role of oxygen tension in human neural progenitor fate. Stem Cell Reports. 2014;3(5):743–57. doi: 10.1016/j.stemcr.2014.09.021. [Xie Y, Zhang J, Lin Y, et al. Defining the role of oxygen tension in human neural progenitor fate[J]. Stem Cell Reports, 2014, 3(5): 743-57.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sotthibundhu A, McDonagh K, von Kriegsheim A, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther. 2016;7(1):166. doi: 10.1186/s13287-016-0425-x. [Sotthibundhu A, McDonagh K, von Kriegsheim A, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells[J]. Stem Cell Res Ther, 2016, 7(1): 166.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Forristal CE, Wright KL, Hanley NA, et al. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139(1):85–97. doi: 10.1530/REP-09-0300. [Forristal CE, Wright KL, Hanley NA, et al. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions[J]. Reproduction, 2010, 139(1): 85-97.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lee HJ, Ryu JM, Jung YH, et al. Novel pathway for hypoxiainduced proliferation and migration in human mesenchymal stem cells: involvement of HIF-1α, FASN, and mTORC1. Stem Cells Dayt Ohio. 2015;33(7):2182–95. doi: 10.1002/stem.2020. [Lee HJ, Ryu JM, Jung YH, et al. Novel pathway for hypoxiainduced proliferation and migration in human mesenchymal stem cells: involvement of HIF-1α, FASN, and mTORC1[J]. Stem Cells Dayt Ohio, 2015, 33(7): 2182-95.] [DOI] [PubMed] [Google Scholar]
  • 28.Pugh CW. Modulation of the hypoxic response. Adv Exp Med Biol. 2016;903:259–71. doi: 10.1007/978-1-4899-7678-9_18. [Pugh CW. Modulation of the hypoxic response[J]. Adv Exp Med Biol, 2016, 903: 259-71.] [DOI] [PubMed] [Google Scholar]
  • 29.Jiang YZ, Li Y, Wang K, et al. Distinct roles of HIF1A in endothelial adaptations to physiological and ambient oxygen. Mol Cell Endocrinol. 2014;391(1/2):60–7. doi: 10.1016/j.mce.2014.04.008. [Jiang YZ, Li Y, Wang K, et al. Distinct roles of HIF1A in endothelial adaptations to physiological and ambient oxygen[J]. Mol Cell Endocrinol, 2014, 391(1/2): 60-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology (Bethesda) 2018;33(1):16–25. doi: 10.1152/physiol.00026.2017. [Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics[J]. Physiology (Bethesda), 2018, 33(1): 16-25.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES