Skip to main content
Light, Science & Applications logoLink to Light, Science & Applications
. 2022 Jul 6;11:209. doi: 10.1038/s41377-022-00872-y

Photoinduced large polaron transport and dynamics in organic–inorganic hybrid lead halide perovskite with terahertz probes

Zuanming Jin 1, Yan Peng 1,, Yuqing Fang 1, Zhijiang Ye 1, Zhiyuan Fan 1, Zhilin Liu 2, Xichang Bao 2, Heng Gao 3, Wei Ren 3, Jing Wu 4, Guohong Ma 5, Qianli Chen 6, Chao Zhang 7, Alexey V Balakin 8,9, Alexander P Shkurinov 8,9, Yiming Zhu 1,, Songlin Zhuang 1
PMCID: PMC9259629  PMID: 35794097

Abstract

Organic-inorganic hybrid metal halide perovskites (MHPs) have attracted tremendous attention for optoelectronic applications. The long photocarrier lifetime and moderate carrier mobility have been proposed as results of the large polaron formation in MHPs. However, it is challenging to measure the effective mass and carrier scattering parameters of the photogenerated large polarons in the ultrafast carrier recombination dynamics. Here, we show, in a one-step spectroscopic method, that the optical-pump and terahertz-electromagnetic probe (OPTP) technique allows us to access the nature of interplay of photoexcited unbound charge carriers and optical phonons in polycrystalline CH3NH3PbI3 (MAPbI3) of about 10 μm grain size. Firstly, we demonstrate a direct spectral evidence of the large polarons in polycrystalline MAPbI3. Using the Drude–Smith–Lorentz model along with the Frӧhlich-type electron-phonon (e-ph) coupling, we determine the effective mass and scattering parameters of photogenerated polaronic carriers. We discover that the resulting moderate polaronic carrier mobility is mainly influenced by the enhanced carrier scattering, rather than the polaron mass enhancement. While, the formation of large polarons in MAPbI3 polycrystalline grains results in a long charge carrier lifetime at room temperature. Our results provide crucial information about the photo-physics of MAPbI3 and are indispensable for optoelectronic device development with better performance.

Subject terms: Terahertz optics, Optical spectroscopy


Ultrafast terahertz conductivity spectroscopy reveals the formation of large polarons in CH3NH3PbI3, which protects the charge carriers from scattering with polycrystalline grain boundaries or defects and explains the long lifetime.

graphic file with name 41377_2022_872_Figa_HTML.jpg

Introduction

Organic–inorganic metal-halide perovskites (MHPs) are composed of organic cations and an inorganic framework. The success application of low-cost and solution-processable MHPs in optoelectronic devices can be attributed to low carrier recombination rates1,2, ambipolar carrier transport3,4, strong optical absorption5,6, long carrier diffusion79, and inherent defect tolerance10. Given these advantages over conventional semiconductors, MHPs have attracted tremendous scientific research interest in recent ten years11,12, for promising applications in cost-effective solar cells1316, solid-state lighting1720, transistors21, memristors22, and ultrafast spin switches in spintronics23,24.

Despite that MHPs behave as defect-free semiconductors with low charge recombination rates, long diffusion lengths (1–3 μm), and long hot carrier lifetimes (1–3 μs) that exceed the Langevin limit for direct recombination, these materials show a moderate free charge-carrier mobility (μ ∼ 30–100 cm2 V−1S−1) comparing to other inorganic semiconductors. Efforts have been made to figure out such an apparent discrepancy in the dynamical carrier properties in MHPs2527. At room temperature, the interplay between carriers and ionic perovskite lattice is a possible microscopic mechanism behind this unusual recombination of photogenerated carriers in MAPbI328. It was first proposed by Zhu and co-workers that large polarons—described as the charge carriers associated with the lattice deformation over several structural units—prevent scattering of photocarriers from charged defects, the remaining phonon bath, and other charge carriers in MHPs2932.

A number of spectroscopic and optical measurements, such as time-resolved optical Kerr effect spectroscopy, time-resolved two-photon photoemission, transient reflectance, and absorption spectroscopies, time-domain Raman spectroscopy, angle-resolved photoelectron spectroscopy, have been used to reveal the electron-phonon (e-ph) coupling in CsPbBr33234, MAPbBr33537, and MAPbI33842. However, these measurements are associated with the large polaron formation either from the phonon or from the electronic structure perspective4244 (See Supplementary Table S1 for a literature survey). In addition, it is challenging, to use an ultrafast spectroscopic technique in the visible region to access the polaron mobility, carrier scattering parameters, and dynamics in MHPs quantitatively, which are considered as the fundamental nature of the large polaron29,45.

In comparison with visible light, the frequencies of terahertz (THz) waves (ranging from several to tens of meV in energy scales) coincide with both the momentum relaxation times of conduction carriers46,47 and the typical optical phonons in MHPs4850. Thus, ultrafast THz spectroscopy is expected to be an appropriate approach to study the low energy excitations and the coupling between charge carriers and phonons. However, until now, researchers have relied on two THz spectroscopic approaches to characterize the large polaron behaviors in MHPs. On the one hand, the rise of the THz photoconductivity dynamics is observed after hot-carrier cooling, which has been ascribed to an indirect evidence of polaron formation51. On the other hand, the temperature dependence of scattering time ~T3/2 supports a strong dependence of carrier transport on the phonons5254. This experimental behavior is inconsistent with the Fröhlich model, which predicts a temperature dependence ~T0.46 of the polaron mobility55. Therefore, the full potential of THz spectroscopic measurements for direct evidence of polaron formation in MAPbI3 still remains to be shown.

We may also mention that quantitative characterization of the large polaron transport and dynamics in MHPs, requires the effective mass of the photoinduced charge carriers with renormalization factors due to polaron formation. A direct experimental method for determining the polaron mass in MHPs is the magneto-optical spectroscopy by observing the Landau levels56,57. For such measurements, a pulsed magnetic-field of 130 T56 and a low temperature down to 1.5 K57, are necessary. However, the small increase in the polaron mass cannot account for the moderate carrier mobility measured in MAPbI357. Therefore, it is necessary to develop the capability to evaluate the backscattering probability of the carriers by traps and grain (or domain) boundaries on the ultrafast timescale58,59. Nevertheless, a one-step characterization satisfying the requirements of room-temperature, magnets-free, access to the basic large polaron transport and ultrafast dynamics quantitatively is expected to be important, but has not been shown.

In this letter, we present a direct spectroscopic proof for the large polaron behavior due to the dynamic coupling between optical phonons and photocarriers in prototypical MAPbI3 polycrystalline grains. To determine the large polaron mass and mobility, we take a completely different approach. We performed a contactless optical pump-THz electromagnetic probe (OPTP) measurement to obtain the complex-valued THz photoconductivity spectra σ~spumpω of MAPbI3. The resonance-like spectral line shapes of the photoexcited THz conductivity response are inherently indicative of the coupling between the optical phonon modes and the photoinduced carriers, considered as large polarons. Following the Drude–Smith–Lorentz (DSL) model and the Fröhlich-type large polaron model, we are able to extract the effective mass and the carrier scattering parameters of the large polaron. Consequently, the large polaron mobility of MAPbI3 is determined. It is found that the mass enhancement by polaron effect appears not to be significantly detrimental to the relatively low carrier mobility in MAPbI3. Taking advantage of the OPTP time-resolved spectroscopy, we further demonstrate that the long-lived large polaronic carriers are the major photogenerated species in MAPbI3 polycrystalline grains, which allows for efficient charge extraction. Our work provides important insights into the large polarons in MHPs, which is essential for developing energy and optoelectronic applications with better controlled charge-lattice interaction, charge-carrier mobilities, and transistor switching times.

Results

The samples used in this work are MAPbI3 polycrystalline grains and thin films. Firstly, high-quality MAPbI3 single-crystals were synthesized according to the literature6062. The photographs of the MAPbI3 single crystal and the corresponding X-ray diffraction (XRD) pattern are given in Figs. S1 and S2, respectively. The prominent peaks at 14.6° and 28° correspond to (110) and (220) planes of MAPbI3 single crystal. As very little THz signal could transmit through the thick single crystal, the MAPbI3 single crystal was ground into isotropic polycrystalline grains. The average size of the polycrystalline grains spread on a double-sided adhesive tape is about 10 ± 5 μm, which was determined by both optical microscopy and THz near-field optical microscope, as shown in Figs. S3 and S4. As control samples, the details of MAPbI3 perovskite thin films preparation are shown in Note 3 and Fig. S5 in the Supplemental Materials.

We performed the ultrafast THz conductivity measurement using the OPTP technique, which probes the difference between pre-photoexcited and post-photoexcited THz conductivities of MAPbI3. As shown in Fig. 1a, b, an 800 nm (photon-energy of 1.55 eV) or a 400 nm (3.1 eV) laser beam was impinging on the MAPbI3 sample as an optical pump with a spot of ~5 mm in diameter. The photoexcited conductivity of the sample was probed with a sub-picosecond THz pulse. The transmitted THz probe pulse (containing spectral amplitude and phase information) through the sample was measured by an optical sampling pulse in a <110>-oriented ZnTe crystal of a thickness of 1 mm (see “Materials and methods”, Fig. S6).

Fig. 1. OPTP measurement scheme and sample characterizations.

Fig. 1

a, b Schematic illustration of the OPTP spectroscopy on MAPbI3. The quickly-oscillating pulse (red) is the optical pump beam, and the time-delayed single-cycle pulse (blue) represents the THz probe beam. c THz and FTIR absorbance spectra from 0.4 to 1.6 THz. d DFT calculated I-Pb-I bending motions at 24.8 and 49.1 cm1 of MAPbI3. The gray and purple balls denote Pb and I atoms, respectively. e Time-domain signals transmitted through the MAPbI3 polycrystalline grains covered on a double-sided tape for different pump fluences (800 nm excitation). f A transmitted THz waveform through the sample without photoexcitation

The static THz properties of the unexcited perovskite sample were firstly investigated to elucidate the presence of transverse optical (TO) and longitudinal optical (LO) phonon modes (Fig. 1a), which is associated with the internal vibrations of the PbI3 framework63. Figure 1c shows the absorbance properties of the unexcited MAPbI3 polycrystalline grains, using both Fourier transform infrared spectroscopy (FTIR) and THz time-domain spectroscopy (THz-TDS) (see “Materials and methods” and Fig. S7 for details). Two vibrations in the THz absorbance spectrum around 0.58 THz (19.3 cm−1) and 1.04 THz (34.6 cm1) originate mainly from the Pb–I inorganic sublattice. The THz absorption peak at 1.04 THz is associated with the IR-active mode. These two low-frequency skeletal bending modes can be assigned to the octahedral twist TO phonon mode and the octahedra distortion LO phonon mode, respectively64. We compare the experimental results with the DFT calculations, to elucidate the nature of these lattice vibration modes of MAPbI3 with tetragonal phase (I4/mcm). Figure 1d shows the calculated vibrational displacements for the 24.8 and 49.1 cm−1 modes of MAPbI3, which are composed of I–Pb–I bond bending motions mostly. They are assigned to B1g and A1g mode in the D4h18 symmetry group, respectively. The detailed calculations are shown in Fig. S9. Note that the DFT results show a ~20% deviation below 100 cm−1 65. The discrepancy between experimental data and theoretical model results can be attributed to the dynamic disorder of cations, cation rotational unlocking, and local polar fluctuation66.

To decipher the coupling of photoexcited carriers with the skeletal bending optical phonons67,68, the sample is excited by an 800 nm linear polarized pump laser pulse (Fig. 1b). Due to the photoexcitation, the transmitted THz waveform is modified. Figure 1e shows the pump-induced THz electric field change ΔEsample(t, Δt), as a function of pump fluence at a given pump-probe time delay of Δt = 5 ps. Figure 1f shows the time-domain THz waveform transmitted through the sample without photoexcitation, Esamplet. The frequency-resolved complex sheet photoconductivity σ~spump(ω,Δt)=σ~pumpω,Δt×dp, where dp1μm is the penetration depth69. According to the applicability of the thin-film approximation in THz photoconductivity measurements70, n2dpωc0.011 for ω = 1 THz and n2 = 2.6 (n2 is the refractive index of non-photoexcited MAPbI3 at 300 K71) indicates that the thin film approximation holds. σ~spump(ω,Δt) can be extracted by72,

σ~spumpω,Δt=n1+n2Z01Tpumpω,Δt1 1

where, Tpumpω,Δt=Epumpω,ΔtEsampleω=Esampleω+ΔEsampleω,ΔtEsampleω. n1 = 1 is the refractive index of air. Z0 = 377 Ω is the impedance of free space. ω is the THz angular frequencies of the probe electric fields. Note that the distinction between sheet and volume conductivity does not affect the calculation of the effective large polaron mass and mobility, which will be discussed later.

Figure 2a, b shows the real part σreal,spump(ω) and the imaginary part σimag,spump(ω) of the frequency-resolved σ~spump(ω, Δt = 5 ps) of MAPbI3 polycrystalline grains, acquired at two pump wavelengths of 800 and 400 nm. The pump fluences are 57 μJ cm−2 (800 nm excitation) and 99 μJ cm2 (400 nm excitation). Generally, the positive σreal,spump(ω) grows with the increase in frequency, while the σimag,spump(ω) is negative and decreases with the increasing frequency, in the probed frequency window. The non-Drude spectral response clearly indicates that the free mobile charge is not the only contribution to the signal73. Because the thermal energy of 26 meV at room temperature is higher than the exciton binding energy of MAPbI3 (~10–16 meV)74, excitons are mostly dissociated into free carriers, and therefore any possibility of exciton contribution to the spectrum modulation can be excluded75. Since no external fields or electrodes are applied to the material during the measurement, the observed negative σimag,spump(ω) implies the presence of carrier scattering from the crystalline boundaries or defects, as characterized later76. It is important to note that, as shown in Fig. 2a, two resonant peaks in σreal,spump(ω) accompanied by two inflection points in σimag,spump(ω) are observed at ~0.65 and ~1.17 THz, when excited with an 800 nm pump pulse. Similar resonant peaks are observed for the photoexcitation with a 400 nm pump pulse (Fig. 2b). This confirms the robustness of our observations and suggests that the photoconductivity spectrum is similar for band edge- (800 nm) and far-above-gap (400 nm) excitations, despite the difference in the excitation/relaxation channels. For comparison, the photoconductivity spectrum of a solution-processed MAPbI3 thin film (with grain size of several hundred nanometers) has been measured, as shown in Fig. 2c. No clear THz peaks on σreal,spump(ω) are observed, consistent with the spectrum reported in similar MAPbI3 thin film77. This is due to the thermal or structural instabilities for the pure perovskite compound MAPbI3 thin film. The crystallization quality may be less good in the MAPbI3 thin film, leading to less strong optical phonon signal. A Drude–Smith (DS) model provides a quantitative description of the localized charge carriers in the MAPbI3 thin film (see Fig. S10). We further investigate a triple cation mixed halide (Cs)/MA/CH3(NH2)2+(FA) thin film with better stability78. Figure 2d shows the presence of resonance-like modulations in σreal,spump(ω) accompanied by inflection points in σimag,spump(ω) of the Cs0.05(MA0.17FA0.83)Pb(I0.83Br0.17)3 thin film (see Fig. S11 for details). The observed feature of resonances in the photoconductivity spectra comes from the coupling the photoexcited charge carriers with the optical phonons of the soft lattice79,80.

Fig. 2. The observation of photoinduced large polaron in MAPbI3.

Fig. 2

Real (circles) and imaginary (squares) parts of the sheet photoconductivity spectra of MAPbI3 polycrystalline grains for two different pumped energies of a 1.55 eV and b 3.1 eV, at Δt = 5 ps. The complex sheet photoconductivity spectra for c MAPbI3 thin film and d Cs0.05(MA0.17FA0.83)Pb(I0.83Br0.17)3 thin film with pumped energy of 3.1 eV, at Δt = 5 ps. The black curves in (a), (b), and (d) represent the Drude–Smith–Lorentz fits. The dashed and dotted lines show the components for the Drude–Smith term and the Lorentz terms, respectively

To gain more insight into our data, σ~spumpω is fitted by a DSL model,

σ~spumpω=ε0ωp2Γiω1+c11iω/Γ+mgmωiωm2ω2+γmω 2

The first term of Eq. (2) indicates the DS portion, which accounts for the disorder or backscattering induced transport of mobile charge carriers8183. ε0 is the vacuum permittivity. The DS term has three free parameters ωp, c1 and Γ. ωp is the Drude plasma frequency. c1 is the phenomenological localization parameter, which ranges between 0 and −1. 0 and −1 manifest free-carrier transport and 100% backscattering, respectively. Γ denotes the DS scattering rate of the free carriers, related to the carrier mobility by μ=e1+c1/(Γmp*), where mp* is the effective mass of polarons in MHPs and e is the elementary charge. The second term of Eq. (2) is the Lorentzian portion. gm, γm, and ωm are the oscillator strength, full-width at half-maximum (FWHM) linewidth, and THz angular frequency of the optical phonon modes m, respectively. Note that the global fitting of DSL model is performed on both measured σreal,spump(ω) and σimag,spump(ω) simultaneously, over the entire measured spectra.

To aid comparison, we separate the DS component (dashed lines) and Lorentz component (dotted lines) of the σ~spumpω (Fig. 2a, b). The extracted resonance frequencies of the optical phonon modes, ω1/2π21.6cm1, ω2/2π39.0cm1 (800 nm pump), and ω1/2π22.3cm1, ω2/2π39.3cm1 (400 nm pump). Both are blue-shifted compared to the static optical phonon modes of 19.3 and 34.6 cm1 (Fig. 1c). It is noteworthy that the resonance peaks around 21.6 and 39.0 cm1 probed by OPTP spectroscopy are in good agreement with the excited-state wave packets oscillating at ~21 and ~45 cm1 measured by time-domain Raman spectroscopy39, as well as the strong e-ph coupling at 21.6 and 40 cm1 obtained by THz emission spectrum84.

To further reveal the nature of the e-ph interaction, we analyze the σ~spumpω using the 800 nm excitation at Δt = 5 ps with different pump fluences, as shown in Fig. 3a, b. Our experimental results can be well fitted by the DSL model (see Fig. S12 for details of the DS and Lorentz components). Remarkably, the increase of pump fluence modifies the spectral line-shape and amplitude of the resonances. Figure 3c–e summarizes the extracted oscillator strength (g1,2), mode frequency (ω1,2/2π), and FWHM linewidth (γ1,2) of two photo-induced optical phonon modes versus the pump fluence. It can be identified that γ1 is broader than γ2, while both are independent of pump fluence within the given uncertainty. g1,2 increases upon increasing the pump fluence. In addition, ω1/2π and ω2/2π are slightly blue-shifted from 0.65 ± 0.017 to 0.69 ± 0.003 THz and from 1.17 ± 0.019 to 1.19 ± 0.004 THz, respectively, when the pump fluence increases from 57 to 283 μJ cm2. According to the DFT simulations, the neutral geometry of perovskite MAPbI3 is nearly a regular octahedron. Once a charge is introduced into the lattice, it results in a more ionic Pb–I framework and structural distortion, leading to a blueshift of phonon modes80. These observations corroborate again our claim that a direct fingerprint of a polaron formation is demonstrated, and will be used below to obtain the effective mass and the mobility of large polaron.

Fig. 3. Pump fluence-dependent THz photoconductivity spectra for MAPbI3 polycrystalline grains.

Fig. 3

Extracted a real and b imaginary parts of THz photoconductivity spectra of MAPbI3 polycrystalline grains, following photoexcitation at 1.55 eV with pump fluences of 57, 113, 170, and 283 μJ cm−2 at 300 K. The solid lines are the DSL model fits. Pump fluence evolutions of c oscillator strength gm, d resonant frequency ωm/2π, and e FWHM linewidth γm of the resonance modes

For now, let us concentrate on the effective mass enhancement (compared with the bare band effective mass) of the large polaron in MAPbI3, due to e–ph interaction at zero magnetic field, first proposed by Feynman8587

mp*=mb*1+αe-ph6+αe-ph240+ 3

where mb*=0.1×m0 (m0: the mass of free electron) is the bare band effective mass of electrons in solids, αe-ph is the dimensionless Fröhlich e–ph coupling constant, given by the Landau–Pekar model43,85,86,88:

αe-ph=e24πħ1εopt1εsmb*2ħωph 4

here, εopt5.5ε0 and εs30ε0 are the optical and static dielectric constants67. 1εopt1εs qualitatively manifests the capacity of the screening due to a Coulomb potential of the polarized lattice. ωph is the angular frequency of the LO phonon mode and ħ is the reduced Planck constant. By using the LO phonon mode of 34.6cm1 from our measurement, we obtain αe-ph2.64 in MAPbI3 polycrystalline grains. This number is significantly larger than 0.07 for GaAs and 0.29 for CdTe, and is smaller than 6, which indicates the formation of large polaron in MAPbI3 materials55. The effective large polaron mass is consequently calculated, mp=0.144m0. To proceed, using the mode frequencies of photoinduced LO phonon resonance (ωph/2π39.039.6cm1) with increased pump fluences, αe-ph decreases by about 6.6% from about 2.64 to 2.46. Meanwhile, mp* decreases by about 2% from about 0.144 m0 to 0.141 m0. These numbers fall well within the range of the large polaron mass determined by both magneto-optical spectroscopy56,57 and calculations89,90. We would comment that the mass enhancement by polaron effect decreases the mobility by about 30.6%, which cannot exclusively account for the moderate carrier mobility of MAPbI3. Following the DSL model Eq. (2), the mean carrier scattering rate Γ25.8±6.0THz and the localization factor (1 + c1) =0.17±0.04 have been extracted (see Fig. S12). The relation μ=e1+c1/(Γmp*) allows one to calculate the large polaron mobility on the order of ~80.7 ± 26.0 cm2 V−1s−1, which reaches up to ~60.7% of the theoretical limit55. The localization factor (1 + c1) due to the back-scattering by grain boundaries or defects further suppresses the mobility by ~83%. The mobility value is comparable with the values of MAPbI3 single crystal and polycrystalline films, measured by both THz and microwave spectroscopy, as summarized in Table 19196. We note that the mp* used here is not assumed a priori but rather determined experimentally. In our case, both the mass enhancement of large polaron and the boundary or defect scattering account for the relatively low polaron-based mobility in MAPbI3 polycrystalline grains. It is expected that the polaronic carriers can transport more efficiently with less structural disorder in MAPbI3.

Table 1.

Comparison of the Fröhlich coupling constant αe-ph, polaron effective mass mp* (relative to the band effective mass mb*) and mobility measured in MAPbI3 with that from calculations and measurements in the literatures

Material αeph mp* (%) Mobility at room temperature (cm2 V1 s1) Approach Theoretical or experimental
MAPbI3 polycrystalline grains (this work) ~2.6–2.46 +41–44% ~80.7 ± 26.0 Time-resolved THz spectroscopy Experimental
MAPbI3 2.39 +37% 136 Single-phonon Fröhlich model Theoretical55
MAPbI3 1.4 +28% Multiphonon Fröhlich polaron model Theoretical93
MAPbl3 1.91 33 Multi-LO phonon coupling Theoretical94
MAPbI3 thin film 1.72 +35% 197 Far-IR spectroscopy Experimental85
MAPbI3 single crystal 2 Time-resolved multi-THz spectroscopy Experimental67
MAPbI3 thin film 20–75 Time-resolved microwave conductivity Experimental95
MAPbI3 thin film ~25 Time-resolved THz spectroscopy; Time-resolved microwave conductivity Experimental46
MAPbI3 thin film ~27 Time-resolved THz spectroscopy Experimental53
MAPbI3 single crystals 59 Time-resolved THz spectroscopy Experimental96
MAPbI3 thin film 33

mp* (%): in terms of its increase with respect to the band effective mass

We now move one step further in our analysis to explore the dynamics of photo-induced large polaron. Figure 4a shows the dynamics of the frequency-averaged photoconductivity Δσ(Δt), measured with different pump fluences of 800 and 400 nm excitations (see “Materials and methods”). As shown in Fig. 4b, compared with the optical pump pulse, the rise of Δσ(Δt) observed in MAPbI3 polycrystalline grains is slower than the timescale of the instrument-response function (gray). We note that Δσ(Δt) increases in the first 5 ps due to the formation of conductive polaronic carriers until a quasi-steady-state is reached, which happens on a different timescale from the generation of free carriers that occurs on sub-100 fs timescales9799. The slow rise of THz photoconductivity has been attributed to the charge carrier cooling and polaron formation sequentially51,73. A time-dependent polaron population model in ref. 51. is used to fit the rising dynamics of the polycrystalline sample with different pump fluences, as shown the dot lines in Fig. 4a. The time constants for the large polaron formation and the hot electron cooling are ~460 and ~180 fs, respectively, in good agreement with the values reported for similar MAPbI3 samples at room temperature51. Fig. 4c shows the linear dependence of the quasi-steady-state photoconductivity on the pump fluences in the range 25–283 μJ cm−2, which confirms the investigation of the large polaron in the linear regime. There was no observable photo-degradation and/or thermal damage in the polycrystalline MAPbI3 sample as the pump fluence reaches up to 1 mJ cm−2. However, there was no direct experimental characterization to clarify it, which will be our future research focus. Importantly, we note that σ~spumpω measured at ∆t = 200 ps shows a similar spectral characteristic as that measured at 5 ps just after photoexcitation (see Fig. S13). In addition, Δσ(Δt) shows very stable and non-decaying dynamics within 400 ps (limited by current temporal probe window), indicating a very long-lifetime recombination process of large polaron-based carriers in MAPbI3 polycrystalline grains. In contrast, as the less significant polaronic effect observed in our solution-processed MAPbI3 thin film, the photoconductivity shows a faster decay and a much shorter lifetime (orange line in Fig. 4b). This behavior is likely caused by the charge trapping due to the defects and imperfections. We conclude that the formation of large polaron in MAPbI3 polycrystalline grains efficiently protects the charge carriers from being trapped, thus extends the carrier lifetime.

Fig. 4. Ultrafast large polaron formation and relaxation dynamics of MAPbI3.

Fig. 4

a The transient THz photoconductivity of the MAPbI3 polycrystalline grains measured at 800 nm (red) and 400 nm (blue) laser excitations, as plotted in the log scale. b Time-resolved THz photoconductivity dynamics normalized to 1, for two different samples, using excitation of 400 nm wavelength. The gray profile represents the pump pulse. c The pump fluence dependences of the quasi-steady-state THz photoconductivity. The solid line is a fit to the data linearly. d A large polaron in MAPbI3 looks like a lump of negative charge that attracts MA+ cations and repels halide anions. e A proposed band diagram and photoexcitation dynamics in MAPbI3

Discussion

First, based on the experimental results, we directly identify the photocarriers-optical phonon coupling in different types of MAPbI3 samples by OPTP spectroscopy, revealing the underlying large polaron formation. Considering the DSL model and Frӧhlich-type large polaron, we demonstrate a straightforward experimental measurement of the effective mass, e–ph coupling constant, which are not presupposed. Using the extracted carrier scattering parameters, we derive the large polaron mobility of MAPbI3 polycrystalline grains. The moderate polaronic carrier mobility is mainly determined by the enhanced carrier scattering, rather than the polaron mass enhancement. In addition to the partial contribution to the limitation of the intra-grain charge transport, the presence of large polarons leads to the long charge carrier lifetime in MAPbI3. Our spectroscopic results of the large polaron formation rationalizes the previously reported contradiction between the long carrier lifetimes (slow electron–hole recombination) and the moderate carrier mobility in MAPbI3.

Second, our understanding on transport mechanism involving in both polaronic carrier mobility and lifetime in MAPbI3 provides a unifying picture of photo-excitation and relaxation channels in MAPbI3 qualitatively. Initially, the photons are absorbed in MAPbI3 to generate transient excitons, which can be effectively dissociated into free carriers100. In the real space, owing to the Coulomb interaction, a photo-induced carrier shifts the equilibrium positions of the surrounding anions and cations from their carrier-free positions101. The displacement between ions in the lattice results in a potential well, which traps the photocarriers, as illustrated in Fig. 4d. Within the energy-momentum space (Fig. 4e), the absorbed photons create a Fermi–Dirac distribution, which is thermalized by the carrier–carrier scattering on the 100 fs timescale102,103. The hot-carrier cooling is described as the electrons cascading down to the conduction band minimum, or the holes cascading up to the valence band maximum, exchanging ~meV energy with the lattice by LO phonon emission, on the timescale of 100 fs to 1 ps104. Meanwhile, the large polaron formation occurs at around 460 fs. The enhanced screening weakens the large polaron scattering with other carriers, defects, and LO phonons. Because of the inhibited LO-phonon emission, hot electron energy is retained and hot polarons are formed. The slow recombination of hot polarons that occurs on hundreds of picoseconds can be explained by the low thermal conductivity of MAPbI3105,106. As the length of charge diffusion is determined by the carrier recombination lifetime, the charge extraction is still suitable, despite the polaron mobility is relatively low. Thus, insights into the large polarons in the nonequilibrium higher energy states are crucial for developing efficient hot carrier-based optoelectronic applications107. As such, with the advance in device fabrication and characterization of MHPs using femtosecond laser techniques, the photodegradation and transient laser heating effect need to be addressed and will be the topic of future work.

Finally, we would comment that the experimental results are discussed in the framework of the Fröhlich polaron, which is based on the harmonic approximation. While, due to the dynamic disordered properties of the MAPbI3 lattice, the local electric field can produce local ordering of polar nanodomains surrounding the photocarriers108. Therefore, from the theoretical perspective, a more accurate model with local ferroelectric-like large polarons (including anharmonic and dynamical disorder effects)109 is desired to microscopically visualize the dynamics of large polarons. Furthermore, experimental efforts of optical pump-THz near field microscopy are required to characterize the transport of large polarons affected by defects and grain boundaries110112.

In summary, the THz photoconductivity spectra of MAPbI3 polycrystalline grains have been modeled by the DS model augmented by Lorentzian terms, accounting for the fingerprint of optical phonon modes coupled to the photogenerated carriers. From our analysis that combines DSL model and Frӧhlich-type large polaron, no prior knowledges about the effective mass and scattering events are required to experimentally derive the large polaron mobility of MAPbI3. In addition, the formation of large polarons results in much longer charge carrier lifetime in polycrystalline MAPbI3, which is attributed to the efficient protection of band-edge carriers by self-trapping potential and low thermal conductivity. Our work adds to the fundamental understanding on the polaronic nature of charge carriers in MAPbI3 at room temperature, which is essential to their optoelectronic properties and applications.

Materials and methods

Samples preparation

To synthesize CH3NH3I (MAI), 24 mL of methylamine (33 wt% dissolved in EtOH), 10 mL of hydroiodic acid (57 wt% dissolved in H2O), and 100 mL of EtOH were added into a 250 mL-round bottom flask. The reaction took place under Ar gas at 0 °C for 2 h upon stirring. After reaction, a white product MAI was collected by rotary evaporation in a water-bath of 50 °C. Thereafter, the MAI precipitate was dissolved in EtOH and then underwent sedimentation in diethyl ether upon stirring for 30 min. After that, single crystals of MAPbI3 were prepared by first mixing PbI2 and MAI solution homogenously at a high temperature and then slowly cooling it down to an ambient temperature. Since the THz pulse can hardly transmit through a thick crystal, the MAPbI3 single crystal was ground into polycrystalline grains for the following investigation.

Terahertz (THz) time-domain spectroscopy (THz-TDS)

Broadband THz-TDS was carried out on the MAPbI3 polycrystalline grains with the EKSPLA system. Femtosecond laser pulse (150 mW, 100 fs duration, 800 nm wavelength, 76 MHz repetition rate) was split into two beams: generation and detection laser beam. The generation beam was focused on a low temperature grown (LTG) GaAs photoconductive emitter. The generation beam was modulated by an optical chopper. The generated THz beam is focused by paraboloidal mirrors and transmitted through the MAPbI3 polycrystalline grains. The detection laser beam through a delay stage was used to record the THz waveform by another LTG GaAs photoconductive detector. The signal to noise ratio is better than 1000:1. All the static THz spectra were performed in the drying air environment at room temperature. The refractive index and absorption coefficient of the double-sided adhesive tape are shown in Fig. S8.

Optical pump/THz electromagnetic probe (OPTP) spectroscopy

The OPTP system is driven by a Ti:sapphire fs amplifier laser pulse of ~120 fs duration with a repetition rate of 1 kHz. The laser beam was split into three arms: a pump beam, a THz probe beam, and an electro-optic sampling (EOS) beam (see Fig. S6). An 800 nm or 400 nm pump beam was used to photoexcite the MAPbI3 sample within a ~5 mm diameter area, ensuring a homogeneous pumping condition. The 400 nm pump beam is produced by second harmonic generation based on the 800 nm beam by beta barium borate (BBO) crystal. The time-resolved photo-induced complex THz conductivity spectra were interrogated using a time-delayed freely propagating THz probe transient with a ~1 ps-long optical cycle. The THz probe pulse was generated by an optical rectification crystal ZnTe (<110> orientation, 10 mm × 10 mm × 1 mm thickness), which was pumped with a slightly focused 800 nm laser beam. The THz beam was focused on the sample (~3 mm in diameter) using a pair of off-axis parabolic mirrors. The THz electric field accelerates the photocarriers, leading to an attenuation of the THz electric field. The transmitted THz pulses through the sample were recollimated and focused onto a second 1 mm-thick <110> ZnTe by another pair of parabolic mirrors. The modulated THz electric fields were coherently recorded by the free-space EOS beam, using a Wollaston prism, a pair of balanced photodiodes and a lock-in amplifier. Our OPTP setup is free of any spot-size effect and it is a homogeneous excitation for all frequencies in the THz pulse bandwidth. A custom-made drying air-flow chamber was used to prevent humidity-degradation of the MAPbI3 samples during the measurement as much as possible. No obvious observation of photodegradation and/or thermal damage was found during a 12 h experiment period. However, there was no further experimental characterization to clarify it. We also note that no photo-induced change can be observed in the THz transmission for a single double-sided tape. All measurements were performed at room temperature.

Theoretical calculations of vibrational frequencies

We carried out the structural optimization and phonon calculations of MAPbI3 using the first principles within the framework of density functional theory (DFT). We used the DFT software of Vienna ab initio simulation package based on the projector augmented wave method. We treated the exchange-correlation interaction in the DFT calculations using the generalized gradient approximation which is proposed by Perdew, Burke, and Ernzerhof (PBE). We adopted a 2×2×2 MAPbI3 unit cell for structural optimization and phonon calculations. During the DFT simulations, we used the energy cutoff of 500 eV and a Monkhorst–Pack grid with 4×4×4 k-points. We set the convergence criterion of Hellman–Feynman force as 0.01 eV Å1 during the structural optimization. We used the density functional perturbation theory (DFPT) method to calculate the phonon frequencies and eigenvectors for Γ point of MAPbI3. The phonon vibrational displacements of the vibrational modes 24.8, 49.1, and 82.9 cm−1 are listed in Fig. S9 and Table S2.

Supplementary information

41377_2022_872_MOESM1_ESM.docx (11MB, docx)

Supplementary Information for Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes

Acknowledgements

This work at University of Shanghai for Science and Technology is supported by the National Natural Science Foundation of China (NSFC, Grants No. 61988102, No. 61975110, No. 61735010); the 111 Project (Grant No. D18014); The Key project supported by Science and Technology Commission Shanghai Municipality (Grant No. YDZX20193100004960). Science and Technology Commission of Shanghai Municipality (Shanghai Rising-Star Program Grant No. 18QA1401700). General Administration of Customs People’s Republic of China (Grant No. 2019HK006). Shanghai Educational Development Foundation (Grant No. 16CG45).

Author contributions

Z.J. and Y.Z. conceived the idea and designed the experiments. Z.L. synthesized the MAPbI3 materials under the supervision of X.B. Y.F. and Z.Y. performed the terahertz measurements under the supervision of Z.J. and Y.P., H.G., and W.R. performed the DFT calculations. Z.J., Y.P., Z.F., J.W., G.M., Q.C., C.Z., A.B., A.S., Y.Z., and S.Z. analyzed the results and provided the plots. All authors commented on the manuscript.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interest

The authors declare no competing interests.

Contributor Information

Yan Peng, Email: py@usst.edu.cn.

Yiming Zhu, Email: ymzhu@usst.edu.cn.

Supplementary information

The online version contains supplementary material available at 10.1038/s41377-022-00872-y.

References

  • 1.Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat. Photonics. 2014;8:506–514. doi: 10.1038/nphoton.2014.134. [DOI] [Google Scholar]
  • 2.Nie WY, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347:522–525. doi: 10.1126/science.aaa0472. [DOI] [PubMed] [Google Scholar]
  • 3.Biewald A, et al. Temperature-dependent ambipolar charge carrier mobility in large-crystal hybrid halide perovskite thin films. ACS Appl. Mater. Interfaces. 2019;11:20838–20844. doi: 10.1021/acsami.9b04592. [DOI] [PubMed] [Google Scholar]
  • 4.Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015;10:391–402. doi: 10.1038/nnano.2015.90. [DOI] [PubMed] [Google Scholar]
  • 5.Hutter EM, et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 2017;16:115–120. doi: 10.1038/nmat4765. [DOI] [PubMed] [Google Scholar]
  • 6.Manser JS, Christians JA, Kamat PV. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016;116:12956–13008. doi: 10.1021/acs.chemrev.6b00136. [DOI] [PubMed] [Google Scholar]
  • 7.Xing GC, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342:344–347. doi: 10.1126/science.1243167. [DOI] [PubMed] [Google Scholar]
  • 8.Stranks SD, et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342:341–344. doi: 10.1126/science.1243982. [DOI] [PubMed] [Google Scholar]
  • 9.Dong QF, et al. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347:967–970. doi: 10.1126/science.aaa5760. [DOI] [PubMed] [Google Scholar]
  • 10.Kang J, Wang WL. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017;8:489–493. doi: 10.1021/acs.jpclett.6b02800. [DOI] [PubMed] [Google Scholar]
  • 11.You JB, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016;11:75–81. doi: 10.1038/nnano.2015.230. [DOI] [PubMed] [Google Scholar]
  • 12.Dou LT, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014;5:5404. doi: 10.1038/ncomms6404. [DOI] [PubMed] [Google Scholar]
  • 13.Brenner TM, et al. Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016;1:15007. doi: 10.1038/natrevmats.2015.7. [DOI] [Google Scholar]
  • 14.Zhang W, Eperon GE, Snaith HJ. Metal halide perovskites for energy applications. Nat. Energy. 2016;1:16048. doi: 10.1038/nenergy.2016.48. [DOI] [Google Scholar]
  • 15.Fang HH, et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light.: Sci. Appl. 2016;5:e16056. doi: 10.1038/lsa.2016.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kang SB, et al. Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility. Light.: Sci. Appl. 2019;8:121. doi: 10.1038/s41377-019-0234-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Akkerman QA, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy. 2017;2:16194. doi: 10.1038/nenergy.2016.194. [DOI] [Google Scholar]
  • 18.Rogach AL. Towards next generation white LEDs: Optics-electronics synergistic effect in a single-layer heterophase halide perovskite. Light.: Sci. Appl. 2021;10:46. doi: 10.1038/s41377-021-00488-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhang L, et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light.: Sci. Appl. 2021;10:61. doi: 10.1038/s41377-021-00501-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Giovanni D, et al. Origins of the long-range exciton diffusion in perovskite nanocrystal films: Photon recycling vs exciton hopping. Light.: Sci. Appl. 2021;10:2. doi: 10.1038/s41377-020-00443-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Xie C, et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light.: Sci. Appl. 2017;6:e17023. doi: 10.1038/lsa.2017.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Xing J, et al. Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light.: Sci. Appl. 2020;9:111. doi: 10.1038/s41377-020-00349-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Giovanni D, et al. Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nat. Commun. 2019;10:3456. doi: 10.1038/s41467-019-11251-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Chen Z, Dong GP, Qiu JR. Ultrafast pump-probe spectroscopy—A powerful tool for tracking spin-quantum dynamics in metal halide perovskites. Adv. Quantum Technol. 2021;4:2100052. doi: 10.1002/qute.202100052. [DOI] [Google Scholar]
  • 25.Huang JS, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017;2:17042. doi: 10.1038/natrevmats.2017.42. [DOI] [Google Scholar]
  • 26.Saba M, et al. Excited state properties of hybrid perovskites. Acc. Chem. Res. 2016;49:166–173. doi: 10.1021/acs.accounts.5b00445. [DOI] [PubMed] [Google Scholar]
  • 27.Wright AD, et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 2016;7:11755. doi: 10.1038/ncomms11755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Maiti A, Pal AJ. Carrier recombination in CH3NH3PbI3: Why is it a slow process? Rep. Prog. Phys. 2022;85:024501. doi: 10.1088/1361-6633/ac4be9. [DOI] [PubMed] [Google Scholar]
  • 29.Zhu XY, Podzorov V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 2015;6:4758–4761. doi: 10.1021/acs.jpclett.5b02462. [DOI] [PubMed] [Google Scholar]
  • 30.Chen Y, et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 2016;7:12253. doi: 10.1038/ncomms12253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Miyata K, Atallah TL, Zhu XY. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 2017;3:e1701469. doi: 10.1126/sciadv.1701469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Miyata K, et al. Large polarons in lead halide perovskites. Sci. Adv. 2017;3:e1701217. doi: 10.1126/sciadv.1701217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Puppin M, et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 2020;124:206402. doi: 10.1103/PhysRevLett.124.206402. [DOI] [PubMed] [Google Scholar]
  • 34.Evans TJS, et al. Competition between hot-electron cooling and large polaron screening in CsPbBr3 perovskite single crystals. J. Phys. Chem. C. 2018;122:13724–13730. doi: 10.1021/acs.jpcc.8b00476. [DOI] [Google Scholar]
  • 35.Zhu HM, et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science. 2016;353:1409–1413. doi: 10.1126/science.aaf9570. [DOI] [PubMed] [Google Scholar]
  • 36.Guzelturk B, et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 2021;20:618–623. doi: 10.1038/s41563-020-00865-5. [DOI] [PubMed] [Google Scholar]
  • 37.Yang Y, et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 2015;6:7961. doi: 10.1038/ncomms8961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang H, et al. Coulomb screening and coherent phonon in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 2016;7:3284–3289. doi: 10.1021/acs.jpclett.6b01425. [DOI] [PubMed] [Google Scholar]
  • 39.Park M, et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 2018;9:2525. doi: 10.1038/s41467-018-04946-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Duan HG, et al. Photoinduced vibrations drive ultrafast structural distortion in lead halide perovskite. J. Am. Chem. Soc. 2020;142:16569–16578. doi: 10.1021/jacs.0c03970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Chen TR, et al. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites. Proc. Natl Acad. Sci. USA. 2017;114:7519–7524. doi: 10.1073/pnas.1704421114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Meggiolaro D, et al. Polarons in metal halide perovskites. Adv. Energy Mater. 2020;10:1902748. doi: 10.1002/aenm.201902748. [DOI] [Google Scholar]
  • 43.Franchini C, et al. Polarons in materials. Nat. Rev. Mater. 2021;6:560–586. doi: 10.1038/s41578-021-00289-w. [DOI] [Google Scholar]
  • 44.Shrivastava M, et al. Polaron and spin dynamics in organic–inorganic lead halide perovskite nanocrystals. Adv. Opt. Mater. 2020;8:2001016. doi: 10.1002/adom.202001016. [DOI] [Google Scholar]
  • 45.Zheng F, Wang LW. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ. Sci. 2019;12:1219–1230. doi: 10.1039/C8EE03369B. [DOI] [Google Scholar]
  • 46.Ponseca CS, Jr, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014;136:5189–5192. doi: 10.1021/ja412583t. [DOI] [PubMed] [Google Scholar]
  • 47.Yettapu GR, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016;16:4838–4848. doi: 10.1021/acs.nanolett.6b01168. [DOI] [PubMed] [Google Scholar]
  • 48.Miyata K, Zhu XY. Ferroelectric large polarons. Nat. Mater. 2018;17:379–381. doi: 10.1038/s41563-018-0068-7. [DOI] [PubMed] [Google Scholar]
  • 49.La-o-Vorakiat C, et al. Phonon mode transformation across the orthohombic–tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: A terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett. 2016;7:1–6. doi: 10.1021/acs.jpclett.5b02223. [DOI] [PubMed] [Google Scholar]
  • 50.Maeng I, et al. Unusual terahertz-wave absorptions in δ/α-mixed-phase FAPbI3 single crystals: Interfacial phonon vibration modes. NPG Asia Mater. 2021;13:75. doi: 10.1038/s41427-021-00343-7. [DOI] [Google Scholar]
  • 51.Bretschneider SA, et al. Quantifying polaron formation and charge carrier cooling in lead-iodide perovskites. Adv. Mater. 2018;30:1707312. doi: 10.1002/adma.201707312. [DOI] [PubMed] [Google Scholar]
  • 52.Bonn M, et al. Role of dielectric drag in polaron mobility in lead halide perovskites. ACS Energy Lett. 2017;2:2555–2562. doi: 10.1021/acsenergylett.7b00717. [DOI] [Google Scholar]
  • 53.Karakus M, et al. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 2015;6:4991–4996. doi: 10.1021/acs.jpclett.5b02485. [DOI] [PubMed] [Google Scholar]
  • 54.Thongnum A, Pinsook U. Polaron transport in hybrid CH3NH3PbI3 perovskite thin films. Nanoscale. 2020;12:14112–14119. doi: 10.1039/D0NR03432K. [DOI] [PubMed] [Google Scholar]
  • 55.Frost JM. Calculating polaron mobility in halide perovskites. Phys. Rev. B. 2017;96:195202. doi: 10.1103/PhysRevB.96.195202. [DOI] [Google Scholar]
  • 56.Miyata A, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015;11:582–587. doi: 10.1038/nphys3357. [DOI] [Google Scholar]
  • 57.Yamada Y, et al. Polaron masses in CH3NH3Pb X3 perovskites determined by landau level spectroscopy in low magnetic fields. Phys. Rev. Lett. 2021;126:237401. doi: 10.1103/PhysRevLett.126.237401. [DOI] [PubMed] [Google Scholar]
  • 58.Ulbricht R, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011;83:029901. doi: 10.1103/RevModPhys.83.543. [DOI] [Google Scholar]
  • 59.Zhao DM, Chia EEM. Free carrier, exciton, and phonon dynamics in lead-halide perovskites studied with ultrafast terahertz spectroscopy. Adv. Optical Mater. 2020;8:1900783. doi: 10.1002/adom.201900783. [DOI] [Google Scholar]
  • 60.Wang X, et al. Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite. Adv. Electron. Mater. 2018;4:1800237. doi: 10.1002/aelm.201800237. [DOI] [Google Scholar]
  • 61.Xu Y, et al. Solution-processed epitaxial growth of MAPbI3 single-crystal films for highly stable photodetectors. Front. Mater. 2021;8:651957. doi: 10.3389/fmats.2021.651957. [DOI] [Google Scholar]
  • 62.Bao XC, et al. Efficient planar perovskite solar cells with large fill factor and excellent stability. J. Power Sources. 2015;297:53–58. doi: 10.1016/j.jpowsour.2015.07.081. [DOI] [Google Scholar]
  • 63.Zhao DM, et al. Monitoring electron–phonon interactions in lead halide perovskites using time-resolved THz spectroscopy. ACS Nano. 2019;13:8826–8835. doi: 10.1021/acsnano.9b02049. [DOI] [PubMed] [Google Scholar]
  • 64.Pérez-Osorio MA, et al. Vibrational properties of the organic–inorganic halide perovskite CH3NH3PbI3 from theory and experiment: Factor group analysis, first-principles calculations, and low-temperature infrared spectra. J. Phys. Chem. C. 2015;119:25703–25718. doi: 10.1021/acs.jpcc.5b07432. [DOI] [Google Scholar]
  • 65.Leguy AMA, et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 2016;18:27051–27066. doi: 10.1039/C6CP03474H. [DOI] [PubMed] [Google Scholar]
  • 66.Park M, et al. Critical role of methylammonium librational motion in methylammonium lead iodide (CH3NH3PbI3) perovskite photochemistry. Nano Lett. 2017;17:4151–4157. doi: 10.1021/acs.nanolett.7b00919. [DOI] [PubMed] [Google Scholar]
  • 67.Lan Y, et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Sci. Adv. 2019;5:eaaw5558. doi: 10.1126/sciadv.aaw5558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.La-o-Vorakiat C, et al. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun. 2015;6:7903. doi: 10.1038/ncomms8903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Valverde-Chávez DA, et al. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy Environ. Sci. 2015;8:3700–3707. doi: 10.1039/C5EE02503F. [DOI] [Google Scholar]
  • 70.Neu J, et al. Applicability of the thin-film approximation in terahertz photoconductivity measurements. Appl. Phys. Lett. 2018;113:233901. doi: 10.1063/1.5052232. [DOI] [Google Scholar]
  • 71.Löper P, et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 2015;6:66–71. doi: 10.1021/jz502471h. [DOI] [PubMed] [Google Scholar]
  • 72.Jin ZM, et al. Ultrafast terahertz photoconductivity of photovoltaic polymer-fullerene blends: A comparative study correlated with photovoltaic device performance. J. Phys. Chem. Lett. 2014;5:3662–3668. doi: 10.1021/jz501890n. [DOI] [PubMed] [Google Scholar]
  • 73.Wang MC, et al. Photo-induced enhancement of lattice fluctuations in metal-halide perovskites. Nat. Commun. 2022;13:1019. doi: 10.1038/s41467-022-28532-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Tilchin J, et al. Hydrogen-like Wannier–Mott excitons in single crystal of methylammonium lead bromide perovskite. ACS Nano. 2016;10:6363–6371. doi: 10.1021/acsnano.6b02734. [DOI] [PubMed] [Google Scholar]
  • 75.Luo L, et al. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nat. Commun. 2017;8:15565. doi: 10.1038/ncomms15565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Smith NV. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B. 2001;64:155106. doi: 10.1103/PhysRevB.64.155106. [DOI] [Google Scholar]
  • 77.Xia CQ, et al. Ultrafast photo-induced phonon hardening due to Pauli blocking in MAPbI3 single-crystal and polycrystalline perovskites. J. Phys.: Mater. 2021;4:044017. [Google Scholar]
  • 78.Saliba M, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016;9:1989–1997. doi: 10.1039/C5EE03874J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Folpini G, et al. Ultrafast charge carrier dynamics in quantum confined 2D perovskite. J. Chem. Phys. 2020;152:214705. doi: 10.1063/5.0008608. [DOI] [PubMed] [Google Scholar]
  • 80.Cinquanta E, et al. Ultrafast THz probe of photoinduced polarons in lead-halide perovskites. Phys. Rev. Lett. 2019;122:166601. doi: 10.1103/PhysRevLett.122.166601. [DOI] [PubMed] [Google Scholar]
  • 81.Cocker TL, et al. Microscopic origin of the Drude–Smith model. Phys. Rev. B. 2017;96:205439. doi: 10.1103/PhysRevB.96.205439. [DOI] [Google Scholar]
  • 82.Kužel P, Němec H. Terahertz spectroscopy of nanomaterials: A close look at charge-carrier transport. Adv. Optical Mater. 2020;8:1900623. doi: 10.1002/adom.201900623. [DOI] [Google Scholar]
  • 83.Zhang H, et al. Highly mobile hot holes in Cs2AgBiBr6 double perovskite. Sci. Adv. 2021;7:eabj9066. doi: 10.1126/sciadv.abj9066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Guzelturk B, et al. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Adv. Mater. 2018;30:1704737. doi: 10.1002/adma.201704737. [DOI] [PubMed] [Google Scholar]
  • 85.Sendner M, et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 2016;3:613–620. doi: 10.1039/C6MH00275G. [DOI] [Google Scholar]
  • 86.Zhang H, et al. Highly mobile large polarons in black phase CsPbI3. ACS Energy Lett. 2021;6:568–573. doi: 10.1021/acsenergylett.0c02482. [DOI] [Google Scholar]
  • 87.Feynman RP. Slow electrons in a polar crystal. Phys. Rev. 1955;97:660–665. doi: 10.1103/PhysRev.97.660. [DOI] [Google Scholar]
  • 88.Zheng WH, et al. Band transport by large Fröhlich polarons in Mxenes. Nat. Phys. 2022;18:544–550. doi: 10.1038/s41567-022-01541-y. [DOI] [Google Scholar]
  • 89.Menéndez-Proupin E, et al. Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Phys. Rev. B. 2014;90:045207. doi: 10.1103/PhysRevB.90.045207. [DOI] [Google Scholar]
  • 90.Fang HH, et al. Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mater. 2015;25:2378–2385. doi: 10.1002/adfm.201404421. [DOI] [Google Scholar]
  • 91.Milot RL, et al. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 2015;25:6218–6227. doi: 10.1002/adfm.201502340. [DOI] [Google Scholar]
  • 92.Buizza LRV, Herz LM. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 2021;33:2007057. doi: 10.1002/adma.202007057. [DOI] [PubMed] [Google Scholar]
  • 93.Schlipf M, Poncé S, Giustino F. Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH3NH3PbI3 from multiphonon fröhlich coupling. Phys. Rev. Lett. 2018;121:086402. doi: 10.1103/PhysRevLett.121.086402. [DOI] [PubMed] [Google Scholar]
  • 94.Poncé S, Schlipf M, Giustino F. Origin of low carrier mobilities in halide perovskites. ACS Energy Lett. 2019;4:456–463. doi: 10.1021/acsenergylett.8b02346. [DOI] [Google Scholar]
  • 95.Oga H, et al. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 2014;136:13818–13825. doi: 10.1021/ja506936f. [DOI] [PubMed] [Google Scholar]
  • 96.Xia CQ, et al. Limits to electrical mobility in lead-halide perovskite semiconductors. J. Phys. Chem. Lett. 2021;12:3607–3617. doi: 10.1021/acs.jpclett.1c00619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics. 2014;8:737–743. doi: 10.1038/nphoton.2014.171. [DOI] [Google Scholar]
  • 98.Piatkowski P, et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. J. Phys. Chem. Lett. 2016;7:204–210. doi: 10.1021/acs.jpclett.5b02648. [DOI] [PubMed] [Google Scholar]
  • 99.Shi JJ, et al. From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells. Joule. 2018;2:879–901. doi: 10.1016/j.joule.2018.04.010. [DOI] [Google Scholar]
  • 100.Ghosh T, et al. Free carrier emergence and onset of electron-phonon coupling in methylammonium lead halide perovskite films. J. Am. Chem. Soc. 2017;139:18262–18270. doi: 10.1021/jacs.7b09508. [DOI] [PubMed] [Google Scholar]
  • 101.Emin, D. Polarons (Cambridge University Press, 2012).
  • 102.Wong WPD, et al. Large polaron self-trapped states in three-dimensional metal-halide perovskites. ACS Mater. Lett. 2020;2:20–27. doi: 10.1021/acsmaterialslett.9b00276. [DOI] [Google Scholar]
  • 103.Tantardini C, et al. “Self-trapping” in solar cell hybrid inorganic–organic perovskite absorbers. Appl. Mater. Today. 2022;26:101380. doi: 10.1016/j.apmt.2022.101380. [DOI] [Google Scholar]
  • 104.Fu JH, et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017;8:1300. doi: 10.1038/s41467-017-01360-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Joshi PP, Maehrlein SF, Zhu XY. Dynamic screening and slow cooling of hot carriers in lead halide perovskites. Adv. Mater. 2019;31:1803054. doi: 10.1002/adma.201803054. [DOI] [PubMed] [Google Scholar]
  • 106.Frost JM, Whalley LD, Walsh A. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2017;2:2647–2652. doi: 10.1021/acsenergylett.7b00862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Ahmed I, et al. There is plenty of room at the top: Generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light.: Sci. Appl. 2021;10:174. doi: 10.1038/s41377-021-00609-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Wang FF, et al. Solvated electrons in solids-ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 2021;143:5–16. doi: 10.1021/jacs.0c10943. [DOI] [PubMed] [Google Scholar]
  • 109.Schilcher MJ, et al. The significance of polarons and dynamic disorder in halide perovskites. ACS Energy Lett. 2021;6:2162–2173. doi: 10.1021/acsenergylett.1c00506. [DOI] [Google Scholar]
  • 110.Semonin OE, et al. Limits of carrier diffusion in n-type and p-type CH3NH3PbI3 perovskite single crystals. J. Phys. Chem. Lett. 2016;7:3510–3518. doi: 10.1021/acs.jpclett.6b01308. [DOI] [PubMed] [Google Scholar]
  • 111.van Hoof NJJ, et al. Time-resolved terahertz time-domain near-field microscopy. Opt. Express. 2018;26:32118–32129. doi: 10.1364/OE.26.032118. [DOI] [PubMed] [Google Scholar]
  • 112.Guo Z, et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science. 2017;356:59–62. doi: 10.1126/science.aam7744. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

41377_2022_872_MOESM1_ESM.docx (11MB, docx)

Supplementary Information for Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.


Articles from Light, Science & Applications are provided here courtesy of Nature Publishing Group

RESOURCES