Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Jun 20;42(6):944–948. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.06.20

腺相关病毒衣壳保守区多价抗原肽的原核表达及多克隆抗体制备

Prokaryotic expression of a recombinant protein of adeno-associated virus capsid conserved regions and preparation of its polyclonal antibody

Shuyue LI 1, Chunyu CAO 1, Hao ZHANG 1, Yuling LI 1, Xiongzhou ZHANG 1, Zican YANG 1, Yan XIA 2, Lei WANG 1,*, Yafeng LÜ 1,*
PMCID: PMC9257366  PMID: 35790447

Abstract

Objective

To express and purify the antigenic peptide of adeno-associated virus (AAV) capsid conserved regions in prokaryotic cells and prepare its rabbit polyclonal antibody.

Methods

The DNA sequence encoding the conserved regions of AAV capsid protein was synthesized and cloned into the vector pET30a to obtain the plasmid pET30a-AAV-CR for prokaryotic expression and purification of the conserved peptides. Coomassie blue staining and Western blotting were used to identify the AAV conserved peptides. Japanese big ear white rabbits were immunized with AAV conserved region protein to prepare polyclonal antibody, with the rabbits injected with PBS as the control group. The antibody titer was determined with ELISA, and the performance of the antibody for recognizing capsid protein sequences of AAV1-AAV10 was assessed with Western blotting and immunofluorescence assay.

Results

The plasmid pET30a-AAV-CR was successfully constructed, and a recombinant protein with a relative molecular mass of 17000 was obtained. The purified protein induced the production of antibodies against the conserved regions of AAV capsid in rabbits, and the titer of the purified antibodies reached 1:320 000. The antibodies were capable of recognizing a wide range of capsid protein sequences of AAV1-AAV10.

Conclusion

We successfully obtained the polyclonal antibodies against AAV capsid conserved region protein from rabbits, which facilitate future studies of AAV vector development and the biological functions of AAV.

Keywords: adeno-associated virus, polyvalent antigenic peptide, protein purification, polyclonal antibodies


腺相关病毒(AAV)是一种单正链DNA病毒,属于细小病毒科依赖病毒属,目前普遍认为AAV感染不会引起人类疾病的发生[1, 2]。AAV载体优异的安全性,以及对靶器官组织的高效转导性,使其成为体内基因治疗的首选载体系统[3-5]。AAV病毒粒子直径约25 nm,其中包裹着4.7 kb的单链DNA基因组,基因组由Rep基因和Cap基因组成,两侧是反向末端重复序列(ITR),左侧的ORF编码四种复制蛋白,根据它们的分子量命名为:Rep78、Rep68、Rep52和Rep40,右侧的ORF通过不同起始密码子编码3个衣壳蛋白VP1、VP2和VP3,这3种衣壳蛋白共用1个羧基末端,但具有不同的氨基末端,AAV组装过程中,VP1、VP2和VP3以1∶1∶10的比例形成二十面体病毒衣壳[6-8]

目前市面上还未有能识别所有常见血清型的AAV抗体。进行AAV相关研究时往往需要准备多种针对不同血清型的抗体,既增加了研究成本又不利于研究结果之间的比较。本研究根据AAV1-AAV10衣壳蛋白一级结构序列分析,共发现10处AAV衣壳保守区(Aa42-50,Aa93-101,Aa107-124,Aa 271-303,Aa 334-350,Aa 395-410,Aa 615-623,Aa 649-655,Aa669-698,Aa727- 733),将所有衣壳保守区DNA序列进行人工拼接后合成,经原核蛋白表达纯化,制备多克隆抗体,采用多种方式验证人工制备的抗原的抗原性,为后续研究AAV的生物学功能以及载体优化改造奠定了基础。

1. 材料和方法

1.1. 材料

pET-30a表达质粒及大肠杆菌菌株BL21(DE3)由作者实验室保存,日本大耳朵白兔雄性(湖北省实验动物研究中心),羊抗兔IgG-His抗体(北京中杉金桥生物技术有限公司)、Ni-NTA树脂(Novagen)、弗氏不完全佐剂(Sigma-aldrich),其它相关生物化学试剂均由全式金公司提供,本实验通过三峡大学实验动物福利与伦理审查(2022010C1)。

1.2. 方法

1.2.1. AAV衣壳保守区蛋白序列获得

NCBI数据库中获得AAV1-10血清型序列并进行序列分析,结果显示AAV1-AAV10衣壳蛋白氨基酸序列中有10处保守区,(Aa42-50,Aa93-101,Aa107-124,Aa271-303,Aa334- 350,Aa395-410,Aa615-623,Aa649-655,Aa669-698,Aa727-733),10处保守区序列进行拼接,获得的序列即为AAV1-AAV10衣壳蛋白保守区序列,该序列由金唯智生物公司合成并构建到pET-30a原核表达载体,其中5′末端酶切位点为XhoⅠ,3′末端酶切位点为NdeⅠ。

1.2.2. AAV保守区蛋白原核表达

将pET-30a-AAV-CR质粒转化到大肠杆菌菌株BL21(DE3),挑取阳性克隆接种于含有卡拉霉素的LB液体培养基,37 ℃、220 r/min振荡培养2~3 h,菌液A600 nm达到0.8~1.0时,加入IPTG(终浓度为1 mmol/L)继续振荡培养。在不同的诱导时间点取样,12%的SDS-PAGE分析AAV保守区蛋白的表达,确定诱导AAV保守区蛋白表达的最优条件。

1.2.3. AAV保守区蛋白的纯化及复性

依据曹春雨[9]等所报道的研究及上述诱导的最佳条件进行AAV保守区蛋白大量诱导,收集菌体后经高浓度尿素(8 mol/L尿素,0.1 mol/L Na2HPO4,0.02 mo/L Tris-HCl,pH=8.0)裂解细菌,6000 r/min、4 ℃、30 min离心去除不溶性碎片。将上清液与Ni-NTA树脂于4 ℃亲和杂交孵育2.5 h后上柱,先用洗脱液A(8 mol/L尿素,10 mmol/L Tris,100 mmol/L Na2HPO4,pH=6.3)洗脱杂蛋白,0.5 h后用洗脱液B(10 mmol/L Tris,8 mol/L尿素,110 mmol/L Na2HPO4,pH=4.3)洗脱目的蛋白。目的蛋白经透析液分步透析去除尿素而复性。透析缓冲溶液为(50 mmol/L Tris,250 mmol/L NaCl、0.01 mmol/L EDTA、1 mol/L DTT,pH=7.5),尿素浓度按照5、2.5、1、0 mol/L梯度递减,每梯度透析12 h,纯化后的蛋白于-80 ℃保存。

1.2.4. 抗AAV保守区蛋白多克隆抗血清的制备

纯化后的AAV保守区蛋白用作抗原免疫日本大耳朵白兔,依据吕亚丰等[10]的研究报道中,本研究首次免疫采取600 μg抗原与等体积弗氏完全佐剂乳化,皮下免疫白兔,设置未免疫抗原的日本大耳朵白兔为阴性对照。间隔2周进行2次加强免疫,末次免疫一周后耳中动脉取血,全血4 ℃静置过夜,12 000 r/min离心收集血清,加入1/10体积甘油、1%叠氮钠后保存于-20 ℃。

1.2.5. 制备的抗血清抗体效价检测

采用间接ELISA法检测血清中多克隆抗体效价。将10 μg的AAV衣壳保守区蛋白加入96孔板,4 ℃包被过夜,3%的BSA 37 ℃封闭2 h后,加入系列稀释血清(以等体积PBS作为空白对照),37 ℃孵育1 h,加入HRP标记的羊抗兔IgG(1∶ 3000稀释),37 ℃孵育1~2 h;TMB法显色,加入终止液后,检测A450 nm值。以空白对照所测得A450 nm值进行调零,实验孔A450 nm值与阴性对照孔A450 nm值的比值≥2.1即为阳性,以能获得阳性的最大稀释比例作为待检血清的抗体效价。

1.2.6. Western bolt法鉴定制备的AAV保守区蛋白抗体

AAV2、AAV6、AAV9病毒样品经10%的SDS-PAGE分离后以300 mA的恒流电转膜,封闭采用1%BSA的TBST孵育1 h。用制备的抗体为一抗(1∶1000稀释使用)4 ℃孵育过夜,以HRP标记的羊抗兔IgG为二抗(1∶ 1000),室温孵育1~2 h,TBST漂洗2~3次,ECL法显色。

1.2.7. 细胞免疫荧光法鉴定AAV保守区蛋白抗体

将表达AAV2、AAV6、AAV9衣壳蛋白的质粒转染4T-1细胞,转染48 h后,接种于24孔板继续培养,贴壁后PBS洗涤2~3次,4%多聚甲醛室温固定15~20 min,0.5%的TritonX-100室温孵育15 min,PBS洗涤2~3次,5%山羊血清37 ℃孵育30 min,每孔加入待检抗血清(1∶300稀释),37 ℃孵育1 h,PBS洗涤1~2次后,滴加荧光二抗(1∶200稀释),室温避光孵育1 h,PBS洗涤去除未结合的二抗,滴加DAPI(1∶50)避光孵育15~20 min,荧光显微镜成像。

2. 结果

2.1. 原核表达质粒鉴定

AAV保守区蛋白质粒pET30a-AAV-CR经Xho I+ Nde I双酶切后,采用1.2% 的琼脂糖凝胶电泳分离显示,可见5000与1500两个DNA片段(图 1)。酶切鉴定为阳性的重组质粒经DNA测序,证实质粒中插入序列正确,阅读框架对接无误。

1.

1

pET30a-AAV-CR质粒的酶切鉴定

Identification of pET30a-AAV-CR plasmid by enzymatic digestion. M: 1kb DNA marker; 1: Enzymatic plasmids; 2: Plasmid without enzyme cleavage.

2.2. AAV保守区蛋白的原核表达和纯化

SDS-PAGE分析pET30a-AAV-CR质粒在大肠杆菌BL21(DE3)中表达情况,在相对分子质量17 000附近有一明显条带(图 2),符合预期相对分子质量的大小。经Ni-NTA高效纯化后,AAV保守区蛋白条带单一,无其他杂带,表明成功纯化(图 3),此外采用His标签抗体可识别AAV衣壳蛋白保守区N端所带的His标签,说明本实验中纯化的蛋白为AAV保守区蛋白(图 4)。

2.

2

AAV保守区蛋白的诱导条件的优化

Optimization of induction conditions for AAV conserved region proteins. M: Protein marker. 1-5: IPTG induction for 0, 2, 4, 6 and 8 h, respectively.

3.

3

AAV保守区蛋白的纯化

Purification of AAV conserved region proteins. M: Protein marker. 1: IPTG induction for 0 h. 2: IPTG induction for 6 h; 3: Purified protein after affinity chromatographic purification with Ni-NTA resin.

4.

4

Western blot鉴定AAV保守区蛋白

Western blotting to identify AAV conserved region proteins. 1: IPTG induction for 0 h. 2: Purified protein after affinity chromatographic purification with Ni-NTA resin.

2.3. 抗AAV保守区蛋白多克隆抗体鉴定

间接ELISA法检测制备抗血清的效价1∶320 000(图 5)。

5.

5

ELISA分析制备血清的效价

ELISA for determining the antiserum titer.

Western bloting检测AAV抗体对不同血清型的AAV病毒(AAV2、AAV6、AAV9)的识别效果,结果显示制备的AAV抗体能特异性识别和结合不同血清型的AAV病毒,可用于该种血清型AAV病毒相关的Western blot检测(图 6)。

6.

6

Western bloting分析制备抗体的特异性

Antibodies for identification of AAV viruses by Western blotting. 1: Anti-serum binding recombinant AAV2 virus. 2: Anti-serum binding recombinant AAV6 virus. 3: Anti-serum binding recombinant AAV9 virus.

2.4. 制备抗体用于细胞免疫荧光分析

在4T-1细胞中转染AAV2、AAV6、AAV9衣壳蛋白质粒,免疫荧光法检测4T-1细胞内AAV衣壳同源区蛋白的表达。结果显示制备的抗体能有效用于各型血清型AAV的细胞免疫荧光分析(图 7)。

7.

7

抗血清用于细胞免疫荧光检测

Antiserum for cell immunofluorescence detection.

3. 讨论

AAV载体具有免疫原性低、很少或几乎不整合宿主基因组、可实现组织异性等特点,目前在遗传性疾病、肿瘤等与基因突变相关的疾病中已逐渐成为递送基因的主要载体[11]。如今,已有3种基于AAV载体的基因治疗药物上市,分别是Glybera、Luxturna和Zolgensma[12-14]。Glybera采用AAV1携带脂蛋白脂酶基因,用于治疗遗传性脂蛋白酯酶缺乏[15]的患者,于2012年10月获得欧洲药品管理局批准上市;Luxturna采用AAV2将正常的RPE65基因导入患者体内,用于治疗由RPE65基因[16]突变导致的遗传性视网膜疾病[17],于2017年12月获得美国食品药品监督管理局批准;Zolgensma采用AAV9携带治疗基因SMN1[18-20],用于治疗2岁以下的脊髓性肌肉萎缩症[21]患者,于2019年5月经美国食品药品监督管理局批准上市。AAV载体的开发以及优化离不开AAV抗体[22]的使用,本研究旨在建立一种原核表达AAV衣壳蛋白保守区抗原肽的方法以及制备一种可广泛识别所有血清型AAV病毒的多克隆抗体。

目前针对AAV衣壳蛋白的商业化抗体较少,并且已有抗体只能识别部分血清型AAV,还没有能够同时结合AAV1-AAV10所有血清型的抗体,进行AAV相关基础及应用研究时往往需要准备多种针对不同血清型的抗体,不仅增加了研究成本同时又也不利于不同研究结果之间的比较。基于此,本研究我们根据AAV1-AAV10衣壳蛋白一级结构序列分析,共发现10处AAV衣壳保守区(Aa42-50,Aa93-101,Aa107-124,Aa 271-303,Aa 334-350,Aa 395-410,Aa 615-623,Aa 649-655,Aa669-698,Aa727-733),为了制备可广泛识别不同血清型AAV的多克隆抗体,我们将所有AAV保守区氨基酸进行人工拼接并合成其DNA序列。构建pET-30a/AAV-CR原核表达质粒并转化入大肠杆菌BL21(DE3)中。实验发现,AAV保守区蛋白可被IPTG诱导表达,且主要以包涵体的形式存在。由于重组AAV保守区蛋白带有His标签,我们根据这一特点利用Ni-NTA树脂亲和层析法在尿素变性的条件下纯化得到高纯度的AAV衣壳保守区蛋白。为制备抗AAV衣壳保守区蛋白多克隆抗体,我们将纯化后的AAV保守区蛋白用做抗原免疫日本大耳朵白兔,经过1次启动免疫和2次加强免疫后,得到了高效价的抗AAV衣壳保守区蛋白多克隆抗体。该抗体能特异性识别和结合人真核细胞中转染表达的AAV衣壳蛋白,可有效用于各类血清型AAV衣壳蛋白的免疫印迹、ELISA等化学分析实验。值得注意的是,虽然通过直接将保守区氨基酸序列拼接的方式获得了高效价的多克隆抗体,但是也存在拼接交界处产生新的抗原从而诱导形成无关抗体的风险,而这一风险也是该策略无法规避的。本实验结果证明拼接保守区序列可在动物体内诱导针对AAV的抗体形成,表明AAV衣壳保守区序列存在较强的免疫原性,为了克服上述保守区拼接交界处诱导抗体形成的问题,下一步我们将分别合成AAV衣壳保守区序列以制备抗体。

综上所述,本研究成功建立了AAV衣壳保守区蛋白的原核表达纯化技术,成功制备了抗AAV衣壳保守区蛋白的多克隆抗体,制备的抗体理论上可识别所有血清型AAV,上述研究有助于后续AAV载体的改造、AAV筛选、AAV检测以及AAV生物学功能等研究。

Biography

李舒月,在读硕士研究生,E-mail: 848765759@qq.com

Funding Statement

国家自然科学基金(81772833);湖北省教育厅中青年人才项目(Q20211207);宜昌市医疗卫生科技项目(A22-2-069);肿瘤微环境与免疫治疗湖北省重点实验室(三峡大学)基金(2021KZL01)

Supported by National Natural Science Foundation of China (81772833)

Contributor Information

李 舒月 (Shuyue LI), Email: 848765759@qq.com.

王 磊 (Lei WANG), Email: 3018569@qq.com.

吕 亚丰 (Yafeng LÜ), Email: lvyafeng@ctgu.edu.cn.

References

  • 1.Song LJ, Samulski RJ, Hirsch ML. Adeno-associated virus vector mobilization, risk versus reality. Hum Gene Ther. 2020;31(19/20):1054–67. doi: 10.1089/hum.2020.118. [Song LJ, Samulski RJ, Hirsch ML. Adeno-associated virus vector mobilization, risk versus reality[J]. Hum Gene Ther, 2020, 31(19/20): 1054-67.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Taghian T, Marosfoi MG, Puri AS, et al. A safe and reliable technique for CNS delivery of AAV vectors in the cisterna Magna. Mol Ther. 2020;28(2):411–21. doi: 10.1016/j.ymthe.2019.11.012. [Taghian T, Marosfoi MG, Puri AS, et al. A safe and reliable technique for CNS delivery of AAV vectors in the cisterna Magna [J]. Mol Ther, 2020, 28(2): 411-21.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res. 2014;43:108–28. doi: 10.1016/j.preteyeres.2014.08.001. [Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies[J]. Prog Retin Eye Res, 2014, 43: 108-28.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wang D, Tai PWL, Gao GP. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. doi: 10.1038/s41573-019-0012-9. [Wang D, Tai PWL, Gao GP. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-78.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Wu ZJ, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27. doi: 10.1016/j.ymthe.2006.05.009. [Wu ZJ, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy[J]. Mol Ther, 2006, 14(3): 316-27.] [DOI] [PubMed] [Google Scholar]
  • 6.Grimm D, Lee JS, Wang L, et al. In vitro and in vivo gene therapy vector evolution via multi species interbreeding and retargeting of adeno-associated viruses. J Virol. 2008;82(12):5887–911. doi: 10.1128/JVI.00254-08. [Grimm D, Lee JS, Wang L, et al. In vitro and in vivo gene therapy vector evolution via multi species interbreeding and retargeting of adeno-associated viruses[J]. J Virol, 2008, 82(12): 5887-911.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.He XJ, Urip BA, Zhang ZJ, et al. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl) 2021;99(5):593–617. doi: 10.1007/s00109-020-02034-2. [He XJ, Urip BA, Zhang ZJ, et al. Evolving AAV-delivered therapeutics towards ultimate cures[J]. J Mol Med (Berl), 2021, 99 (5): 593-617.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Herrmann AK, Bender C, Kienle E, et al. A robust and all-inclusive pipeline for shuffling of adeno-associated viruses. ACS Synth Biol. 2019;8(1):194–206. doi: 10.1021/acssynbio.8b00373. [Herrmann AK, Bender C, Kienle E, et al. A robust and all-inclusive pipeline for shuffling of adeno-associated viruses[J]. ACS Synth Biol, 2019, 8(1): 194-206.] [DOI] [PubMed] [Google Scholar]
  • 9.曹 春雨, 韩 钰, 任 玉珊, et al. 人精胺氧化酶的原核表达及多克隆抗体制备. 细胞与分子免疫学杂志. 2009;25(10):920–3. doi: 10.3321/j.issn:1007-8738.2009.10.017. [曹春雨, 韩钰, 任玉珊, 等. 人精胺氧化酶的原核表达及多克隆抗体制备[J]. 细胞与分子免疫学杂志, 2009, 25(10): 920-3.] [DOI] [PubMed] [Google Scholar]
  • 10.吕 亚丰, 杨 建林, 秦 宇, et al. 人抗酶抑制因子-1的原核表达纯化及多克隆抗体的制备. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201703029.htm. 生物技术通报. 2017;33(3):193–8. [吕亚丰, 杨建林, 秦宇, 等. 人抗酶抑制因子-1的原核表达纯化及多克隆抗体的制备[J]. 生物技术通报, 2017, 33(3): 193-8.] [Google Scholar]
  • 11.尤 长宣, 钱 晓涛, 何 圆, et al. rAAV/CEA转染树突状细胞制备肺癌疫苗. https://www.j-smu.com/CN/Y2014/V34/I04/487. 南方医科大学学报. 2014;34(4):487–91. [尤长宣, 钱晓涛, 何圆, 等. rAAV/CEA转染树突状细胞制备肺癌疫苗[J]. 南方医科大学学报, 2014, 34(4): 487-91.] [PubMed] [Google Scholar]
  • 12.Burnett JR, Hooper AJ. Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency. Curr Opin Mol Ther. 2009;11(6):681–91. [Burnett JR, Hooper AJ. Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency[J]. Curr Opin Mol Ther, 2009, 11(6): 681-91.] [PubMed] [Google Scholar]
  • 13.Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832–41. doi: 10.1016/S1474-4422(21)00251-9. [Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial[J]. Lancet Neurol, 2021, 20(10): 832-41.] [DOI] [PubMed] [Google Scholar]
  • 14.Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60. doi: 10.1016/S0140-6736(17)31868-8. [Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-60.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.陈 仁玉, 王 惠娟, 陈 哲, et al. 人血浆脂蛋白相关磷脂酶A2与脑梗死患者颈动脉斑块稳定性关系. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMXZ201312018.htm. 中国免疫学杂志. 2013;29(12):1293–6. [陈仁玉, 王惠娟, 陈哲, 等. 人血浆脂蛋白相关磷脂酶A2与脑梗死患者颈动脉斑块稳定性关系[J]. 中国免疫学杂志, 2013, 29(12): 1293-6.] [Google Scholar]
  • 16.Cabanes-Creus M, Ginn SL, Amaya AK, et al. Codon-optimization of wild-type adeno-associated virus capsid sequences enhances DNA family shuffling while conserving functionality. Mol Ther Methods Clin Dev. 2018;12:71–84. doi: 10.1016/j.omtm.2018.10.016. [Cabanes-Creus M, Ginn SL, Amaya AK, et al. Codon-optimization of wild-type adeno-associated virus capsid sequences enhances DNA family shuffling while conserving functionality[J]. Mol Ther Methods Clin Dev, 2018, 12: 71-84.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.曾 洪波, 宋 春华, 彭 璟, et al. 氯喹调控视网膜神经节细胞自噬的研究. 中国免疫学杂志. 2020;36(15):1814–8. doi: 10.3969/j.issn.1000-484X.2020.15.005. [曾洪波, 宋春华, 彭璟, 等. 氯喹调控视网膜神经节细胞自噬的研究[J]. 中国免疫学杂志, 2020, 36(15): 1814-8.] [DOI] [Google Scholar]
  • 18.Meijboom KE, Wood MJA, McClorey G. Splice-switching therapy for spinal muscular atrophy. Genes. 2017;8(6):161. doi: 10.3390/genes8060161. [Meijboom KE, Wood MJA, McClorey G. Splice-switching therapy for spinal muscular atrophy[J]. Genes, 2017, 8(6): 161.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose genereplacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. doi: 10.1056/NEJMoa1706198. [Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose genereplacement therapy for spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18): 1713-22.] [DOI] [PubMed] [Google Scholar]
  • 20.Riessland M, Kaczmarek A, Schneider S, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet. 2017;100(2):297–315. doi: 10.1016/j.ajhg.2017.01.005. [Riessland M, Kaczmarek A, Schneider S, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis[J]. Am J Hum Genet, 2017, 100(2): 297-315.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhao DY, Gish G, Braunschweig U, et al. SMN and symmetric arginine dimethylation of RNA polymerase Ⅱ C-terminal domain control termination. Nature. 2016;529(7584):48–53. doi: 10.1038/nature16469. [Zhao DY, Gish G, Braunschweig U, et al. SMN and symmetric arginine dimethylation of RNA polymerase Ⅱ C-terminal domain control termination[J]. Nature, 2016, 529(7584): 48-53.] [DOI] [PubMed] [Google Scholar]
  • 22.Adachi K, Dissen GA, Lomniczi A, et al. Adeno-associated virusbinding antibodies detected in cats living in the Northeastern United States lack neutralizing activity. Sci Rep. 2020;10(1):10073. doi: 10.1038/s41598-020-66596-4. [Adachi K, Dissen GA, Lomniczi A, et al. Adeno-associated virusbinding antibodies detected in cats living in the Northeastern United States lack neutralizing activity[J]. Sci Rep, 2020, 10(1): 10073.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES