Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 10;78(Pt 7):716–721. doi: 10.1107/S2056989022005953

Crystal structures of three zinc(II) halide coordination complexes with quinoline N-oxide

Clifford W Padgett a,*, Will E Lynch a, Erin N Groneck a, Melina Raymundo a, Desiree Adams a
PMCID: PMC9260350  PMID: 35855361

The structures of the three related compounds di­chlorido­bis­(quinoline N-oxide-κO)zinc(II); di­bromido­bis­(quinoline N-oxide-κO)zinc(II) and di­iodido­bis­(quinoline N-oxide-κO)zinc(II) are presented.

Keywords: crystal structure, zinc(II) coordination complex, quinoline N-oxide, Hirshfeld surface analysis

Abstract

The reaction of one equivalent of zinc(II) halide with two equivalents of quinoline N-oxide (QNO) in methanol yields compounds as ZnX 2(QNO)2, where X = Cl (I), Br (II) and I (III), namely, di­chlorido­bis­(quinoline N-oxide-κO)zinc(II), [ZnCl2(C9H7NO)2], di­bromido­bis­(quinoline N-oxide-κO)zinc(II), [ZnBr2(C9H7NO)2], and di­iodido­bis­(quinoline N-oxide-κO)zinc(II) [ZnI2(C9H7NO)2]. In all three complexes, Zn cations are coordinated by two QNO ligands bound through the oxygen atoms and two halide atoms, with X—Zn—X bond angles ca 20° wider than the O—Zn—O, giving rise to a distorted tetra­hedral geometry. Crystals of (II) and (III) are isostructural and both show pairwise π-stacking of QNO ligands and weak C—H⋯X hydrogen bonds, while (I) packs differently, with a shorter C—H⋯Cl bond and without π-stacking.

1. Chemical context

N-oxide complexes have a rich history in organic transformations, including utility with transition metals in oxotransformations [see, for example, Eppenson (2003) and Moustafa et al. (2014)]. These transition-metal N-oxide complexes highlight the strong Lewis acid/Lewis base properties of the zinc(II) ion and N-oxides, respectively. Aromatic N-oxides are strong Lewis base ligands and form transition-metal complexes that are prevalent in the literature and highlight the strong transition metal inter­actions with the lone pair on the N-oxide oxygen atom. Examples of such complexes include a 4-methyl­pyridine N-oxide (MePyNO) derivative CuCl2·2MePyNO (CMPYUC; Watson & Johnson, 1971) and pyridine N-oxide (6PyNO) derivatives Ni(BF4)2·6PyNO (PYNONI; van Ingen Schenau et al., 1974) or Au(CF3)3·PyNO (NEPVOW; Pérez-Bitrián et al., 2017). Previous reports of zinc(II) complexes with aromatic N-oxides include di­bromo­bis­(4-meth­oxy­pyridine N-oxide-κO)zinc(II) (GAWHIW; Shi et al. 2005a ), di­aqua­bis­(picolinato N-oxide-κ2 O,O′)zinc(II) (XISBOR; Li et al., 2008) and di­chloro­bis­(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986), all of which are mononuclear complexes.

Herein we report the crystal structures of three complexes of quinoline N-oxide (QNO) with zinc(II) chloride, bromide and iodide. All three were obtained by 1:2 stoichiometric reaction of the zinc(II) halide with QNO in methanol and found to be mononuclear ZnX 2(QNO)2 complexes with a distorted tetra­hedral environment around the zinc ion. 1.

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group P21 (Fig. 1), whereas compounds (II) (Fig. 2) and (III) (Fig. 3) both crystallize in the monoclinic space group P21/c. Each structure contains one symmetrically independent mol­ecule, the coordination sphere around each Zn atom being a distorted tetra­hedron. Selected bond lengths and angles in these complexes are shown in Table 1. Compounds (II) and (III) are isostructural in both the mol­ecular conformation and crystal packing, while (I) differs in both aspects, as illustrated by an overlay of mol­ecules (I) and (II) (Fig. 4 a) on one hand, and mol­ecules (II) and (III) on the other (Fig. 4 b). Most notably, (I) differs in the orientation of the QNO rings relative to each other, the C2—N1—N2—C11 torsion angles being −16.9 (5)° in (I) versus −113.9 (3)° in (II) and −111.6 (3)° in (III).

Figure 1.

Figure 1

A view of compound (I), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

A view of compound (II), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

A view of compound (III), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected bond lengths and angles (Å, °).

Compound (I)   Compound (II)   Compound (III)  
Zn1—Cl1 2.215 (2) Zn1—Br1 2.3575 (9) Zn1—I1 2.5534 (8)
Zn1—Cl2 2.211 (2) Zn1—Br2 2.3472 (10) Zn1—I2 2.5475 (9)
Zn1—O1 1.991 (5) Zn1—O1 1.975 (4) Zn1—O1 1.974 (4)
Zn1—O2 1.959 (5) Zn1—O2 1.989 (4) Zn1—O2 1.995 (4)
Cl1—Zn1—Cl2 117.80 (9) Br1—Zn1—Br2 123.45 (4) I1—Zn1—I2 122.34 (3)
O1—Zn1—O2 99.4 (2) O1—Zn1—O2 103.10 (16) O1—Zn1—O2 104.12 (19)

Figure 4.

Figure 4

(a) Mol­ecular overlay of compound (I) (green) and compound (II) (brown). (b) Mol­ecular overlay of compound (II) (brown) and compound (III) (purple).

3. Supra­molecular features

Figs. 5, 6 and 7 show the packing of compounds (I), (II) and (III), respectively. In the crystal structures, the packing is stabilized by van der Waals inter­actions and, in (II) and (III), by similar systems of pairwise π–π stacking inter­actions. Quinoline moieties Cg1–Cg3 and Cg2–Cg4 (see Figs. 6 and 7) are stacked each against its own inversion-related equivalent, with the separations between their (parallel) mean planes equaling 3.483 (5) and 3.402 (5) Å, respectively, for (II), 3.466 (5) and 3.436 (5) Å for (III). The structure of (I) has no π-stacking. Besides, all three structures are characterized by C—H⋯X hydrogen bonds (X = halogen), see below.

Figure 5.

Figure 5

Crystal packing diagram of compound (I), viewed down the [101] direction.

Figure 6.

Figure 6

Crystal packing diagram of compound (II), viewed down the b axis.

Figure 7.

Figure 7

Crystal packing diagram of compound (III), viewed down the b axis.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were further investigated by qu­anti­tative analysis of the Hirshfeld surface, and visualized with Crystal Explorer 21 (Spackman et al., 2021) and the two-dimensional fingerprint plots (McKinnon et al., 2007). Figs. 8, 9 and 10 show Hirshfeld surfaces of mol­ecules (I) to (III) mapped with the function d norm, the sum of the distances from a surface point to the nearest inter­ior (d i) and exterior (d e) atoms, normalized by the van der Waals (vdW) radii of the corres­ponding atoms (rvdW). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW as white spots.

Figure 8.

Figure 8

Hirshfeld surface for (I) mapped over d norm.

Figure 9.

Figure 9

Hirshfeld surface for (II) mapped over d norm.

Figure 10.

Figure 10

Hirshfeld surface for (III) mapped over d norm.

For (I), the most intense red spots correspond to the inter­molecular contacts O1⋯C9(1 − x, y −  Inline graphic , 1 − z) [3.048 (9) Å] and the hydrogen bond C18—H18⋯Cl2(x, y + 1, z). The latter has the distances H⋯Cl = 2.53 Å (for the C—H distance normalized to 1.083 Å) and C⋯Cl = 3.416 (9) Å within the previously observed range but shorter than the average values of 2.64 and 3.66 Å, respectively (Steiner, 1998). The other chloride ligand, Cl2, forms four H⋯Cl contacts of 2.83–2.98 Å, more typical for van der Waals inter­actions (Rowland & Taylor, 1996). For (II) and (III), the red spots correspond to C—H⋯X inter­actions, viz. C18—H18⋯X1, C5—H5⋯X1, C16—H16⋯X2, and C9—H9⋯X2, which can be also regarded as weak hydrogen bonds (Steiner, 1998). The H⋯X distances in (II) (X = Br) are 2.85, 2.88, 2.88 and 2.89 Å, respectively, while in (III) (X = I) they are 3.03, 3.12, 3.03 and 2.96 Å, respectively.

Analysis of the two-dimensional fingerprint plots (Table 2) indicates that H⋯H contacts are the most common in all three structures. X⋯H contacts make the second highest contribution, which increases in the succession (I) < (II) < (III), together with the size of the halogen atoms and hence their share of the mol­ecular surface (16.9, 18.5 and 20.6%, respectively). Inter­estingly, π-stacking in the structures of (II) and (III) gives only a modest increase of C⋯C contacts compared to (I), probably because it is counterbalanced by an overall decrease of carbon atoms’ share of the surface (21.4 > 19.5 > 18.3%). No halogen⋯halogen contacts are observed in any of the three structures.

Table 2. Contributions of selected inter­molecular contacts (%).

Compound (I) (II) (III)
H⋯H 32.0 36.7 36.5
H⋯X/X⋯H 24.4 28.4 30.0
C⋯H/H⋯C 22.7 18.5 18.0
C⋯C 5.4 7.1 6.4
O⋯H/H⋯O 6.0 4.0 3.7

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.42, update of February 2021; Groom et al., 2016) for aromatic N-oxides and halogen ligands bound to zinc returned 21 unique entries, the majority (15) of which contain pyridine N-oxide and its derivatives. Of these, the most closely related are pyridine N-oxide complexes, di­chloro­bis­(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986), di­bromo­robis(pyridine N-oxide)zinc(II) (FIPVUV; Edwards et al., 1999) and di­iodo­robis(pyridine N-oxide)zinc(II) (IPNOZN01; Edwards et al., 1999). Related to these are methyl derivatives of pyridine N-oxide complexes with ZnCl2, viz. di­chloro­bis­(2,6-di­methyl­pyridine N-oxide)zinc(II) (LUTOZN; Sager & Watson, 1968), three isomers of di­chloro­bis­(methyl­pyridine N-oxide)zinc(II) (QQQBXG, QQQBXJ, QQQBXM), for which only unit-cell parameters were determined (Kidd et al., 1967), and finally, di­iodo­bis­(4-methyl­pyridine N-oxide)zinc(II) (SANRUV; Shi et al., 2005b ). There is one known structure of a quinoline N-oxide derivative, di­chloro­bis­(2-methyl­quinoline N-oxide)zinc(II) (AFUSEZ; Ivashevskaja et al., 2002).

6. Synthesis and crystallization

The water content of QNO and ZnBr2 have been determined by Thermal Gravimetric Analysis. The formulation for each was found to be QNO·0.28H2O (M W = 150.21 g mol−1) and ZnBr2·0.86H2O (F W = 240.69 g mol−1).

The title compounds were all synthesized in a similar manner. Compound (I) was synthesized by dissolving 0.0986 g of QNO·0.28H2O (0.656 mmol, purchased from Aldrich) in 33 mL of methanol to which 0.0440 g of ZnCl2 (0.176 mmol, purchased from Strem Chemicals) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0822 g (60.2%). Selected IR bands (ATR–IR, cm−1): 3107 (w), 3083 (w), 3057 (w), 1579 (m), 1513 (m), 1447 (m), 1402 (s), 1269 (s), 1227 (m), 1203 (s), 1179 (m), 1144 (m), 1089 (s), 1050 (m), 883 (s), 800 (s), 768 (s), 723 (m), 584 (m), 559 (m), 542 (m).

Compound (II) was synthesized by dissolving 0.0983 g of QNO·0.28H2O (0.654 mmol), in 40 mL of methanol to which 0.0778 g of ZnBr2·0.86H2O (0.323 mmol, purchased from Alfa Aesar) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0866 g (46.7%). Selected IR bands (ATR–IR, cm−1): 3106 (w), 3075 (w), 3061 (w), 3016 (w), 1580 (m), 1510 (s), 1455 (m), 1270 (s), 1227 (m), 1214 (s), 1204 (s), 1173 (m), 1138 (m), 1086 (s), 1048 (m), 877 (m), 800 (s), 767 (s), 720 (s), 581 (m), 563 (m), 500 (m).

Compound (III) was synthesized by dissolving 0.0517 g of QNO·0.28H2O (0.352 mmol) in approximately 36 mL of methanol to which 0.0524 g of ZnI2 (0.164 mmol, purchased from Aldrich) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0910 g (52.3%). Selected IR Bands (ATR–IR, cm−1): 3100 (w), 3090 (w), 2076 (w), 3059 (w), 3027 (w),1580 (s), 1507 (s), 1382 (s), 1267 (m), 1225 (m), 1207 (s), 1169 (m), 1141 (m), 1044 (m), 880 (s), 807 (s), 769 (s), 720 (m), 580 (m), 562 (m), 499 (m).

Infrared spectroscopy confirms the presence of the QNO ligand in all three complexes. Characteristic IR bands include weak νC—H aromatic stretches observed from 3020–3107 cm−1 and νN—O stretches of the bound N-oxide in the range 1350–1150 cm−1; notably, a medium band observed in the ligand at 1311 cm−1, appears at between 1225–1227 cm−1 in the three metal complexes. Finally, a broad absorbance in the free ligand from 3100–3500 cm−1 (assigned to the water νO—H stretch) is absent in all of the metal complexes (Mautner et al., 2016).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula [ZnCl2(C9H7NO)2] [ZnBr2(C9H7NO)2] [ZnI2(C9H7NO)2]
M r 426.58 515.50 609.48
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 298 298 297
a, b, c (Å) 8.5167 (4), 7.8697 (4), 13.1617 (7) 16.3922 (11), 7.3527 (6), 15.5809 (10) 16.7231 (7), 7.6155 (4), 15.8689 (7)
β (°) 94.890 (5) 97.113 (6) 97.192 (4)
V3) 878.94 (8) 1863.5 (2) 2005.08 (16)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.72 5.62 4.32
Crystal size (mm) 0.1 × 0.1 × 0.03 0.15 × 0.08 × 0.03 0.3 × 0.3 × 0.3
 
Data collection
Diffractometer Rigaku XtaLAB mini XtaLAB Mini (ROW) Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019) Multi-scan (CrysAlis PRO; Rigaku OD, 2019) Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.968, 1.000 0.833, 1.000 0.896, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5308, 3169, 2456 7207, 3415, 2095 11510, 3668, 2748
R int 0.036 0.043 0.032
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.077, 1.03 0.042, 0.090, 1.02 0.035, 0.085, 1.07
No. of reflections 3169 3415 3668
No. of parameters 226 226 227
No. of restraints 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.35 0.55, −0.35 0.80, −0.81
Absolute structure Flack x determined using 810 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.006 (15)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989022005953/zv2014sup1.cif

e-78-00716-sup1.cif (775.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005953/zv2014Isup2.hkl

e-78-00716-Isup2.hkl (253KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022005953/zv2014IIsup3.hkl

e-78-00716-IIsup3.hkl (272.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022005953/zv2014IIIsup4.hkl

e-78-00716-IIIsup4.hkl (292.7KB, hkl)

CCDC references: 2176715, 2176714, 2176713

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

supplementary crystallographic information

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Crystal data

[ZnCl2(C9H7NO)2] F(000) = 432
Mr = 426.58 Dx = 1.612 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.5167 (4) Å Cell parameters from 1644 reflections
b = 7.8697 (4) Å θ = 2.4–22.4°
c = 13.1617 (7) Å µ = 1.72 mm1
β = 94.890 (5)° T = 298 K
V = 878.94 (8) Å3 Cube, clear colourless
Z = 2 0.1 × 0.1 × 0.03 mm

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Data collection

Rigaku XtaLAB mini diffractometer 3169 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source 2456 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω scans θmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −10→10
Tmin = 0.968, Tmax = 1.000 k = −9→9
5308 measured reflections l = −15→14

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0183P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.42 e Å3
3169 reflections Δρmin = −0.35 e Å3
226 parameters Absolute structure: Flack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraint Absolute structure parameter: −0.006 (15)
Primary atom site location: dual

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.60832 (9) 0.40878 (9) 0.69325 (6) 0.0481 (2)
Cl1 0.8131 (2) 0.5260 (3) 0.78185 (18) 0.0717 (6)
Cl2 0.5724 (2) 0.1322 (2) 0.71012 (17) 0.0668 (6)
O1 0.6087 (5) 0.4435 (7) 0.5459 (4) 0.0660 (17)
O2 0.4152 (6) 0.5393 (6) 0.7184 (4) 0.0543 (13)
N1 0.6919 (7) 0.5702 (8) 0.5068 (4) 0.0472 (15)
N2 0.3927 (6) 0.6163 (7) 0.8067 (4) 0.0461 (14)
C1 0.7938 (8) 0.5254 (9) 0.4342 (5) 0.0418 (17)
C2 0.8061 (9) 0.3562 (9) 0.4045 (6) 0.052 (2)
H2 0.745778 0.272501 0.432433 0.063*
C3 0.9086 (10) 0.3150 (11) 0.3332 (6) 0.065 (2)
H3 0.916168 0.203042 0.311636 0.077*
C4 1.0011 (10) 0.4398 (14) 0.2932 (6) 0.071 (3)
H4 1.072298 0.409606 0.246598 0.085*
C5 0.9891 (9) 0.6041 (11) 0.3210 (6) 0.061 (2)
H5 1.051065 0.685676 0.292553 0.074*
C6 0.8835 (8) 0.6538 (9) 0.3931 (5) 0.0469 (18)
C7 0.8623 (9) 0.8234 (8) 0.4243 (6) 0.056 (2)
H7 0.920737 0.910057 0.397750 0.067*
C8 0.7577 (10) 0.8601 (9) 0.4927 (6) 0.063 (2)
H8 0.742052 0.972081 0.511924 0.075*
C9 0.6733 (9) 0.7293 (10) 0.5342 (6) 0.056 (2)
H9 0.602718 0.754824 0.582143 0.068*
C10 0.3113 (8) 0.5307 (9) 0.8777 (6) 0.0441 (18)
C11 0.2654 (9) 0.3621 (9) 0.8595 (6) 0.059 (2)
H11 0.289239 0.306487 0.800371 0.071*
C12 0.1846 (10) 0.2810 (12) 0.9306 (7) 0.073 (2)
H12 0.154890 0.168062 0.920740 0.087*
C13 0.1458 (11) 0.3686 (13) 1.0195 (7) 0.081 (3)
H13 0.089040 0.312853 1.066778 0.097*
C14 0.1899 (10) 0.5309 (12) 1.0360 (7) 0.069 (3)
H14 0.163818 0.585631 1.094912 0.082*
C15 0.2745 (8) 0.6187 (10) 0.9661 (5) 0.0508 (19)
C16 0.3245 (9) 0.7899 (11) 0.9803 (6) 0.065 (2)
H16 0.300458 0.850485 1.037580 0.078*
C17 0.4081 (9) 0.8637 (10) 0.9084 (6) 0.067 (2)
H17 0.443132 0.975085 0.917171 0.081*
C18 0.4411 (9) 0.7745 (11) 0.8231 (6) 0.061 (2)
H18 0.499384 0.826957 0.775384 0.073*

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0494 (4) 0.0451 (5) 0.0519 (5) −0.0013 (5) 0.0168 (4) 0.0023 (5)
Cl1 0.0656 (13) 0.0678 (14) 0.0812 (16) −0.0173 (11) 0.0034 (12) −0.0053 (12)
Cl2 0.0710 (14) 0.0421 (11) 0.0875 (16) −0.0034 (10) 0.0087 (12) 0.0054 (10)
O1 0.066 (3) 0.083 (5) 0.052 (3) −0.033 (3) 0.025 (3) 0.006 (3)
O2 0.059 (3) 0.063 (3) 0.043 (3) 0.011 (3) 0.017 (3) −0.010 (3)
N1 0.045 (3) 0.057 (4) 0.040 (4) −0.004 (3) 0.006 (3) 0.002 (3)
N2 0.042 (3) 0.050 (4) 0.046 (4) 0.007 (3) 0.004 (3) −0.003 (3)
C1 0.041 (4) 0.047 (4) 0.037 (4) −0.003 (4) 0.000 (3) 0.010 (4)
C2 0.052 (5) 0.056 (5) 0.048 (5) −0.008 (4) 0.005 (4) 0.003 (3)
C3 0.071 (6) 0.064 (6) 0.060 (5) 0.005 (5) 0.012 (5) −0.003 (4)
C4 0.065 (5) 0.097 (8) 0.053 (5) 0.012 (6) 0.016 (4) 0.008 (6)
C5 0.047 (5) 0.078 (6) 0.061 (6) −0.006 (5) 0.018 (4) 0.027 (5)
C6 0.044 (4) 0.052 (5) 0.045 (4) −0.008 (4) 0.004 (4) 0.010 (4)
C7 0.058 (5) 0.043 (5) 0.062 (5) −0.012 (4) −0.013 (4) 0.019 (4)
C8 0.076 (6) 0.042 (5) 0.068 (5) 0.006 (4) −0.009 (5) 0.001 (4)
C9 0.059 (5) 0.065 (6) 0.046 (4) 0.013 (4) 0.010 (4) −0.004 (4)
C10 0.039 (4) 0.043 (4) 0.050 (5) 0.009 (4) 0.004 (4) 0.008 (4)
C11 0.055 (5) 0.061 (6) 0.062 (5) −0.003 (4) 0.011 (4) −0.004 (4)
C12 0.076 (6) 0.056 (5) 0.086 (7) −0.007 (5) 0.015 (6) 0.002 (5)
C13 0.073 (6) 0.097 (10) 0.075 (6) −0.004 (6) 0.021 (5) 0.022 (6)
C14 0.062 (6) 0.085 (7) 0.060 (6) 0.004 (5) 0.012 (5) 0.001 (5)
C15 0.047 (4) 0.059 (5) 0.046 (5) 0.008 (4) 0.004 (4) 0.002 (4)
C16 0.066 (6) 0.065 (6) 0.063 (5) 0.010 (5) 0.001 (5) −0.021 (5)
C17 0.070 (6) 0.053 (6) 0.078 (6) −0.004 (4) 0.001 (5) −0.011 (4)
C18 0.072 (6) 0.039 (4) 0.073 (6) −0.005 (4) 0.012 (5) −0.004 (5)

Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Geometric parameters (Å, º)

Zn1—Cl1 2.215 (2) C7—H7 0.9300
Zn1—Cl2 2.211 (2) C7—C8 1.350 (11)
Zn1—O1 1.959 (5) C8—H8 0.9300
Zn1—O2 1.991 (4) C8—C9 1.393 (10)
O1—N1 1.351 (7) C9—H9 0.9300
O2—N2 1.339 (6) C10—C11 1.398 (10)
N1—C1 1.389 (8) C10—C15 1.412 (10)
N1—C9 1.316 (9) C11—H11 0.9300
N2—C10 1.385 (8) C11—C12 1.366 (10)
N2—C18 1.324 (9) C12—H12 0.9300
C1—C2 1.395 (9) C12—C13 1.421 (12)
C1—C6 1.403 (9) C13—H13 0.9300
C2—H2 0.9300 C13—C14 1.344 (12)
C2—C3 1.373 (10) C14—H14 0.9300
C3—H3 0.9300 C14—C15 1.399 (10)
C3—C4 1.390 (11) C15—C16 1.420 (11)
C4—H4 0.9300 C16—H16 0.9300
C4—C5 1.350 (12) C16—C17 1.362 (11)
C5—H5 0.9300 C17—H17 0.9300
C5—C6 1.417 (10) C17—C18 1.373 (10)
C6—C7 1.412 (10) C18—H18 0.9300
Cl2—Zn1—Cl1 117.80 (9) C8—C7—H7 119.9
O1—Zn1—Cl1 113.30 (15) C7—C8—H8 120.2
O1—Zn1—Cl2 104.40 (18) C7—C8—C9 119.7 (7)
O1—Zn1—O2 99.4 (2) C9—C8—H8 120.2
O2—Zn1—Cl1 108.81 (16) N1—C9—C8 121.1 (7)
O2—Zn1—Cl2 111.57 (16) N1—C9—H9 119.4
N1—O1—Zn1 121.7 (4) C8—C9—H9 119.4
N2—O2—Zn1 124.0 (4) N2—C10—C11 119.6 (7)
O1—N1—C1 117.0 (6) N2—C10—C15 118.5 (7)
C9—N1—O1 121.2 (6) C11—C10—C15 121.9 (7)
C9—N1—C1 121.8 (6) C10—C11—H11 120.8
O2—N2—C10 118.8 (6) C12—C11—C10 118.4 (8)
C18—N2—O2 120.2 (6) C12—C11—H11 120.8
C18—N2—C10 120.9 (6) C11—C12—H12 119.9
N1—C1—C2 120.1 (7) C11—C12—C13 120.2 (9)
N1—C1—C6 118.3 (7) C13—C12—H12 119.9
C2—C1—C6 121.6 (7) C12—C13—H13 119.6
C1—C2—H2 120.5 C14—C13—C12 120.9 (9)
C3—C2—C1 118.9 (7) C14—C13—H13 119.6
C3—C2—H2 120.5 C13—C14—H14 119.5
C2—C3—H3 119.8 C13—C14—C15 121.0 (9)
C2—C3—C4 120.4 (8) C15—C14—H14 119.5
C4—C3—H3 119.8 C10—C15—C16 119.2 (7)
C3—C4—H4 119.5 C14—C15—C10 117.6 (8)
C5—C4—C3 121.0 (8) C14—C15—C16 123.2 (8)
C5—C4—H4 119.5 C15—C16—H16 120.6
C4—C5—H5 119.6 C17—C16—C15 118.8 (7)
C4—C5—C6 120.9 (8) C17—C16—H16 120.6
C6—C5—H5 119.6 C16—C17—H17 119.8
C1—C6—C5 117.2 (7) C16—C17—C18 120.3 (8)
C1—C6—C7 118.8 (7) C18—C17—H17 119.8
C7—C6—C5 124.0 (7) N2—C18—C17 122.1 (8)
C6—C7—H7 119.9 N2—C18—H18 118.9
C8—C7—C6 120.3 (7) C17—C18—H18 118.9
Zn1—O1—N1—C1 127.4 (5) C4—C5—C6—C1 0.5 (11)
Zn1—O1—N1—C9 −54.6 (8) C4—C5—C6—C7 −178.7 (8)
Zn1—O2—N2—C10 −94.8 (6) C5—C6—C7—C8 179.3 (7)
Zn1—O2—N2—C18 88.5 (7) C6—C1—C2—C3 0.0 (12)
O1—N1—C1—C2 0.3 (10) C6—C7—C8—C9 1.6 (12)
O1—N1—C1—C6 −179.2 (6) C7—C8—C9—N1 −1.1 (12)
O1—N1—C9—C8 −179.1 (6) C9—N1—C1—C2 −177.7 (7)
O2—N2—C10—C11 5.0 (9) C9—N1—C1—C6 2.8 (10)
O2—N2—C10—C15 −173.8 (6) C10—N2—C18—C17 −2.7 (11)
O2—N2—C18—C17 174.0 (6) C10—C11—C12—C13 1.4 (12)
N1—C1—C2—C3 −179.5 (6) C10—C15—C16—C17 −0.7 (11)
N1—C1—C6—C5 178.5 (6) C11—C10—C15—C14 0.1 (11)
N1—C1—C6—C7 −2.2 (10) C11—C10—C15—C16 180.0 (7)
N2—C10—C11—C12 −179.7 (7) C11—C12—C13—C14 −1.2 (14)
N2—C10—C15—C14 179.0 (6) C12—C13—C14—C15 0.4 (14)
N2—C10—C15—C16 −1.2 (10) C13—C14—C15—C10 0.1 (13)
C1—N1—C9—C8 −1.1 (11) C13—C14—C15—C16 −179.7 (8)
C1—C2—C3—C4 1.4 (12) C14—C15—C16—C17 179.1 (8)
C1—C6—C7—C8 0.1 (11) C15—C10—C11—C12 −0.9 (11)
C2—C1—C6—C5 −1.0 (11) C15—C16—C17—C18 1.0 (12)
C2—C1—C6—C7 178.3 (7) C16—C17—C18—N2 0.7 (13)
C2—C3—C4—C5 −1.9 (13) C18—N2—C10—C11 −178.3 (7)
C3—C4—C5—C6 0.9 (13) C18—N2—C10—C15 2.9 (10)

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Crystal data

[ZnBr2(C9H7NO)2] F(000) = 1008
Mr = 515.50 Dx = 1.837 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.3922 (11) Å Cell parameters from 1219 reflections
b = 7.3527 (6) Å θ = 2.6–22.0°
c = 15.5809 (10) Å µ = 5.62 mm1
β = 97.113 (6)° T = 298 K
V = 1863.5 (2) Å3 Irregular, clear colourless
Z = 4 0.15 × 0.08 × 0.03 mm

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Data collection

XtaLAB Mini (ROW) diffractometer 3415 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source 2095 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
ω scans θmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −16→19
Tmin = 0.833, Tmax = 1.000 k = −8→8
7207 measured reflections l = −18→18

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0258P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3415 reflections Δρmax = 0.55 e Å3
226 parameters Δρmin = −0.35 e Å3
0 restraints

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.25508 (4) 0.26213 (9) 0.37264 (4) 0.0514 (2)
Br2 0.22409 (4) −0.03623 (9) 0.41131 (4) 0.0695 (2)
Br1 0.26119 (4) 0.35514 (10) 0.22878 (4) 0.0698 (2)
O1 0.3616 (2) 0.3196 (6) 0.4411 (2) 0.0662 (11)
O2 0.1778 (2) 0.4332 (5) 0.4197 (2) 0.0597 (10)
N2 0.1157 (3) 0.3586 (5) 0.4557 (3) 0.0445 (11)
N1 0.4115 (3) 0.4386 (7) 0.4079 (3) 0.0543 (12)
C10 0.0394 (3) 0.3446 (7) 0.4065 (3) 0.0415 (12)
C1 0.4897 (3) 0.3784 (8) 0.3969 (3) 0.0466 (14)
C15 −0.0264 (3) 0.2713 (7) 0.4450 (3) 0.0468 (13)
C16 −0.0121 (4) 0.2148 (7) 0.5319 (3) 0.0550 (15)
H16 −0.054979 0.167100 0.558720 0.066*
C18 0.1273 (3) 0.3032 (7) 0.5371 (3) 0.0526 (15)
H18 0.179191 0.313686 0.568455 0.063*
C17 0.0635 (4) 0.2296 (8) 0.5765 (3) 0.0561 (15)
H17 0.072791 0.190483 0.633590 0.067*
C11 0.0284 (4) 0.4086 (8) 0.3210 (3) 0.0571 (16)
H11 0.071759 0.460347 0.296363 0.069*
C6 0.5437 (4) 0.5023 (9) 0.3641 (3) 0.0592 (16)
C2 0.5136 (4) 0.2028 (9) 0.4187 (3) 0.0626 (17)
H2 0.476904 0.122160 0.439392 0.075*
C14 −0.1031 (4) 0.2572 (8) 0.3940 (4) 0.0673 (17)
H14 −0.147290 0.206267 0.417522 0.081*
C13 −0.1135 (4) 0.3168 (9) 0.3113 (4) 0.0742 (19)
H13 −0.164632 0.307127 0.278474 0.089*
C12 −0.0477 (4) 0.3927 (9) 0.2752 (3) 0.0723 (19)
H12 −0.055985 0.433696 0.218351 0.087*
C9 0.3862 (4) 0.6041 (10) 0.3872 (4) 0.0730 (19)
H9 0.333060 0.639141 0.395028 0.088*
C7 0.5161 (5) 0.6777 (10) 0.3420 (4) 0.077 (2)
H7 0.550832 0.760022 0.319363 0.093*
C3 0.5912 (4) 0.1490 (10) 0.4098 (4) 0.083 (2)
H3 0.607681 0.030702 0.424267 0.099*
C8 0.4388 (5) 0.7279 (9) 0.3536 (4) 0.083 (2)
H8 0.420515 0.844968 0.339148 0.099*
C5 0.6244 (4) 0.4382 (12) 0.3568 (4) 0.085 (2)
H5 0.662411 0.515411 0.336046 0.102*
C4 0.6460 (5) 0.2678 (14) 0.3794 (5) 0.095 (3)
H4 0.699190 0.228696 0.374594 0.114*

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0345 (4) 0.0688 (5) 0.0519 (4) −0.0003 (3) 0.0089 (3) −0.0017 (3)
Br2 0.0598 (4) 0.0637 (4) 0.0855 (5) 0.0040 (3) 0.0113 (3) 0.0048 (4)
Br1 0.0663 (4) 0.0960 (5) 0.0476 (3) −0.0052 (4) 0.0090 (3) −0.0030 (4)
O1 0.037 (2) 0.102 (3) 0.059 (2) −0.016 (2) 0.0020 (18) 0.010 (2)
O2 0.046 (2) 0.055 (2) 0.083 (3) −0.005 (2) 0.0278 (19) 0.002 (2)
N2 0.040 (3) 0.042 (3) 0.054 (3) 0.007 (2) 0.014 (2) −0.005 (2)
N1 0.043 (3) 0.072 (4) 0.045 (3) −0.005 (3) −0.007 (2) −0.012 (3)
C10 0.043 (3) 0.039 (3) 0.043 (3) 0.007 (3) 0.011 (2) −0.006 (3)
C1 0.039 (3) 0.062 (4) 0.037 (3) −0.005 (3) −0.002 (2) −0.011 (3)
C15 0.041 (3) 0.048 (3) 0.054 (3) 0.003 (3) 0.015 (3) −0.003 (3)
C16 0.051 (4) 0.060 (4) 0.057 (4) −0.001 (3) 0.020 (3) 0.006 (3)
C18 0.053 (4) 0.056 (4) 0.047 (3) 0.009 (3) −0.003 (3) −0.004 (3)
C17 0.063 (4) 0.062 (4) 0.046 (3) 0.007 (3) 0.017 (3) 0.008 (3)
C11 0.064 (4) 0.063 (4) 0.046 (3) 0.008 (3) 0.015 (3) −0.003 (3)
C6 0.051 (4) 0.076 (5) 0.049 (3) −0.016 (4) 0.001 (3) −0.015 (3)
C2 0.053 (4) 0.072 (5) 0.059 (4) −0.003 (3) −0.007 (3) −0.003 (3)
C14 0.042 (4) 0.079 (5) 0.081 (5) −0.008 (3) 0.008 (3) 0.000 (4)
C13 0.055 (4) 0.092 (5) 0.072 (4) 0.002 (4) −0.007 (3) −0.006 (4)
C12 0.085 (5) 0.094 (5) 0.037 (3) 0.016 (4) 0.002 (3) −0.002 (3)
C9 0.052 (4) 0.088 (5) 0.075 (4) 0.009 (4) −0.010 (3) −0.028 (4)
C7 0.086 (6) 0.074 (5) 0.071 (4) −0.029 (4) 0.002 (4) −0.003 (4)
C3 0.064 (5) 0.079 (5) 0.101 (5) 0.010 (4) −0.007 (4) −0.016 (4)
C8 0.098 (6) 0.053 (4) 0.087 (5) −0.003 (5) −0.028 (5) 0.000 (4)
C5 0.056 (5) 0.122 (7) 0.079 (5) −0.035 (5) 0.022 (4) −0.023 (5)
C4 0.050 (5) 0.130 (7) 0.104 (6) 0.006 (5) 0.008 (4) −0.029 (6)

Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Geometric parameters (Å, º)

Zn1—Br2 2.3472 (10) C11—H11 0.9300
Zn1—Br1 2.3575 (8) C11—C12 1.364 (8)
Zn1—O1 1.975 (3) C6—C7 1.395 (8)
Zn1—O2 1.989 (4) C6—C5 1.422 (9)
O1—N1 1.345 (5) C2—H2 0.9300
O2—N2 1.339 (5) C2—C3 1.356 (8)
N2—C10 1.388 (6) C14—H14 0.9300
N2—C18 1.323 (6) C14—C13 1.352 (8)
N1—C1 1.386 (6) C13—H13 0.9300
N1—C9 1.313 (7) C13—C12 1.392 (8)
C10—C15 1.406 (7) C12—H12 0.9300
C10—C11 1.402 (7) C9—H9 0.9300
C1—C6 1.410 (7) C9—C8 1.400 (9)
C1—C2 1.380 (7) C7—H7 0.9300
C15—C16 1.408 (7) C7—C8 1.354 (9)
C15—C14 1.405 (7) C3—H3 0.9300
C16—H16 0.9300 C3—C4 1.378 (10)
C16—C17 1.346 (7) C8—H8 0.9300
C18—H18 0.9300 C5—H5 0.9300
C18—C17 1.387 (7) C5—C4 1.338 (9)
C17—H17 0.9300 C4—H4 0.9300
Br2—Zn1—Br1 123.45 (4) C12—C11—H11 121.0
O1—Zn1—Br2 105.44 (12) C1—C6—C5 116.5 (6)
O1—Zn1—Br1 108.21 (11) C7—C6—C1 119.2 (6)
O1—Zn1—O2 103.10 (16) C7—C6—C5 124.2 (7)
O2—Zn1—Br2 109.17 (11) C1—C2—H2 120.4
O2—Zn1—Br1 105.72 (11) C3—C2—C1 119.3 (6)
N1—O1—Zn1 118.1 (3) C3—C2—H2 120.4
N2—O2—Zn1 116.6 (3) C15—C14—H14 119.6
O2—N2—C10 118.5 (4) C13—C14—C15 120.8 (6)
C18—N2—O2 120.1 (4) C13—C14—H14 119.6
C18—N2—C10 121.4 (5) C14—C13—H13 119.9
O1—N1—C1 117.1 (5) C14—C13—C12 120.2 (6)
C9—N1—O1 120.5 (5) C12—C13—H13 119.9
C9—N1—C1 122.4 (6) C11—C12—C13 121.8 (6)
N2—C10—C15 118.6 (5) C11—C12—H12 119.1
N2—C10—C11 120.1 (5) C13—C12—H12 119.1
C11—C10—C15 121.3 (5) N1—C9—H9 119.9
N1—C1—C6 118.0 (6) N1—C9—C8 120.2 (6)
C2—C1—N1 120.5 (5) C8—C9—H9 119.9
C2—C1—C6 121.5 (6) C6—C7—H7 120.0
C10—C15—C16 118.6 (5) C8—C7—C6 119.9 (7)
C14—C15—C10 117.9 (5) C8—C7—H7 120.0
C14—C15—C16 123.6 (5) C2—C3—H3 119.7
C15—C16—H16 119.8 C2—C3—C4 120.7 (7)
C17—C16—C15 120.3 (5) C4—C3—H3 119.7
C17—C16—H16 119.8 C9—C8—H8 119.9
N2—C18—H18 119.4 C7—C8—C9 120.2 (7)
N2—C18—C17 121.1 (5) C7—C8—H8 119.9
C17—C18—H18 119.4 C6—C5—H5 119.7
C16—C17—C18 120.0 (5) C4—C5—C6 120.5 (7)
C16—C17—H17 120.0 C4—C5—H5 119.7
C18—C17—H17 120.0 C3—C4—H4 119.3
C10—C11—H11 121.0 C5—C4—C3 121.5 (7)
C12—C11—C10 118.0 (6) C5—C4—H4 119.3
Zn1—O1—N1—C1 −122.3 (4) C1—C6—C7—C8 1.1 (9)
Zn1—O1—N1—C9 57.8 (6) C1—C6—C5—C4 0.7 (9)
Zn1—O2—N2—C10 −97.8 (4) C1—C2—C3—C4 0.2 (9)
Zn1—O2—N2—C18 83.4 (5) C15—C10—C11—C12 −2.0 (8)
O1—N1—C1—C6 −178.5 (4) C15—C16—C17—C18 0.9 (9)
O1—N1—C1—C2 0.7 (7) C15—C14—C13—C12 0.3 (10)
O1—N1—C9—C8 179.3 (5) C16—C15—C14—C13 178.8 (6)
O2—N2—C10—C15 −178.1 (4) C18—N2—C10—C15 0.6 (7)
O2—N2—C10—C11 −0.3 (7) C18—N2—C10—C11 178.4 (5)
O2—N2—C18—C17 178.4 (5) C11—C10—C15—C16 −177.9 (5)
N2—C10—C15—C16 −0.2 (7) C11—C10—C15—C14 2.6 (8)
N2—C10—C15—C14 −179.7 (5) C6—C1—C2—C3 1.1 (8)
N2—C10—C11—C12 −179.7 (5) C6—C7—C8—C9 −0.3 (10)
N2—C18—C17—C16 −0.5 (8) C6—C5—C4—C3 0.5 (11)
N1—C1—C6—C7 −1.6 (7) C2—C1—C6—C7 179.2 (5)
N1—C1—C6—C5 177.7 (5) C2—C1—C6—C5 −1.5 (8)
N1—C1—C2—C3 −178.1 (5) C2—C3—C4—C5 −1.0 (11)
N1—C9—C8—C7 0.1 (10) C14—C15—C16—C17 178.9 (6)
C10—N2—C18—C17 −0.3 (8) C14—C13—C12—C11 0.4 (10)
C10—C15—C16—C17 −0.6 (8) C9—N1—C1—C6 1.4 (7)
C10—C15—C14—C13 −1.7 (9) C9—N1—C1—C2 −179.4 (5)
C10—C11—C12—C13 0.5 (9) C7—C6—C5—C4 179.9 (6)
C1—N1—C9—C8 −0.6 (8) C5—C6—C7—C8 −178.1 (6)

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Crystal data

[ZnI2(C9H7NO)2] F(000) = 1152
Mr = 609.48 Dx = 2.019 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.7231 (7) Å Cell parameters from 3422 reflections
b = 7.6155 (4) Å θ = 2.6–24.1°
c = 15.8689 (7) Å µ = 4.32 mm1
β = 97.192 (4)° T = 297 K
V = 2005.08 (16) Å3 Block, clear colourless
Z = 4 0.3 × 0.3 × 0.3 mm

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Data collection

Rigaku XtaLAB mini diffractometer 2748 reflections with I > 2σ(I)
ω scans Rint = 0.032
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) θmax = 25.4°, θmin = 2.5°
Tmin = 0.896, Tmax = 1.000 h = −20→20
11510 measured reflections k = −8→9
3668 independent reflections l = −19→19

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0249P)2 + 3.8317P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.80 e Å3
3668 reflections Δρmin = −0.81 e Å3
227 parameters Extinction correction: SHELXL-2018/1 (Sheldrick 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00071 (11)

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.26214 (2) 0.37499 (6) 0.22453 (2) 0.07021 (17)
I2 0.22463 (3) −0.02923 (6) 0.41988 (3) 0.07442 (17)
Zn1 0.25578 (3) 0.28426 (10) 0.37845 (4) 0.0553 (2)
O1 0.3601 (2) 0.3426 (7) 0.4449 (3) 0.0780 (13)
O2 0.1777 (2) 0.4466 (5) 0.4234 (3) 0.0627 (10)
N1 0.4094 (3) 0.4544 (7) 0.4109 (3) 0.0592 (12)
N2 0.1160 (3) 0.3728 (6) 0.4566 (3) 0.0509 (11)
C1 0.4847 (3) 0.3925 (8) 0.3984 (3) 0.0545 (14)
C2 0.5069 (4) 0.2175 (9) 0.4180 (4) 0.0707 (17)
H2 0.470599 0.140389 0.438341 0.085*
C3 0.5817 (5) 0.1635 (11) 0.4068 (5) 0.095 (2)
H3 0.596812 0.048098 0.419687 0.114*
C4 0.6360 (5) 0.2760 (13) 0.3768 (6) 0.105 (3)
H4 0.687500 0.235837 0.370683 0.126*
C5 0.6159 (4) 0.4433 (12) 0.3560 (5) 0.088 (2)
H5 0.653406 0.516920 0.335438 0.106*
C6 0.5378 (4) 0.5077 (9) 0.3652 (4) 0.0641 (16)
C7 0.5127 (5) 0.6797 (10) 0.3444 (5) 0.082 (2)
H7 0.547198 0.757244 0.321637 0.099*
C8 0.4374 (5) 0.7327 (10) 0.3576 (5) 0.085 (2)
H8 0.419938 0.846144 0.343511 0.102*
C9 0.3871 (4) 0.6157 (10) 0.3923 (4) 0.0758 (19)
H9 0.336222 0.652818 0.402601 0.091*
C10 0.0431 (3) 0.3575 (7) 0.4054 (3) 0.0487 (12)
C11 0.0343 (4) 0.4227 (8) 0.3219 (4) 0.0638 (16)
H11 0.077050 0.475911 0.299604 0.077*
C12 −0.0388 (5) 0.4051 (10) 0.2751 (4) 0.081 (2)
H12 −0.046101 0.448351 0.219880 0.098*
C13 −0.1039 (4) 0.3237 (11) 0.3073 (5) 0.088 (2)
H13 −0.153042 0.311918 0.273148 0.106*
C14 −0.0955 (4) 0.2624 (9) 0.3879 (5) 0.0755 (19)
H14 −0.138783 0.208570 0.408920 0.091*
C15 −0.0218 (3) 0.2796 (7) 0.4398 (4) 0.0534 (13)
C16 −0.0094 (4) 0.2205 (8) 0.5249 (4) 0.0632 (16)
H16 −0.051513 0.168071 0.548760 0.076*
C17 0.0633 (4) 0.2398 (9) 0.5717 (4) 0.0666 (17)
H17 0.071247 0.201324 0.627730 0.080*
C18 0.1257 (4) 0.3171 (8) 0.5358 (4) 0.0589 (15)
H18 0.175593 0.330122 0.568251 0.071*

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0640 (3) 0.0961 (4) 0.0508 (2) −0.0078 (2) 0.00801 (19) −0.0018 (2)
I2 0.0652 (3) 0.0668 (3) 0.0928 (3) 0.0106 (2) 0.0157 (2) 0.0090 (2)
Zn1 0.0377 (3) 0.0742 (5) 0.0542 (4) −0.0006 (3) 0.0070 (3) −0.0005 (3)
O1 0.048 (2) 0.122 (4) 0.063 (3) −0.014 (2) 0.002 (2) 0.006 (3)
O2 0.055 (2) 0.059 (3) 0.078 (3) −0.0007 (19) 0.024 (2) 0.003 (2)
N1 0.043 (3) 0.079 (4) 0.052 (3) −0.001 (3) −0.003 (2) −0.012 (3)
N2 0.047 (2) 0.052 (3) 0.057 (3) 0.007 (2) 0.016 (2) −0.001 (2)
C1 0.042 (3) 0.075 (4) 0.044 (3) −0.001 (3) −0.005 (2) −0.014 (3)
C2 0.066 (4) 0.069 (5) 0.073 (4) −0.001 (3) −0.007 (3) −0.004 (3)
C3 0.073 (5) 0.086 (6) 0.120 (7) 0.013 (4) −0.009 (5) −0.026 (5)
C4 0.064 (5) 0.114 (7) 0.136 (8) 0.012 (5) 0.011 (5) −0.054 (6)
C5 0.061 (4) 0.110 (7) 0.097 (6) −0.016 (4) 0.021 (4) −0.026 (5)
C6 0.053 (3) 0.073 (5) 0.066 (4) −0.011 (3) 0.006 (3) −0.017 (3)
C7 0.083 (5) 0.076 (5) 0.086 (5) −0.022 (4) 0.001 (4) −0.008 (4)
C8 0.087 (5) 0.065 (5) 0.095 (5) 0.004 (4) −0.018 (4) −0.013 (4)
C9 0.063 (4) 0.084 (5) 0.076 (4) 0.008 (4) −0.011 (4) −0.024 (4)
C10 0.051 (3) 0.047 (3) 0.049 (3) 0.007 (2) 0.013 (3) 0.000 (2)
C11 0.070 (4) 0.071 (4) 0.051 (3) 0.005 (3) 0.012 (3) 0.003 (3)
C12 0.092 (5) 0.099 (6) 0.052 (4) 0.014 (4) 0.002 (4) −0.001 (4)
C13 0.065 (4) 0.110 (6) 0.085 (5) 0.005 (4) −0.015 (4) −0.006 (5)
C14 0.056 (4) 0.083 (5) 0.086 (5) −0.008 (3) 0.004 (4) −0.010 (4)
C15 0.050 (3) 0.053 (3) 0.058 (3) 0.004 (3) 0.011 (3) −0.003 (3)
C16 0.062 (4) 0.060 (4) 0.071 (4) 0.005 (3) 0.025 (3) 0.013 (3)
C17 0.067 (4) 0.080 (5) 0.056 (4) 0.014 (3) 0.016 (3) 0.011 (3)
C18 0.056 (3) 0.069 (4) 0.051 (3) 0.009 (3) 0.005 (3) 0.000 (3)

Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Geometric parameters (Å, º)

