Abstract
目的
探讨小檗碱对于Erastin诱导小鼠海马神经元HT22细胞的铁死亡的保护作用及其可能机制。
方法
以HT22小鼠海马神经元细胞为研究对象,分为对照组、Erastin模型组、Erastin+30 μmol/L BBR组、Erastin+60 μmol/L BBR组。采用CCK-8法、特异性Fe2+荧光探针、荧光染料(DAPI)检测和荧光探针(H2DCFH-DA)检测各实验组细胞的增殖情况、活性铁水平、细胞凋亡和活性氧(ROS)变化。RT-qPCR和Western blot分别检测各实验组细胞的Nrf2、HO-1、GPX4 mRNA和蛋白表达情况。以60 μmol BBR的最适浓度来进一步探究其作用机制,分为对照组、Erastin模型组、Erastin+60 μmol/L BBR组、Erastin+60 μmol/L BBR+2 μmol Nrf2抑制剂ML385组。通过使用荧光探针和Western blot检测Nrf2抑制剂(ML385)作用后的活性铁的水平、活性氧含量以及Nrf2、HO-1、GPX4蛋白的表达来验证小檗碱调节的Nrf2-HO-1/GPX4通路对Erastin处理的HT22细胞的保护作用。
结果
0.5 μmol/L Erastin作用于HT22细胞8 h,细胞存活率与对照组相比显著被抑制(P < 0.05);同时细胞凋亡、ROS以及活性铁含量增加(P < 0.05)。与Erastin组比较,Erastin+30 μmol/L BBR组和Erastin+60 μmol/L BBR组的细胞存活率明显升高(P < 0.05),同时显著降低细胞凋亡、ROS以及活性铁含量(P < 0.05)。小檗碱增加HT22细胞中Nrf2、HO-1、GPX4基因及蛋白的表达量(P < 0.05)。加入Nrf2抑制剂ML385后,Nrf2-HO-1/GPX4通路被抑制,并且ROS以及活性铁含量升高(P < 0.05)。
结论
Erastin诱导HT22细胞发生铁死亡,小檗碱抑制Erastin诱导的铁死亡,可能机制是激活了Nrf2-HO-1/GPX4通路。
Keywords: 小檗碱, Erastin, HT22细胞, 铁死亡, 神经保护, Nrf2-HO-1/GPX4
Abstract
Objective
To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22).
Methods
Cultured HT22 cells were pretreated with 30 or 60 μmol/L berberine for 2 h before exposure to 0.5 μmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 μmol/L ML385 (a Nrf2 inhibitor), 60 μmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells.
Results
Treatment with 0.5 μmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 μmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05).
Conclusion
Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.
Keywords: berberine, erastin, HT22 cells, ferroptosis, neuroprotection, Nrf2-HO-1/GPX4
细胞死亡的类型根据细胞形态可以分为3种:自噬、凋亡以及细胞坏死[1]。铁死亡是区别于以上3种细胞形态的新的细胞形态,它与铁离子水平相关,是由于脂质过氧化物产生而发生的[2]。它的实质是氧化损伤,即主要为依赖铁离子的脂质过氧化物产生过量并积累,随后产生线粒体变化[3]。线粒体功能障碍和异常的能量代谢是许多急性和慢性神经退行性疾病的常见上游介质。研究发现,多种疾病与铁死亡的关联紧密,如阿尔茨海默病、帕金森病等神经退行性疾病[4-7]。
神经退行性疾病是由神经元结构和功能的渐进性丧失或神经元死亡引起的疾病[8]。大多数神经退行性疾病的发病机制尚不清楚,但越来越多的证据表明,神经退行性疾病的发病机制与兴奋毒素和氧化应激有关。HO-1是一种应激蛋白,参与抗氧化损伤的防御机制,其激活是许多神经退行性疾病的共同特征。HO-1蛋白的转录受Nrf2调控。抗氧化蛋白和铁代谢蛋白等与铁中毒有关的重要蛋白可提高Nrf2蛋白水平,促进基因转录[9, 10]。研究表明,当Nrf2及其靶基因被敲除时,Erastin或sorafenib会被激活,从而导致人肝细胞癌发生铁死亡[11, 12]。
为了更好的理解铁死亡在神经退行性疾病中的机制,我们研究了小檗碱在Erastin诱导HT22细胞铁死亡中的作用。小檗碱(BBR)是一种从天然植物黄连的根茎中提取出生物碱,含有抗氧化应激、降血糖、抗炎等药理作用[13],对包括脑缺血、多发性硬化症、各种神经退行性疾病在内的多种神经系统疾病具有神经保护作用[14, 15]。研究证实,Aβ25-35能够导致原代海马神经元的损伤和凋亡,而小檗碱能够对抗此种损伤和凋亡[16, 17]。然而,对于小檗碱确切的神经保护作用机制还不够清楚。小檗碱的神经保护作用与铁死亡之间是否存在关联尚未有相关研究。因此本实验将小檗碱用于诱导铁死亡后的HT22小鼠海马细胞,观察其保护作用,并进一步探究其可能的作用机制,为阿尔茨海默病的治疗提供新的思路和靶点。
1. 材料和方法
1.1. 材料
1.1.1. 试剂
Erastin、小檗碱(MCE);细胞计数试剂盒8(CCK-8)、H2DCFH-DA溶液(非标记性的氧化敏感的荧光探针)(碧云天);DAPI(Thermo fishe);HO-1、GPX4、Nrf2和β-actin抗体(abcam);BCA试剂盒(碧云天);TRIzol试剂盒购(Invitrogen);两步法逆转录试剂盒(Vazyme);SYBR qPCR试剂盒(Vazyme)。
1.1.2. 细胞
HT22小鼠海马细胞(武汉赛诺普生命科技有限公司)由蚌埠医学院科研中心冻存。
1.2. 方法
1.2.1. 细胞培养
将小鼠海马细胞HT22放入培养箱培养,胎牛血清在培养基所占的比例为10%,并且同时加100 U/ml青霉素和100 mg/L链霉素于DMEM培养基中。传代用到的胰蛋白酶溶液的体积分数为0.25%,进行消化传代,比例约1∶2。
1.2.2. 药物配制及处理
将Erastin溶于DMSO,使其配为100 μmol/L的溶液,实验使用时的最终浓度为0.5 μmol/L。相同方法使小檗碱配为1 mmol/L的溶液,实验使用时的最终浓度为30 μmol/L、60 μmol/L。ML385配置成2 µmol/L。将实验分为两个部分,第1部分设置4个实验组,分别为完全培养基组、Erastin组、Erastin+30 μmol/L BBR组、Erastin+60 μmol/L BBR组,小檗碱预处理2 h,再加入0.5 μmol/L Erastin诱导8 h后进行相关实验。第2部分设置4个实验组:对照组、Erastin模型组、Erastin+60 μmol/L BBR组、Erastin+60 μmol/L BBR+2 μmol/L ML385组,ML385预处理1 h,小檗碱预处理2 h,再加入0.5 μmol /L Erastin诱导8 h进行后序验证实验。
1.2.3. CCK-8实验检测细胞存活率
96孔板中种入7000个HT22细胞/孔,设置空白对照组(blank),正常对照组以及不同浓度的Erastin损伤模型组(0.05、0.1、0.5、1 μmol/L)作用细胞8 h。设置空白对照组,正常对照组,小檗碱(30、60 μmol/L)+0.5 μmol/L Erastin组,小檗碱预处理2 h,再加入Erastin作用8 h。随后每孔加入10 μL CCK-8溶液,随后放入培养箱培养30 min,每孔450 nm地方的吸光度数在酶标仪上读取。算出每组的细胞存活率。实验重复进行3次。
1.2.4. DAPI染色检测细胞凋亡水平
在24孔板里每孔种入5×104HT22细胞,放入培养箱培养,随后依次加入培养基、小檗碱预处理2 h后,0.5 μmol/L Erastin作用8 h,显微镜下观察细胞凋亡情况并拍照后吸除上清液,再加入PBS洗2遍。每孔加入200 μL 4%多聚甲醛,避光孵育30 min后吸除4%多聚甲醛,且加入PBS洗2遍。每孔加入100 μl DAPI溶液,避光孵育10 min,吸除DAPI溶液,再加入PBS洗2遍。将荧光显微镜调整参数后拍摄图片。最后分析各组结果。实验重复进行3次。
1.2.5. 菲罗嗪法检测细胞内活性铁含量
按照上述药物配制及处理的分组分别分别对细胞进行不同处理后用胰酶消化以收集细胞,离心后取处理好的细胞,加入合适体积的RIAP裂解液在冰上裂解30 min,离心后提取细胞总蛋白。将上清液加入96孔板,并于每个加入上清液的孔里都加等体积的盐酸,室温放置30 min。孔中添加铁探针后,室温避光放置1 h。读取562 nm处吸光度数在酶标仪上。最后分析各组活性铁含量的结果。实验重复进行3次。
1.2.6. H2DCFH-DA检测细胞内活性氧(ROS)含量
在12孔板里种入约1×105/孔HT22细胞,放入培养箱培养,随后按照上述药物配制及处理的分组分别进行不同处理后吸除药物,用无血清培养液清洗细胞2次,然后每孔添加进去用不加血清的培养基稀释至10 μmol/L的500 μL H2DCFH-DA溶液(非标记性的氧化敏感的荧光探针),放置在培养箱里30 min,用无血清培养液清洗细胞2次,随后将荧光显微镜调整参数后拍摄图片,最后分析各组结果。实验重复进行3次。
1.2.7. RNA提取及RT-qPCR法检测mRNA表达
用胰酶消化以收集细胞,离心后弃去上清液,每孔加入1 mL Trizol裂解细胞5 min后放置在-80 ℃冰箱。按照RNA提取步骤提取RNA,检测其浓度和纯度后,按RNA反转录试剂盒的进程逆转录;立即用于实验或-20 ℃保存。取稀释后cDNA用实时定量PCR试剂盒的进程检测细胞内HO-1、GPX4、Nrf2的mRNA表达。融解曲线为:95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s。所用PCR引物如下:ACSL4:Forward Primer:CCTGAGGGGCTTGAA ATTCAC,Reverse Primer:GTTGGTCTACTTGGAG GAACG;PTGS2:Forward Primer TGCACTATGGTT ACAAAAGCTGG,Reverse Primer TCAGGAAGCTC CTTATTTCCCTT;Nrf2:Forward Primer:CTCCTGG ACGGGACTATTGA,Reverse Primer: TGGGTCTCC GTAAATGGAAG;HO-1:Forward Primer:CACGCAT ATACCCGCTACCT,Reverse Primer:CCAGAGTGTT CATTCGAGCA;GPX4:Forward Primer:TGTGCATC CCGCGATGATT,Reverse Primer:CCCTGTACTTAT CCAGGCAGA。每组设置3个复孔,运用2-ΔΔCT的方法分析各组结果。实验重复进行3次。
1.2.8. Western blot法检测蛋白表达
胰酶消化收集细胞,离心后弃去上清液,添加进去合适体积的RIAP裂解液在冰上裂解30 min,离心后以提取细胞总蛋白,根据BCA试剂盒,加入200 μL BCA溶液、19 μL NS和1 μL蛋白溶液,37°烘箱放置30 min,用酶标仪测定570 nm处的吸光度,加入RIAP裂解液进一步蛋白定量上清液,再添加5×SDS,95 ℃煮5 min。根据蛋白分子量配制不同浓度的分离胶,随后通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分离等量蛋白的蛋白样品,用甲醇激活PVDF膜,随后把蛋白转换至PVDF膜,用快速封闭液处理30 min后,数遍洗涤后,添加进去HO-1、GPX4、Nrf2、β-actin抗体(按比例配制至所需浓度),4 ℃过夜,数遍洗涤后,加入二抗(按比例配制至所需浓度)并且在室温放置2 h 30 min,数遍洗涤后,ECL法使PVDF膜显影,曝光,以β-actin为内参基因,分析各组结果。实验重复进行3次。
1.2.9. 统计学处理
数据分析使用GraphPad Prism 8软件,均数±标准差来表示所有数据,两组数据相较采取t检验分析,多组数据相较采取单因素方差分析(Oneway ANOVA),P < 0.05表示差异有统计学意义。
2. 结果
2.1. 小檗碱抑制Erastin诱导HT22细胞发生铁死亡
与正常组相比,0.5 μmol/L Erastin诱导8 h能明显抑制细胞增殖(P < 0.05),细胞存活率为(59±2.9)%,即在半数致死率IC50附近(图 1A)。因此选取最佳浓度是0.5 μmol/L Erastin造模。为探究小檗碱对Erastin诱导铁死亡的抑制作用,不同浓度小檗碱(30、60 μmol/L)预处理2 h后加入0.5 μmol/L Erastin,数据表明60 μmol/L小檗碱起到显著的保护作用(P < 0.05),细胞存活率为(82.21±7.35)%(图 1B)。
1.

小檗碱抑制Erastin诱导HT22细胞发生铁死亡
Berberine (BBR) inhibits ferroptosis induced by erastin in HT22 cells. A: Viability of HT22 cells treated with different concentrations of erastin (*P < 0.05 vs 0.05 μmol/L erastin). B: Viability of HT22 cells pretreated with BBR prior to erastin exposure (*P < 0.05 vs NC group; #P < 0.05 vs 0.5 μmol/L erastin).
2.2. 小檗碱降低Erastin诱导的HT22细胞凋亡
DAPI染色前,普通显微镜观察不同组细胞凋亡情况发现,与对照组相较,Erastin损伤模型组里细胞凋亡明显增加(P < 0.05),同时,不同浓度的小檗碱均降低Erastin诱导的凋亡(图 2A)。DAPI染色后,荧光显微镜拍摄图片并且统计各个组内凋亡水平,结果显示,0.5 μmol/LErastin诱导8 h凋亡率为(25.77±2.05)%,而60 μmol/L小檗碱保护后凋亡率为(10.72±1.93)%(图 2B)。
2.

小檗碱降低Erastin诱导HT22细胞凋亡
BBR reduces erastin-induced apoptosis of HT22 cells. A: Cells before DAPI staining(Original magnification: × 200). B: Effect of BBR on relative fluorescence intensity of the cells (×200). C: Statistical analysis of cell apoptosis rates. *P < 0.05 vs NC group. #P < 0.05 vs 0.5 μmol/L erastin.
2.3. 小檗碱降低Erastin损伤HT22细胞内活性铁含量
菲罗嗪法检测细胞内活性铁含量结果显示,与对照组相较,Erastin损伤模型组里细胞内活性铁含量增加,为(68.34±4.16),差异具有统计学意义(P < 0.05)。和Erastin损伤模型组相较,小檗碱组铁含量降低为(38.98±3.85)(图 3)。
3.

小檗碱降低Erastin损伤HT22细胞内铁含量
Effect of BBR on the level of ferric iron in HT22 cells. *P < 0.05 vs NC group; #P < 0.05 vs Erastin group.
2.4. 小檗碱降低Erastin损伤HT22细胞内ROS含量
H2DCFH-DA测定细胞内ROS含量结果显示,和对照组相较,Erastin损伤模型组细胞内ROS含量增加,差异具有统计学意义(P < 0.05)。和Erastin损伤模型组相较,小檗碱组可以减弱Erastin损伤下细胞内的ROS生成,60 μmol/L的小檗碱组的作用强于30 μmol/L组(图 4)。
4.

小檗碱降低Erastin损伤HT22细胞内ROS含量
Effect of BBR on relative fluorescence intensity of ROS in HT22 cells (Original magnification: × 200). *P < 0.05 vs NC group, #P < 0.05, vs Erastin group.
2.5. 小檗碱影响Erastin损伤HT22细胞中Nrf2-HO-1/GPX4/ACSL4/PTGS2 mRNA表达
和对照组相较,Erastin组中表达量下调的有HO-1、GPX4、Nrf2 mRNA,表达量上调的有ACSL4、PTGS2 mRNA,而与Erastin组比较,Erastin+BBR组的HO-1、GPX4、Nrf2 mRNA表达量增高,尤其是60 μmol/L小檗碱组;ACSL4、PTGS2 mRNA表达量降低,尤其是60 μmol/L小檗碱组(P < 0.05,图 5)。
5.

小檗碱影响Erastin损伤HT22细胞中Nrf2-HO-1/GPX4/ACSL4/PTGS2mRNA表达
Effect of berberine on the expressions of HO-1, GPX4, NRF2, ACSL4 and PTGS2 mRNA in HT22 cells. *P < 0.05 vs NC group, #P < 0.05 vs erastin group.
2.6. 小檗碱对Erastin损伤HT22细胞中Nrf2-HO-1/GPX4蛋白表达的影响
与对照组相较,Erastin组的Nrf2、HO-1、GPX4蛋白的表达量减少,而与Erastin组比较,Erastin+BBR组的HO-1、GPX4与Nrf2蛋白的表达量增加,特别是60 μmol/L小檗碱组(P < 0.05,图 6)。
6.

小檗碱对Erastin损伤HT22细胞Nrf2-HO-1/GPX4蛋白表达的影响
Effect of berberine (BBR) on protein expressions of Nrf2-HO-1/GPX detected by Western blotting. *P < 0.05 vs NC group, #P < 0.05 vs Erastin group.
2.7. Nrf-2抑制剂逆转小檗碱对HT22细胞的保护作用
在60 μmol/L小檗碱的基础上增加了Nrf2抑制剂组,结果发现,Nrf2抑制剂ML385可以抑制Nrf2-HO-1/GPX4/通路的激活,并且使HT22细胞内活性铁含量和ROS含量增加,逆转了小檗碱对HT22细胞的保护作用(P < 0.05,图 7)。
7.

Nrf-2抑制剂逆转小檗碱对HT22细胞的保护作用
Nrf-2 inhibitor mitigates the protective effect of berberine on HT22 cells. *P < 0.05 vs NC group. (Original magnification: × 200) #P < 0.05 vs erastin group, & P < 0.05 vs BBR+erastin group.
3. 讨论
小檗碱具有抗炎、抗氧化、保护神经等作用[18, 19]。小檗碱作为一种中药单体临床使用安全有效。研究证明其对慢性脑灌注不足大鼠的CBF降低和认知功能障碍有良好的改善作用[20, 21]。本实验中,我们首先使用不同浓度的Erastin观察对细胞的增殖抑制作用,结果发现0.5 μmol/L Erastin显著抑制HT22细胞增殖,而给与小檗碱保护后,Erastin抑制HT22细胞增殖作用降低。在细胞凋亡实验中观察到了同样的结果。Stockwell等发现铁死亡是一种新的死亡形式,与多种疾病密切相关。其中四个关键因素,铁、PUFAs、氧气、抗氧化剂的减少是诱发铁死亡的必要因素[22]。因此,我们检测了药物小檗碱处理后Erastin损伤HT22细胞内活性铁含量以及ROS的水平,结果发现,小檗碱能够降低Erastin损伤HT22细胞内活性铁含量以及ROS水平。
GPX4是铁死亡标志蛋白,铁死亡发生时GPX4表达减少。长链酯酰辅酶A合成酶家族(ACSLs)是负责机体内脂肪代谢的关键酶,是代谢相关疾病的重要调控因子[23]。近期研究发现ACSL4可以促进花生四烯醇(AA)和肾上腺素醇的酯化生成PE,这一过程与铁死亡密切相关[24, 25]。Cheng等[26]的研究发现,ACSL4通过激活铁死亡抑制胶质瘤细胞的增殖。在铁死亡过程中伴随ACSL4表达增加,因此通常作为铁死亡的标志物[27]。前列腺素内过氧化物合酶2(PTGS2),又称环氧化酶2(COX-2),也是公认的铁死亡标志物[28]。本实验表明,小檗碱降低Erastin诱导的神经元细胞HT22的铁死亡标志物ACSL4、PTGS2的表达,增加GPX4的表达。以上结果说明小檗碱可以降低Erastin在HT22细胞中诱发的铁死亡。这与关等人之前的研究[29],小檗碱缓解高糖状态下足细胞发生铁死亡一致。
Nrf2-HO-1/GPX4通路与抗氧化作用密切相关,转录因子Nrf2是抗氧化系统的主要调控因子,在介导铁/ 金属代谢、脂质代谢和谷胱甘肽合成方面也发挥着关键作用,GPX4,and HO-1,受Nrf2调控,从而发挥抗氧化作用,以上因子都涉及铁死亡的发生[30, 31]。本研究实验表明,小檗碱增高Nrf2-HO-1/GPX4通路相关基因与蛋白的表达,说明小檗碱能够抑制HT22细胞铁死亡,其机制可能与Nrf2-HO-1/GPX4信号通路的调节有关。为进一步验证这一结论,又使用了Nrf2抑制剂来观察对小檗碱保护作用的影响,结果发现,Nrf2抑制剂可以抑制Nrf2-HO-1/GPX4通路的激活,并且增加了HT22细胞内铁离子和ROS含量。
综上所述,本研究结果证实了小檗碱对神经元HT22细胞中Erastin诱导的铁死亡具有明显的抑制作用,而机制可能作用于Nrf2-HO-1/GPX4通路实现。
Biography
黄庆洋,学士,E-mail: huangqingyang214@163.com
Funding Statement
蚌埠医学院自然科学基金(BYKY1641);蚌埠医学院自然科学基金(BYKY1806ZD,2020byzd016)
Contributor Information
黄 庆洋 (Qingyang HUANG), Email: huangqingyang214@163.com.
孙 小锦 (Xiaojin SUN), Email: aijosxj@163.com.
References
- 1.向 亮, 何 东, 曹 科, et al. 铁死亡在恶性肿瘤治疗中的研究进展. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHLU202104010.htm. 中国肿瘤. 2021;30(4):300–8. [向亮, 何东, 曹科, 等. 铁死亡在恶性肿瘤治疗中的研究进展[J]. 中国肿瘤, 2021, 30(4): 300-8.] [Google Scholar]
- 2.Wang H, Liu C, Zhao YX, et al. Mitochondria regulation in ferroptosis. Eur J Cell Biol. 2020;99(1):151058. doi: 10.1016/j.ejcb.2019.151058. [Wang H, Liu C, Zhao YX, et al. Mitochondria regulation in ferroptosis[J]. Eur J Cell Biol, 2020, 99(1): 151058.] [DOI] [PubMed] [Google Scholar]
- 3.程 洁, 陆 军, 王 章桂. 铁死亡在肿瘤治疗中的研究进展. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL202019014.htm. 中华肿瘤防治杂志. 2020;27(19):1598–604. [程洁, 陆军, 王章桂. 铁死亡在肿瘤治疗中的研究进展[J]. 中华肿瘤防治杂志, 2020, 27(19): 1598-604.] [Google Scholar]
- 4.陈 玲, 王 凯旋, 彭 驰伟, et al. 原花青素对Erastin诱导SH-SY5Y细胞铁死亡的神经保护作用. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYX202108017.htm. 山西医科大学学报. 2021;52(8):1040–7. [陈玲, 王凯旋, 彭驰伟, 等. 原花青素对Erastin诱导SH-SY5Y细胞铁死亡的神经保护作用[J]. 山西医科大学学报, 2021, 52(8): 1040-7.] [Google Scholar]
- 5.彭冰洁. 去甲肾上腺素调控多巴胺能神经元铁死亡在帕金森病小鼠模型中的机制研究[D]. 大连: 大连医科大学, 2021.
- 6.Bao WD, Pang P, Zhou XT, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 2021;28(5):1548–62. doi: 10.1038/s41418-020-00685-9. [Bao WD, Pang P, Zhou XT, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease[J]. Cell Death Differ, 2021, 28(5): 1548-62.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Prog Neurobiol. 2021;196:101890. doi: 10.1016/j.pneurobio.2020.101890. [Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease[J]. Prog Neurobiol, 2021, 196: 101890.] [DOI] [PubMed] [Google Scholar]
- 8.Cuny GD. Foreword: neurodegenerative diseases: challenges and opportunities. Future Med Chem. 2012;4(13):1647–9. doi: 10.4155/fmc.12.123. [Cuny GD. Foreword: neurodegenerative diseases: challenges and opportunities[J]. Future Med Chem, 2012, 4(13): 1647-9.] [DOI] [PubMed] [Google Scholar]
- 9.Amin N, Du XX, Chen SJ, et al. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway. Expert Opin Ther Targets. 2021;25(7):597–612. doi: 10.1080/14728222.2021.1952986. [Amin N, Du XX, Chen SJ, et al. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway[J]. Expert Opin Ther Targets, 2021, 25(7): 597-612.] [DOI] [PubMed] [Google Scholar]
- 10.Yang H, Tang CY, Luo C, et al. Resveratrol attenuates the cytotoxicity induced by amyloid-β 1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res. 2018;43(2):297–305. doi: 10.1007/s11064-017-2421-7. [Yang H, Tang CY, Luo C, et al. Resveratrol attenuates the cytotoxicity induced by amyloid-β 1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway[J]. Neurochem Res, 2018, 43(2): 297-305.] [DOI] [PubMed] [Google Scholar]
- 11.Chang CF, Cho S, Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol. 2014;1(4):258–71. doi: 10.1002/acn3.54. [Chang CF, Cho S, Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways[J]. Ann Clin Transl Neurol, 2014, 1(4): 258-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Jiang T, Cheng H, Su JJ, et al. Gastrodin protects against glutamateinduced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol in vitro. 2020;62:104715. doi: 10.1016/j.tiv.2019.104715. [Jiang T, Cheng H, Su JJ, et al. Gastrodin protects against glutamateinduced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway[J]. Toxicol in vitro, 2020, 62: 104715.] [DOI] [PubMed] [Google Scholar]
- 13.Ju JQ, Li JG, Lin Q, et al. Efficacy and safety of berberine for dyslipidaemias: a systematic review and meta-analysis of randomized clinical trials. Phytomedicine. 2018;50:25–34. doi: 10.1016/j.phymed.2018.09.212. [Ju JQ, Li JG, Lin Q, et al. Efficacy and safety of berberine for dyslipidaemias: a systematic review and meta-analysis of randomized clinical trials[J]. Phytomedicine, 2018, 50: 25-34.] [DOI] [PubMed] [Google Scholar]
- 14.Simões Pires EN, Frozza RL, Hoppe JB, et al. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res. 2014;1557:26–33. doi: 10.1016/j.brainres.2014.02.021. [Simões Pires EN, Frozza RL, Hoppe JB, et al. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved[J]. Brain Res, 2014, 1557: 26-33.] [DOI] [PubMed] [Google Scholar]
- 15.Chen WJ, Wei SN, Yu Y, et al. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity. Eur J Pharmacol. 2016;779:80–90. doi: 10.1016/j.ejphar.2016.03.015. [Chen WJ, Wei SN, Yu Y, et al. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity[J]. Eur J Pharmacol, 2016, 779: 80-90.] [DOI] [PubMed] [Google Scholar]
- 16.Durairajan SSK, Liu LF, Lu JH, et al. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol Aging. 2012;33(12):2903–19. doi: 10.1016/j.neurobiolaging.2012.02.016. [Durairajan SSK, Liu LF, Lu JH, et al. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model[J]. Neurobiol Aging, 2012, 33(12): 2903-19.] [DOI] [PubMed] [Google Scholar]
- 17.杨 吉平, 赖 红, 刘 鹏, et al. 小檗碱对AD模型大鼠学习记忆能力及皮层和海马NFTs的影响. https://www.cnki.com.cn/Article/CJFDTOTAL-JPKX201205015.htm. 解剖科学进展. 2012;18(5):449-51, 455. [杨吉平, 赖红, 刘鹏, 等. 小檗碱对AD模型大鼠学习记忆能力及皮层和海马NFTs的影响[J]. 解剖科学进展, 2012, 18(5): 449-51, 455.] [Google Scholar]
- 18.Huang M, Chen SY, Liang YB, et al. The role of berberine in the multi-target treatment of senile dementia. Curr Top Med Chem. 2016;16(8):867–73. doi: 10.2174/1568026615666150827095433. [Huang M, Chen SY, Liang YB, et al. The role of berberine in the multi-target treatment of senile dementia[J]. Curr Top Med Chem, 2016, 16(8): 867-73.] [DOI] [PubMed] [Google Scholar]
- 19.Ye CH, Liang YB, Chen Y, et al. Berberine improves cognitive impairment by simultaneously impacting cerebral blood flow and β-amyloid accumulation in an APP/tau/PS1 mouse model of Alzheimer's disease. Cells. 2021;10(5):1161. doi: 10.3390/cells10051161. [Ye CH, Liang YB, Chen Y, et al. Berberine improves cognitive impairment by simultaneously impacting cerebral blood flow and β-amyloid accumulation in an APP/tau/PS1 mouse model of Alzheimer's disease[J]. Cells, 2021, 10(5): 1161.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Aski ML, Rezvani ME, Khaksari M, et al. Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia. Iran J Basic Med Sci. 2018;21(1):53–8. doi: 10.22038/IJBMS.2017.23195.5865. [Aski ML, Rezvani ME, Khaksari M, et al. Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia[J]. Iran J Basic Med Sci, 2018, 21(1): 53-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Jia YM, Wang N, Zhang YB, et al. Alteration in the function and expression of SLC and ABC transporters in the neurovascular unit in Alzheimer's disease and the clinical significance. Aging Dis. 2020;11(2):390–404. doi: 10.14336/AD.2019.0519. [Jia YM, Wang N, Zhang YB, et al. Alteration in the function and expression of SLC and ABC transporters in the neurovascular unit in Alzheimer's disease and the clinical significance[J]. Aging Dis, 2020, 11(2): 390-404.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79. doi: 10.1038/cdd.2015.158. [Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-79.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Killion EA, Reeves AR, El Azzouny MA, et al. A role for longchain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab. 2018;9:43–56. doi: 10.1016/j.molmet.2018.01.012. [Killion EA, Reeves AR, El Azzouny MA, et al. A role for longchain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction[J]. Mol Metab, 2018, 9: 43-56.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8. doi: 10.1038/nchembio.2239. [Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Kagan VE, Mao GW, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90. doi: 10.1038/nchembio.2238. [Kagan VE, Mao GW, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Cheng J, Fan YQ, Liu BH, et al. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep. 2020;43(1):147–58. doi: 10.3892/or.2019.7419. [Cheng J, Fan YQ, Liu BH, et al. ACSL4 suppresses glioma cells proliferation via activating ferroptosis[J]. Oncol Rep, 2020, 43(1): 147-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Li Y, Feng DC, Wang ZY, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26(11):2284–99. doi: 10.1038/s41418-019-0299-4. [Li Y, Feng DC, Wang ZY, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1/2):317–31. doi: 10.1016/j.cell.2013.12.010. [Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.关 锡梅, 解 勇圣, 倪 伟建, et al. Nrf2/HO-1/GPX4对高糖诱导足细胞铁死亡的影响及小檗碱的干预机制研究. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202103018.htm. 中国药理学通报. 2021;37(3):396–403. [关锡梅, 解勇圣, 倪伟建, 等. Nrf2/HO-1/GPX4对高糖诱导足细胞铁死亡的影响及小檗碱的干预机制研究[J]. 中国药理学通报, 2021, 37 (3): 396-403.] [Google Scholar]
- 30.Dodson M, de la Vega MR, Cholanians AB, et al. Modulating NRF2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019;59:555–75. doi: 10.1146/annurev-pharmtox-010818-021856. [Dodson M, de la Vega MR, Cholanians AB, et al. Modulating NRF2 in disease: timing is everything[J]. Annu Rev Pharmacol Toxicol, 2019, 59: 555-75.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Anandhan A, Dodson M, Schmidlin CJ, et al. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol. 2020;27(4):436–47. doi: 10.1016/j.chembiol.2020.03.011. [Anandhan A, Dodson M, Schmidlin CJ, et al. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem Biol, 2020, 27(4): 436-47.] [DOI] [PMC free article] [PubMed] [Google Scholar]