I1—Zn1 2.5534 (8) C7—H7 0.9300
I2—Zn1 2.5473 (9) C7—C8 1.363 (10)
Zn1—O1 1.973 (4) C8—H8 0.9300
Zn1—O2 1.994 (4) C8—C9 1.386 (10)
O1—N1 1.345 (6) C9—H9 0.9300
O2—N2 1.339 (5) C10—C11 1.405 (8)
N1—C1 1.381 (7) C10—C15 1.405 (7)
N1—C9 1.307 (8) C11—H11 0.9300
N2—C10 1.383 (7) C11—C12 1.356 (9)
N2—C18 1.317 (7) C12—H12 0.9300
C1—C2 1.408 (9) C12—C13 1.404 (10)
C1—C6 1.397 (8) C13—H13 0.9300
C2—H2 0.9300 C13—C14 1.352 (10)
C2—C3 1.350 (9) C14—H14 0.9300
C3—H3 0.9300 C14—C15 1.400 (8)
C3—C4 1.377 (12) C15—C16 1.414 (8)
C4—H4 0.9300 C16—H16 0.9300
C4—C5 1.348 (12) C16—C17 1.350 (8)
C5—H5 0.9300 C17—H17 0.9300
C5—C6 1.420 (9) C17—C18 1.382 (8)
C6—C7 1.402 (10) C18—H18 0.9300
I2—Zn1—I1 122.33 (3) C8—C7—H7 120.2
O1—Zn1—I1 108.10 (13) C7—C8—H8 120.4
O1—Zn1—I2 105.60 (15) C7—C8—C9 119.3 (7)
O1—Zn1—O2 104.13 (19) C9—C8—H8 120.4
O2—Zn1—I1 106.36 (12) N1—C9—C8 121.6 (7)
O2—Zn1—I2 108.93 (12) N1—C9—H9 119.2
N1—O1—Zn1 118.3 (3) C8—C9—H9 119.2
N2—O2—Zn1 116.9 (3) N2—C10—C11 120.3 (5)
O1—N1—C1 117.2 (5) N2—C10—C15 118.3 (5)
C9—N1—O1 120.9 (5) C15—C10—C11 121.4 (5)
C9—N1—C1 121.9 (6) C10—C11—H11 121.2
O2—N2—C10 118.0 (4) C12—C11—C10 117.6 (6)
C18—N2—O2 120.2 (5) C12—C11—H11 121.2
C18—N2—C10 121.8 (5) C11—C12—H12 118.9
N1—C1—C2 120.7 (6) C11—C12—C13 122.1 (6)
N1—C1—C6 118.3 (6) C13—C12—H12 118.9
C6—C1—C2 121.0 (6) C12—C13—H13 119.9
C1—C2—H2 120.6 C14—C13—C12 120.2 (7)
C3—C2—C1 118.8 (7) C14—C13—H13 119.9
C3—C2—H2 120.6 C13—C14—H14 119.8
C2—C3—H3 119.4 C13—C14—C15 120.3 (7)
C2—C3—C4 121.3 (8) C15—C14—H14 119.8
C4—C3—H3 119.4 C10—C15—C16 118.5 (5)
C3—C4—H4 119.4 C14—C15—C10 118.4 (5)
C5—C4—C3 121.2 (8) C14—C15—C16 123.0 (6)
C5—C4—H4 119.4 C15—C16—H16 119.9
C4—C5—H5 119.8 C17—C16—C15 120.3 (6)
C4—C5—C6 120.4 (8) C17—C16—H16 119.9
C6—C5—H5 119.8 C16—C17—H17 120.2
C1—C6—C5 117.3 (7) C16—C17—C18 119.6 (6)
C1—C6—C7 119.3 (6) C18—C17—H17 120.2
C7—C6—C5 123.4 (7) N2—C18—C17 121.5 (6)
C6—C7—H7 120.2 N2—C18—H18 119.3
C8—C7—C6 119.7 (7) C17—C18—H18 119.3
Zn1—O1—N1—C1 −119.9 (4) C4—C5—C6—C1 1.6 (10)
Zn1—O1—N1—C9 61.5 (6) C4—C5—C6—C7 −179.6 (7)
Zn1—O2—N2—C10 −96.9 (5) C5—C6—C7—C8 −178.0 (7)
Zn1—O2—N2—C18 83.1 (5) C6—C1—C2—C3 2.1 (9)
O1—N1—C1—C2 2.2 (7) C6—C7—C8—C9 0.6 (11)
O1—N1—C1—C6 −178.3 (5) C7—C8—C9—N1 −1.6 (11)
O1—N1—C9—C8 179.7 (5) C9—N1—C1—C2 −179.2 (6)
O2—N2—C10—C11 −1.7 (7) C9—N1—C1—C6 0.3 (8)
O2—N2—C10—C15 179.7 (5) C10—N2—C18—C17 0.3 (9)
O2—N2—C18—C17 −179.7 (5) C10—C11—C12—C13 −0.6 (11)
N1—C1—C2—C3 −178.4 (6) C10—C15—C16—C17 0.3 (9)
N1—C1—C6—C5 177.6 (5) C11—C10—C15—C14 2.1 (9)
N1—C1—C6—C7 −1.2 (8) C11—C10—C15—C16 −178.5 (5)
N2—C10—C11—C12 −179.5 (6) C11—C12—C13—C14 1.2 (12)
N2—C10—C15—C14 −179.4 (5) C12—C13—C14—C15 0.0 (12)
N2—C10—C15—C16 0.0 (8) C13—C14—C15—C10 −1.6 (10)
C1—N1—C9—C8 1.1 (9) C13—C14—C15—C16 179.1 (7)
C1—C2—C3—C4 −0.1 (11) C14—C15—C16—C17 179.6 (6)
C1—C6—C7—C8 0.7 (10) C15—C10—C11—C12 −1.0 (9)
C2—C1—C6—C5 −2.9 (9) C15—C16—C17—C18 −0.3 (10)
C2—C1—C6—C7 178.3 (6) C16—C17—C18—N2 0.0 (10)
C2—C3—C4—C5 −1.2 (13) C18—N2—C10—C11 178.3 (5)
C3—C4—C5—C6 0.4 (13) C18—N2—C10—C15 −0.2 (8)

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.
  3. Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694.
  6. Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P., Chernyshev, V. V. & Schenk, H. (2002). Acta Cryst. C58, m300–m301. [DOI] [PubMed]
  7. Kidd, M. R., Sager, R. S. & Watson, W. H. (1967). Inorg. Chem. 6, 946–951.
  8. Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131. [DOI] [PMC free article] [PubMed]
  9. Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 1, 69–76.
  10. McConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094–1095.
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918–14930. [DOI] [PubMed]
  15. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  17. Sager, R. S. & Watson, H. W. (1968). Inorg. Chem. 7, 1358–1362.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Shi, J.-M., Liu, Z., Lu, J.-J. & Liu, L.-D. (2005b). Acta Cryst. E61, m856–m857.
  21. Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005a). Acta Cryst. E61, m2262–m2263.
  22. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  23. Steiner, T. (1998). Acta Cryst. B54, 456–463.
  24. Watson, W. H. & Johnson, D. R. (1971). Inorg. Chem. 10, 1281–1288.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989022005953/zv2014sup1.cif

e-78-00716-sup1.cif (775.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005953/zv2014Isup2.hkl

e-78-00716-Isup2.hkl (253KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022005953/zv2014IIsup3.hkl

e-78-00716-IIsup3.hkl (272.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022005953/zv2014IIIsup4.hkl

e-78-00716-IIIsup4.hkl (292.7KB, hkl)

CCDC references: 2176715, 2176714, 2176713

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES