The structures of the three related compounds dichloridobis(quinoline N-oxide-κO)zinc(II); dibromidobis(quinoline N-oxide-κO)zinc(II) and diiodidobis(quinoline N-oxide-κO)zinc(II) are presented.
Keywords: crystal structure, zinc(II) coordination complex, quinoline N-oxide, Hirshfeld surface analysis
Abstract
The reaction of one equivalent of zinc(II) halide with two equivalents of quinoline N-oxide (QNO) in methanol yields compounds as ZnX 2(QNO)2, where X = Cl (I), Br (II) and I (III), namely, dichloridobis(quinoline N-oxide-κO)zinc(II), [ZnCl2(C9H7NO)2], dibromidobis(quinoline N-oxide-κO)zinc(II), [ZnBr2(C9H7NO)2], and diiodidobis(quinoline N-oxide-κO)zinc(II) [ZnI2(C9H7NO)2]. In all three complexes, Zn cations are coordinated by two QNO ligands bound through the oxygen atoms and two halide atoms, with X—Zn—X bond angles ca 20° wider than the O—Zn—O, giving rise to a distorted tetrahedral geometry. Crystals of (II) and (III) are isostructural and both show pairwise π-stacking of QNO ligands and weak C—H⋯X hydrogen bonds, while (I) packs differently, with a shorter C—H⋯Cl bond and without π-stacking.
1. Chemical context
N-oxide complexes have a rich history in organic transformations, including utility with transition metals in oxotransformations [see, for example, Eppenson (2003 ▸) and Moustafa et al. (2014 ▸)]. These transition-metal N-oxide complexes highlight the strong Lewis acid/Lewis base properties of the zinc(II) ion and N-oxides, respectively. Aromatic N-oxides are strong Lewis base ligands and form transition-metal complexes that are prevalent in the literature and highlight the strong transition metal interactions with the lone pair on the N-oxide oxygen atom. Examples of such complexes include a 4-methylpyridine N-oxide (MePyNO) derivative CuCl2·2MePyNO (CMPYUC; Watson & Johnson, 1971 ▸) and pyridine N-oxide (6PyNO) derivatives Ni(BF4)2·6PyNO (PYNONI; van Ingen Schenau et al., 1974 ▸) or Au(CF3)3·PyNO (NEPVOW; Pérez-Bitrián et al., 2017 ▸). Previous reports of zinc(II) complexes with aromatic N-oxides include dibromobis(4-methoxypyridine N-oxide-κO)zinc(II) (GAWHIW; Shi et al. 2005a ▸), diaquabis(picolinato N-oxide-κ2 O,O′)zinc(II) (XISBOR; Li et al., 2008 ▸) and dichlorobis(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986 ▸), all of which are mononuclear complexes.
Herein we report the crystal structures of three complexes of quinoline N-oxide (QNO) with zinc(II) chloride, bromide and iodide. All three were obtained by 1:2 stoichiometric reaction of the zinc(II) halide with QNO in methanol and found to be mononuclear ZnX
2(QNO)2 complexes with a distorted tetrahedral environment around the zinc ion.
2. Structural commentary
Compound (I) crystallizes in the monoclinic space group P21 (Fig. 1 ▸), whereas compounds (II) (Fig. 2 ▸) and (III) (Fig. 3 ▸) both crystallize in the monoclinic space group P21/c. Each structure contains one symmetrically independent molecule, the coordination sphere around each Zn atom being a distorted tetrahedron. Selected bond lengths and angles in these complexes are shown in Table 1 ▸. Compounds (II) and (III) are isostructural in both the molecular conformation and crystal packing, while (I) differs in both aspects, as illustrated by an overlay of molecules (I) and (II) (Fig. 4 ▸ a) on one hand, and molecules (II) and (III) on the other (Fig. 4 ▸ b). Most notably, (I) differs in the orientation of the QNO rings relative to each other, the C2—N1—N2—C11 torsion angles being −16.9 (5)° in (I) versus −113.9 (3)° in (II) and −111.6 (3)° in (III).
Figure 1.
A view of compound (I), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Figure 2.
A view of compound (II), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Figure 3.
A view of compound (III), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Table 1. Selected bond lengths and angles (Å, °).
Compound (I) | Compound (II) | Compound (III) | |||
---|---|---|---|---|---|
Zn1—Cl1 | 2.215 (2) | Zn1—Br1 | 2.3575 (9) | Zn1—I1 | 2.5534 (8) |
Zn1—Cl2 | 2.211 (2) | Zn1—Br2 | 2.3472 (10) | Zn1—I2 | 2.5475 (9) |
Zn1—O1 | 1.991 (5) | Zn1—O1 | 1.975 (4) | Zn1—O1 | 1.974 (4) |
Zn1—O2 | 1.959 (5) | Zn1—O2 | 1.989 (4) | Zn1—O2 | 1.995 (4) |
Cl1—Zn1—Cl2 | 117.80 (9) | Br1—Zn1—Br2 | 123.45 (4) | I1—Zn1—I2 | 122.34 (3) |
O1—Zn1—O2 | 99.4 (2) | O1—Zn1—O2 | 103.10 (16) | O1—Zn1—O2 | 104.12 (19) |
Figure 4.
(a) Molecular overlay of compound (I) (green) and compound (II) (brown). (b) Molecular overlay of compound (II) (brown) and compound (III) (purple).
3. Supramolecular features
Figs. 5 ▸, 6 ▸ and 7 ▸ show the packing of compounds (I), (II) and (III), respectively. In the crystal structures, the packing is stabilized by van der Waals interactions and, in (II) and (III), by similar systems of pairwise π–π stacking interactions. Quinoline moieties Cg1–Cg3 and Cg2–Cg4 (see Figs. 6 ▸ and 7 ▸) are stacked each against its own inversion-related equivalent, with the separations between their (parallel) mean planes equaling 3.483 (5) and 3.402 (5) Å, respectively, for (II), 3.466 (5) and 3.436 (5) Å for (III). The structure of (I) has no π-stacking. Besides, all three structures are characterized by C—H⋯X hydrogen bonds (X = halogen), see below.
Figure 5.
Crystal packing diagram of compound (I), viewed down the [101] direction.
Figure 6.
Crystal packing diagram of compound (II), viewed down the b axis.
Figure 7.
Crystal packing diagram of compound (III), viewed down the b axis.
4. Hirshfeld surface analysis
The intermolecular interactions were further investigated by quantitative analysis of the Hirshfeld surface, and visualized with Crystal Explorer 21 (Spackman et al., 2021 ▸) and the two-dimensional fingerprint plots (McKinnon et al., 2007 ▸). Figs. 8 ▸, 9 ▸ and 10 ▸ show Hirshfeld surfaces of molecules (I) to (III) mapped with the function d norm, the sum of the distances from a surface point to the nearest interior (d i) and exterior (d e) atoms, normalized by the van der Waals (vdW) radii of the corresponding atoms (rvdW). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW as white spots.
Figure 8.
Hirshfeld surface for (I) mapped over d norm.
Figure 9.
Hirshfeld surface for (II) mapped over d norm.
Figure 10.
Hirshfeld surface for (III) mapped over d norm.
For (I), the most intense red spots correspond to the intermolecular contacts O1⋯C9(1 − x, y −
, 1 − z) [3.048 (9) Å] and the hydrogen bond C18—H18⋯Cl2(x, y + 1, z). The latter has the distances H⋯Cl = 2.53 Å (for the C—H distance normalized to 1.083 Å) and C⋯Cl = 3.416 (9) Å within the previously observed range but shorter than the average values of 2.64 and 3.66 Å, respectively (Steiner, 1998 ▸). The other chloride ligand, Cl2, forms four H⋯Cl contacts of 2.83–2.98 Å, more typical for van der Waals interactions (Rowland & Taylor, 1996 ▸). For (II) and (III), the red spots correspond to C—H⋯X interactions, viz. C18—H18⋯X1, C5—H5⋯X1, C16—H16⋯X2, and C9—H9⋯X2, which can be also regarded as weak hydrogen bonds (Steiner, 1998 ▸). The H⋯X distances in (II) (X = Br) are 2.85, 2.88, 2.88 and 2.89 Å, respectively, while in (III) (X = I) they are 3.03, 3.12, 3.03 and 2.96 Å, respectively.
Analysis of the two-dimensional fingerprint plots (Table 2 ▸) indicates that H⋯H contacts are the most common in all three structures. X⋯H contacts make the second highest contribution, which increases in the succession (I) < (II) < (III), together with the size of the halogen atoms and hence their share of the molecular surface (16.9, 18.5 and 20.6%, respectively). Interestingly, π-stacking in the structures of (II) and (III) gives only a modest increase of C⋯C contacts compared to (I), probably because it is counterbalanced by an overall decrease of carbon atoms’ share of the surface (21.4 > 19.5 > 18.3%). No halogen⋯halogen contacts are observed in any of the three structures.
Table 2. Contributions of selected intermolecular contacts (%).
Compound | (I) | (II) | (III) |
---|---|---|---|
H⋯H | 32.0 | 36.7 | 36.5 |
H⋯X/X⋯H | 24.4 | 28.4 | 30.0 |
C⋯H/H⋯C | 22.7 | 18.5 | 18.0 |
C⋯C | 5.4 | 7.1 | 6.4 |
O⋯H/H⋯O | 6.0 | 4.0 | 3.7 |
5. Database survey
A search in the Cambridge Structural Database (CSD, version 5.42, update of February 2021; Groom et al., 2016 ▸) for aromatic N-oxides and halogen ligands bound to zinc returned 21 unique entries, the majority (15) of which contain pyridine N-oxide and its derivatives. Of these, the most closely related are pyridine N-oxide complexes, dichlorobis(pyridine N-oxide)zinc(II) (QQQBXP01; McConnell et al., 1986 ▸), dibromorobis(pyridine N-oxide)zinc(II) (FIPVUV; Edwards et al., 1999 ▸) and diiodorobis(pyridine N-oxide)zinc(II) (IPNOZN01; Edwards et al., 1999 ▸). Related to these are methyl derivatives of pyridine N-oxide complexes with ZnCl2, viz. dichlorobis(2,6-dimethylpyridine N-oxide)zinc(II) (LUTOZN; Sager & Watson, 1968 ▸), three isomers of dichlorobis(methylpyridine N-oxide)zinc(II) (QQQBXG, QQQBXJ, QQQBXM), for which only unit-cell parameters were determined (Kidd et al., 1967 ▸), and finally, diiodobis(4-methylpyridine N-oxide)zinc(II) (SANRUV; Shi et al., 2005b ▸). There is one known structure of a quinoline N-oxide derivative, dichlorobis(2-methylquinoline N-oxide)zinc(II) (AFUSEZ; Ivashevskaja et al., 2002 ▸).
6. Synthesis and crystallization
The water content of QNO and ZnBr2 have been determined by Thermal Gravimetric Analysis. The formulation for each was found to be QNO·0.28H2O (M W = 150.21 g mol−1) and ZnBr2·0.86H2O (F W = 240.69 g mol−1).
The title compounds were all synthesized in a similar manner. Compound (I) was synthesized by dissolving 0.0986 g of QNO·0.28H2O (0.656 mmol, purchased from Aldrich) in 33 mL of methanol to which 0.0440 g of ZnCl2 (0.176 mmol, purchased from Strem Chemicals) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0822 g (60.2%). Selected IR bands (ATR–IR, cm−1): 3107 (w), 3083 (w), 3057 (w), 1579 (m), 1513 (m), 1447 (m), 1402 (s), 1269 (s), 1227 (m), 1203 (s), 1179 (m), 1144 (m), 1089 (s), 1050 (m), 883 (s), 800 (s), 768 (s), 723 (m), 584 (m), 559 (m), 542 (m).
Compound (II) was synthesized by dissolving 0.0983 g of QNO·0.28H2O (0.654 mmol), in 40 mL of methanol to which 0.0778 g of ZnBr2·0.86H2O (0.323 mmol, purchased from Alfa Aesar) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0866 g (46.7%). Selected IR bands (ATR–IR, cm−1): 3106 (w), 3075 (w), 3061 (w), 3016 (w), 1580 (m), 1510 (s), 1455 (m), 1270 (s), 1227 (m), 1214 (s), 1204 (s), 1173 (m), 1138 (m), 1086 (s), 1048 (m), 877 (m), 800 (s), 767 (s), 720 (s), 581 (m), 563 (m), 500 (m).
Compound (III) was synthesized by dissolving 0.0517 g of QNO·0.28H2O (0.352 mmol) in approximately 36 mL of methanol to which 0.0524 g of ZnI2 (0.164 mmol, purchased from Aldrich) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0910 g (52.3%). Selected IR Bands (ATR–IR, cm−1): 3100 (w), 3090 (w), 2076 (w), 3059 (w), 3027 (w),1580 (s), 1507 (s), 1382 (s), 1267 (m), 1225 (m), 1207 (s), 1169 (m), 1141 (m), 1044 (m), 880 (s), 807 (s), 769 (s), 720 (m), 580 (m), 562 (m), 499 (m).
Infrared spectroscopy confirms the presence of the QNO ligand in all three complexes. Characteristic IR bands include weak νC—H aromatic stretches observed from 3020–3107 cm−1 and νN—O stretches of the bound N-oxide in the range 1350–1150 cm−1; notably, a medium band observed in the ligand at 1311 cm−1, appears at between 1225–1227 cm−1 in the three metal complexes. Finally, a broad absorbance in the free ligand from 3100–3500 cm−1 (assigned to the water νO—H stretch) is absent in all of the metal complexes (Mautner et al., 2016 ▸).
7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with U iso(H) = 1.2U eq(C).
Table 3. Experimental details.
(I) | (II) | (III) | |
---|---|---|---|
Crystal data | |||
Chemical formula | [ZnCl2(C9H7NO)2] | [ZnBr2(C9H7NO)2] | [ZnI2(C9H7NO)2] |
M r | 426.58 | 515.50 | 609.48 |
Crystal system, space group | Monoclinic, P21 | Monoclinic, P21/c | Monoclinic, P21/c |
Temperature (K) | 298 | 298 | 297 |
a, b, c (Å) | 8.5167 (4), 7.8697 (4), 13.1617 (7) | 16.3922 (11), 7.3527 (6), 15.5809 (10) | 16.7231 (7), 7.6155 (4), 15.8689 (7) |
β (°) | 94.890 (5) | 97.113 (6) | 97.192 (4) |
V (Å3) | 878.94 (8) | 1863.5 (2) | 2005.08 (16) |
Z | 2 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
μ (mm−1) | 1.72 | 5.62 | 4.32 |
Crystal size (mm) | 0.1 × 0.1 × 0.03 | 0.15 × 0.08 × 0.03 | 0.3 × 0.3 × 0.3 |
Data collection | |||
Diffractometer | Rigaku XtaLAB mini | XtaLAB Mini (ROW) | Rigaku XtaLAB mini |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2019 ▸) | Multi-scan (CrysAlis PRO; Rigaku OD, 2019 ▸) | Multi-scan (CrysAlis PRO; Rigaku OD, 2019 ▸) |
T min, T max | 0.968, 1.000 | 0.833, 1.000 | 0.896, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5308, 3169, 2456 | 7207, 3415, 2095 | 11510, 3668, 2748 |
R int | 0.036 | 0.043 | 0.032 |
(sin θ/λ)max (Å−1) | 0.602 | 0.602 | 0.602 |
Refinement | |||
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.044, 0.077, 1.03 | 0.042, 0.090, 1.02 | 0.035, 0.085, 1.07 |
No. of reflections | 3169 | 3415 | 3668 |
No. of parameters | 226 | 226 | 227 |
No. of restraints | 1 | 0 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.35 | 0.55, −0.35 | 0.80, −0.81 |
Absolute structure | Flack x determined using 810 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸). | – | – |
Absolute structure parameter | −0.006 (15) | – | – |
Supplementary Material
Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989022005953/zv2014sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005953/zv2014Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022005953/zv2014IIsup3.hkl
Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022005953/zv2014IIIsup4.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.
supplementary crystallographic information
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Crystal data
[ZnCl2(C9H7NO)2] | F(000) = 432 |
Mr = 426.58 | Dx = 1.612 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5167 (4) Å | Cell parameters from 1644 reflections |
b = 7.8697 (4) Å | θ = 2.4–22.4° |
c = 13.1617 (7) Å | µ = 1.72 mm−1 |
β = 94.890 (5)° | T = 298 K |
V = 878.94 (8) Å3 | Cube, clear colourless |
Z = 2 | 0.1 × 0.1 × 0.03 mm |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Data collection
Rigaku XtaLAB mini diffractometer | 3169 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 2456 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 25.4°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −10→10 |
Tmin = 0.968, Tmax = 1.000 | k = −9→9 |
5308 measured reflections | l = −15→14 |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0183P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.42 e Å−3 |
3169 reflections | Δρmin = −0.35 e Å−3 |
226 parameters | Absolute structure: Flack x determined using 810 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
1 restraint | Absolute structure parameter: −0.006 (15) |
Primary atom site location: dual |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.60832 (9) | 0.40878 (9) | 0.69325 (6) | 0.0481 (2) | |
Cl1 | 0.8131 (2) | 0.5260 (3) | 0.78185 (18) | 0.0717 (6) | |
Cl2 | 0.5724 (2) | 0.1322 (2) | 0.71012 (17) | 0.0668 (6) | |
O1 | 0.6087 (5) | 0.4435 (7) | 0.5459 (4) | 0.0660 (17) | |
O2 | 0.4152 (6) | 0.5393 (6) | 0.7184 (4) | 0.0543 (13) | |
N1 | 0.6919 (7) | 0.5702 (8) | 0.5068 (4) | 0.0472 (15) | |
N2 | 0.3927 (6) | 0.6163 (7) | 0.8067 (4) | 0.0461 (14) | |
C1 | 0.7938 (8) | 0.5254 (9) | 0.4342 (5) | 0.0418 (17) | |
C2 | 0.8061 (9) | 0.3562 (9) | 0.4045 (6) | 0.052 (2) | |
H2 | 0.745778 | 0.272501 | 0.432433 | 0.063* | |
C3 | 0.9086 (10) | 0.3150 (11) | 0.3332 (6) | 0.065 (2) | |
H3 | 0.916168 | 0.203042 | 0.311636 | 0.077* | |
C4 | 1.0011 (10) | 0.4398 (14) | 0.2932 (6) | 0.071 (3) | |
H4 | 1.072298 | 0.409606 | 0.246598 | 0.085* | |
C5 | 0.9891 (9) | 0.6041 (11) | 0.3210 (6) | 0.061 (2) | |
H5 | 1.051065 | 0.685676 | 0.292553 | 0.074* | |
C6 | 0.8835 (8) | 0.6538 (9) | 0.3931 (5) | 0.0469 (18) | |
C7 | 0.8623 (9) | 0.8234 (8) | 0.4243 (6) | 0.056 (2) | |
H7 | 0.920737 | 0.910057 | 0.397750 | 0.067* | |
C8 | 0.7577 (10) | 0.8601 (9) | 0.4927 (6) | 0.063 (2) | |
H8 | 0.742052 | 0.972081 | 0.511924 | 0.075* | |
C9 | 0.6733 (9) | 0.7293 (10) | 0.5342 (6) | 0.056 (2) | |
H9 | 0.602718 | 0.754824 | 0.582143 | 0.068* | |
C10 | 0.3113 (8) | 0.5307 (9) | 0.8777 (6) | 0.0441 (18) | |
C11 | 0.2654 (9) | 0.3621 (9) | 0.8595 (6) | 0.059 (2) | |
H11 | 0.289239 | 0.306487 | 0.800371 | 0.071* | |
C12 | 0.1846 (10) | 0.2810 (12) | 0.9306 (7) | 0.073 (2) | |
H12 | 0.154890 | 0.168062 | 0.920740 | 0.087* | |
C13 | 0.1458 (11) | 0.3686 (13) | 1.0195 (7) | 0.081 (3) | |
H13 | 0.089040 | 0.312853 | 1.066778 | 0.097* | |
C14 | 0.1899 (10) | 0.5309 (12) | 1.0360 (7) | 0.069 (3) | |
H14 | 0.163818 | 0.585631 | 1.094912 | 0.082* | |
C15 | 0.2745 (8) | 0.6187 (10) | 0.9661 (5) | 0.0508 (19) | |
C16 | 0.3245 (9) | 0.7899 (11) | 0.9803 (6) | 0.065 (2) | |
H16 | 0.300458 | 0.850485 | 1.037580 | 0.078* | |
C17 | 0.4081 (9) | 0.8637 (10) | 0.9084 (6) | 0.067 (2) | |
H17 | 0.443132 | 0.975085 | 0.917171 | 0.081* | |
C18 | 0.4411 (9) | 0.7745 (11) | 0.8231 (6) | 0.061 (2) | |
H18 | 0.499384 | 0.826957 | 0.775384 | 0.073* |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0494 (4) | 0.0451 (5) | 0.0519 (5) | −0.0013 (5) | 0.0168 (4) | 0.0023 (5) |
Cl1 | 0.0656 (13) | 0.0678 (14) | 0.0812 (16) | −0.0173 (11) | 0.0034 (12) | −0.0053 (12) |
Cl2 | 0.0710 (14) | 0.0421 (11) | 0.0875 (16) | −0.0034 (10) | 0.0087 (12) | 0.0054 (10) |
O1 | 0.066 (3) | 0.083 (5) | 0.052 (3) | −0.033 (3) | 0.025 (3) | 0.006 (3) |
O2 | 0.059 (3) | 0.063 (3) | 0.043 (3) | 0.011 (3) | 0.017 (3) | −0.010 (3) |
N1 | 0.045 (3) | 0.057 (4) | 0.040 (4) | −0.004 (3) | 0.006 (3) | 0.002 (3) |
N2 | 0.042 (3) | 0.050 (4) | 0.046 (4) | 0.007 (3) | 0.004 (3) | −0.003 (3) |
C1 | 0.041 (4) | 0.047 (4) | 0.037 (4) | −0.003 (4) | 0.000 (3) | 0.010 (4) |
C2 | 0.052 (5) | 0.056 (5) | 0.048 (5) | −0.008 (4) | 0.005 (4) | 0.003 (3) |
C3 | 0.071 (6) | 0.064 (6) | 0.060 (5) | 0.005 (5) | 0.012 (5) | −0.003 (4) |
C4 | 0.065 (5) | 0.097 (8) | 0.053 (5) | 0.012 (6) | 0.016 (4) | 0.008 (6) |
C5 | 0.047 (5) | 0.078 (6) | 0.061 (6) | −0.006 (5) | 0.018 (4) | 0.027 (5) |
C6 | 0.044 (4) | 0.052 (5) | 0.045 (4) | −0.008 (4) | 0.004 (4) | 0.010 (4) |
C7 | 0.058 (5) | 0.043 (5) | 0.062 (5) | −0.012 (4) | −0.013 (4) | 0.019 (4) |
C8 | 0.076 (6) | 0.042 (5) | 0.068 (5) | 0.006 (4) | −0.009 (5) | 0.001 (4) |
C9 | 0.059 (5) | 0.065 (6) | 0.046 (4) | 0.013 (4) | 0.010 (4) | −0.004 (4) |
C10 | 0.039 (4) | 0.043 (4) | 0.050 (5) | 0.009 (4) | 0.004 (4) | 0.008 (4) |
C11 | 0.055 (5) | 0.061 (6) | 0.062 (5) | −0.003 (4) | 0.011 (4) | −0.004 (4) |
C12 | 0.076 (6) | 0.056 (5) | 0.086 (7) | −0.007 (5) | 0.015 (6) | 0.002 (5) |
C13 | 0.073 (6) | 0.097 (10) | 0.075 (6) | −0.004 (6) | 0.021 (5) | 0.022 (6) |
C14 | 0.062 (6) | 0.085 (7) | 0.060 (6) | 0.004 (5) | 0.012 (5) | 0.001 (5) |
C15 | 0.047 (4) | 0.059 (5) | 0.046 (5) | 0.008 (4) | 0.004 (4) | 0.002 (4) |
C16 | 0.066 (6) | 0.065 (6) | 0.063 (5) | 0.010 (5) | 0.001 (5) | −0.021 (5) |
C17 | 0.070 (6) | 0.053 (6) | 0.078 (6) | −0.004 (4) | 0.001 (5) | −0.011 (4) |
C18 | 0.072 (6) | 0.039 (4) | 0.073 (6) | −0.005 (4) | 0.012 (5) | −0.004 (5) |
Dichloridobis(quinoline N-oxide-κO)zinc(II) (I) . Geometric parameters (Å, º)
Zn1—Cl1 | 2.215 (2) | C7—H7 | 0.9300 |
Zn1—Cl2 | 2.211 (2) | C7—C8 | 1.350 (11) |
Zn1—O1 | 1.959 (5) | C8—H8 | 0.9300 |
Zn1—O2 | 1.991 (4) | C8—C9 | 1.393 (10) |
O1—N1 | 1.351 (7) | C9—H9 | 0.9300 |
O2—N2 | 1.339 (6) | C10—C11 | 1.398 (10) |
N1—C1 | 1.389 (8) | C10—C15 | 1.412 (10) |
N1—C9 | 1.316 (9) | C11—H11 | 0.9300 |
N2—C10 | 1.385 (8) | C11—C12 | 1.366 (10) |
N2—C18 | 1.324 (9) | C12—H12 | 0.9300 |
C1—C2 | 1.395 (9) | C12—C13 | 1.421 (12) |
C1—C6 | 1.403 (9) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C13—C14 | 1.344 (12) |
C2—C3 | 1.373 (10) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.399 (10) |
C3—C4 | 1.390 (11) | C15—C16 | 1.420 (11) |
C4—H4 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.350 (12) | C16—C17 | 1.362 (11) |
C5—H5 | 0.9300 | C17—H17 | 0.9300 |
C5—C6 | 1.417 (10) | C17—C18 | 1.373 (10) |
C6—C7 | 1.412 (10) | C18—H18 | 0.9300 |
Cl2—Zn1—Cl1 | 117.80 (9) | C8—C7—H7 | 119.9 |
O1—Zn1—Cl1 | 113.30 (15) | C7—C8—H8 | 120.2 |
O1—Zn1—Cl2 | 104.40 (18) | C7—C8—C9 | 119.7 (7) |
O1—Zn1—O2 | 99.4 (2) | C9—C8—H8 | 120.2 |
O2—Zn1—Cl1 | 108.81 (16) | N1—C9—C8 | 121.1 (7) |
O2—Zn1—Cl2 | 111.57 (16) | N1—C9—H9 | 119.4 |
N1—O1—Zn1 | 121.7 (4) | C8—C9—H9 | 119.4 |
N2—O2—Zn1 | 124.0 (4) | N2—C10—C11 | 119.6 (7) |
O1—N1—C1 | 117.0 (6) | N2—C10—C15 | 118.5 (7) |
C9—N1—O1 | 121.2 (6) | C11—C10—C15 | 121.9 (7) |
C9—N1—C1 | 121.8 (6) | C10—C11—H11 | 120.8 |
O2—N2—C10 | 118.8 (6) | C12—C11—C10 | 118.4 (8) |
C18—N2—O2 | 120.2 (6) | C12—C11—H11 | 120.8 |
C18—N2—C10 | 120.9 (6) | C11—C12—H12 | 119.9 |
N1—C1—C2 | 120.1 (7) | C11—C12—C13 | 120.2 (9) |
N1—C1—C6 | 118.3 (7) | C13—C12—H12 | 119.9 |
C2—C1—C6 | 121.6 (7) | C12—C13—H13 | 119.6 |
C1—C2—H2 | 120.5 | C14—C13—C12 | 120.9 (9) |
C3—C2—C1 | 118.9 (7) | C14—C13—H13 | 119.6 |
C3—C2—H2 | 120.5 | C13—C14—H14 | 119.5 |
C2—C3—H3 | 119.8 | C13—C14—C15 | 121.0 (9) |
C2—C3—C4 | 120.4 (8) | C15—C14—H14 | 119.5 |
C4—C3—H3 | 119.8 | C10—C15—C16 | 119.2 (7) |
C3—C4—H4 | 119.5 | C14—C15—C10 | 117.6 (8) |
C5—C4—C3 | 121.0 (8) | C14—C15—C16 | 123.2 (8) |
C5—C4—H4 | 119.5 | C15—C16—H16 | 120.6 |
C4—C5—H5 | 119.6 | C17—C16—C15 | 118.8 (7) |
C4—C5—C6 | 120.9 (8) | C17—C16—H16 | 120.6 |
C6—C5—H5 | 119.6 | C16—C17—H17 | 119.8 |
C1—C6—C5 | 117.2 (7) | C16—C17—C18 | 120.3 (8) |
C1—C6—C7 | 118.8 (7) | C18—C17—H17 | 119.8 |
C7—C6—C5 | 124.0 (7) | N2—C18—C17 | 122.1 (8) |
C6—C7—H7 | 119.9 | N2—C18—H18 | 118.9 |
C8—C7—C6 | 120.3 (7) | C17—C18—H18 | 118.9 |
Zn1—O1—N1—C1 | 127.4 (5) | C4—C5—C6—C1 | 0.5 (11) |
Zn1—O1—N1—C9 | −54.6 (8) | C4—C5—C6—C7 | −178.7 (8) |
Zn1—O2—N2—C10 | −94.8 (6) | C5—C6—C7—C8 | 179.3 (7) |
Zn1—O2—N2—C18 | 88.5 (7) | C6—C1—C2—C3 | 0.0 (12) |
O1—N1—C1—C2 | 0.3 (10) | C6—C7—C8—C9 | 1.6 (12) |
O1—N1—C1—C6 | −179.2 (6) | C7—C8—C9—N1 | −1.1 (12) |
O1—N1—C9—C8 | −179.1 (6) | C9—N1—C1—C2 | −177.7 (7) |
O2—N2—C10—C11 | 5.0 (9) | C9—N1—C1—C6 | 2.8 (10) |
O2—N2—C10—C15 | −173.8 (6) | C10—N2—C18—C17 | −2.7 (11) |
O2—N2—C18—C17 | 174.0 (6) | C10—C11—C12—C13 | 1.4 (12) |
N1—C1—C2—C3 | −179.5 (6) | C10—C15—C16—C17 | −0.7 (11) |
N1—C1—C6—C5 | 178.5 (6) | C11—C10—C15—C14 | 0.1 (11) |
N1—C1—C6—C7 | −2.2 (10) | C11—C10—C15—C16 | 180.0 (7) |
N2—C10—C11—C12 | −179.7 (7) | C11—C12—C13—C14 | −1.2 (14) |
N2—C10—C15—C14 | 179.0 (6) | C12—C13—C14—C15 | 0.4 (14) |
N2—C10—C15—C16 | −1.2 (10) | C13—C14—C15—C10 | 0.1 (13) |
C1—N1—C9—C8 | −1.1 (11) | C13—C14—C15—C16 | −179.7 (8) |
C1—C2—C3—C4 | 1.4 (12) | C14—C15—C16—C17 | 179.1 (8) |
C1—C6—C7—C8 | 0.1 (11) | C15—C10—C11—C12 | −0.9 (11) |
C2—C1—C6—C5 | −1.0 (11) | C15—C16—C17—C18 | 1.0 (12) |
C2—C1—C6—C7 | 178.3 (7) | C16—C17—C18—N2 | 0.7 (13) |
C2—C3—C4—C5 | −1.9 (13) | C18—N2—C10—C11 | −178.3 (7) |
C3—C4—C5—C6 | 0.9 (13) | C18—N2—C10—C15 | 2.9 (10) |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Crystal data
[ZnBr2(C9H7NO)2] | F(000) = 1008 |
Mr = 515.50 | Dx = 1.837 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.3922 (11) Å | Cell parameters from 1219 reflections |
b = 7.3527 (6) Å | θ = 2.6–22.0° |
c = 15.5809 (10) Å | µ = 5.62 mm−1 |
β = 97.113 (6)° | T = 298 K |
V = 1863.5 (2) Å3 | Irregular, clear colourless |
Z = 4 | 0.15 × 0.08 × 0.03 mm |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Data collection
XtaLAB Mini (ROW) diffractometer | 3415 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 2095 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 25.4°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −16→19 |
Tmin = 0.833, Tmax = 1.000 | k = −8→8 |
7207 measured reflections | l = −18→18 |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Refinement
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0258P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3415 reflections | Δρmax = 0.55 e Å−3 |
226 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.25508 (4) | 0.26213 (9) | 0.37264 (4) | 0.0514 (2) | |
Br2 | 0.22409 (4) | −0.03623 (9) | 0.41131 (4) | 0.0695 (2) | |
Br1 | 0.26119 (4) | 0.35514 (10) | 0.22878 (4) | 0.0698 (2) | |
O1 | 0.3616 (2) | 0.3196 (6) | 0.4411 (2) | 0.0662 (11) | |
O2 | 0.1778 (2) | 0.4332 (5) | 0.4197 (2) | 0.0597 (10) | |
N2 | 0.1157 (3) | 0.3586 (5) | 0.4557 (3) | 0.0445 (11) | |
N1 | 0.4115 (3) | 0.4386 (7) | 0.4079 (3) | 0.0543 (12) | |
C10 | 0.0394 (3) | 0.3446 (7) | 0.4065 (3) | 0.0415 (12) | |
C1 | 0.4897 (3) | 0.3784 (8) | 0.3969 (3) | 0.0466 (14) | |
C15 | −0.0264 (3) | 0.2713 (7) | 0.4450 (3) | 0.0468 (13) | |
C16 | −0.0121 (4) | 0.2148 (7) | 0.5319 (3) | 0.0550 (15) | |
H16 | −0.054979 | 0.167100 | 0.558720 | 0.066* | |
C18 | 0.1273 (3) | 0.3032 (7) | 0.5371 (3) | 0.0526 (15) | |
H18 | 0.179191 | 0.313686 | 0.568455 | 0.063* | |
C17 | 0.0635 (4) | 0.2296 (8) | 0.5765 (3) | 0.0561 (15) | |
H17 | 0.072791 | 0.190483 | 0.633590 | 0.067* | |
C11 | 0.0284 (4) | 0.4086 (8) | 0.3210 (3) | 0.0571 (16) | |
H11 | 0.071759 | 0.460347 | 0.296363 | 0.069* | |
C6 | 0.5437 (4) | 0.5023 (9) | 0.3641 (3) | 0.0592 (16) | |
C2 | 0.5136 (4) | 0.2028 (9) | 0.4187 (3) | 0.0626 (17) | |
H2 | 0.476904 | 0.122160 | 0.439392 | 0.075* | |
C14 | −0.1031 (4) | 0.2572 (8) | 0.3940 (4) | 0.0673 (17) | |
H14 | −0.147290 | 0.206267 | 0.417522 | 0.081* | |
C13 | −0.1135 (4) | 0.3168 (9) | 0.3113 (4) | 0.0742 (19) | |
H13 | −0.164632 | 0.307127 | 0.278474 | 0.089* | |
C12 | −0.0477 (4) | 0.3927 (9) | 0.2752 (3) | 0.0723 (19) | |
H12 | −0.055985 | 0.433696 | 0.218351 | 0.087* | |
C9 | 0.3862 (4) | 0.6041 (10) | 0.3872 (4) | 0.0730 (19) | |
H9 | 0.333060 | 0.639141 | 0.395028 | 0.088* | |
C7 | 0.5161 (5) | 0.6777 (10) | 0.3420 (4) | 0.077 (2) | |
H7 | 0.550832 | 0.760022 | 0.319363 | 0.093* | |
C3 | 0.5912 (4) | 0.1490 (10) | 0.4098 (4) | 0.083 (2) | |
H3 | 0.607681 | 0.030702 | 0.424267 | 0.099* | |
C8 | 0.4388 (5) | 0.7279 (9) | 0.3536 (4) | 0.083 (2) | |
H8 | 0.420515 | 0.844968 | 0.339148 | 0.099* | |
C5 | 0.6244 (4) | 0.4382 (12) | 0.3568 (4) | 0.085 (2) | |
H5 | 0.662411 | 0.515411 | 0.336046 | 0.102* | |
C4 | 0.6460 (5) | 0.2678 (14) | 0.3794 (5) | 0.095 (3) | |
H4 | 0.699190 | 0.228696 | 0.374594 | 0.114* |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0345 (4) | 0.0688 (5) | 0.0519 (4) | −0.0003 (3) | 0.0089 (3) | −0.0017 (3) |
Br2 | 0.0598 (4) | 0.0637 (4) | 0.0855 (5) | 0.0040 (3) | 0.0113 (3) | 0.0048 (4) |
Br1 | 0.0663 (4) | 0.0960 (5) | 0.0476 (3) | −0.0052 (4) | 0.0090 (3) | −0.0030 (4) |
O1 | 0.037 (2) | 0.102 (3) | 0.059 (2) | −0.016 (2) | 0.0020 (18) | 0.010 (2) |
O2 | 0.046 (2) | 0.055 (2) | 0.083 (3) | −0.005 (2) | 0.0278 (19) | 0.002 (2) |
N2 | 0.040 (3) | 0.042 (3) | 0.054 (3) | 0.007 (2) | 0.014 (2) | −0.005 (2) |
N1 | 0.043 (3) | 0.072 (4) | 0.045 (3) | −0.005 (3) | −0.007 (2) | −0.012 (3) |
C10 | 0.043 (3) | 0.039 (3) | 0.043 (3) | 0.007 (3) | 0.011 (2) | −0.006 (3) |
C1 | 0.039 (3) | 0.062 (4) | 0.037 (3) | −0.005 (3) | −0.002 (2) | −0.011 (3) |
C15 | 0.041 (3) | 0.048 (3) | 0.054 (3) | 0.003 (3) | 0.015 (3) | −0.003 (3) |
C16 | 0.051 (4) | 0.060 (4) | 0.057 (4) | −0.001 (3) | 0.020 (3) | 0.006 (3) |
C18 | 0.053 (4) | 0.056 (4) | 0.047 (3) | 0.009 (3) | −0.003 (3) | −0.004 (3) |
C17 | 0.063 (4) | 0.062 (4) | 0.046 (3) | 0.007 (3) | 0.017 (3) | 0.008 (3) |
C11 | 0.064 (4) | 0.063 (4) | 0.046 (3) | 0.008 (3) | 0.015 (3) | −0.003 (3) |
C6 | 0.051 (4) | 0.076 (5) | 0.049 (3) | −0.016 (4) | 0.001 (3) | −0.015 (3) |
C2 | 0.053 (4) | 0.072 (5) | 0.059 (4) | −0.003 (3) | −0.007 (3) | −0.003 (3) |
C14 | 0.042 (4) | 0.079 (5) | 0.081 (5) | −0.008 (3) | 0.008 (3) | 0.000 (4) |
C13 | 0.055 (4) | 0.092 (5) | 0.072 (4) | 0.002 (4) | −0.007 (3) | −0.006 (4) |
C12 | 0.085 (5) | 0.094 (5) | 0.037 (3) | 0.016 (4) | 0.002 (3) | −0.002 (3) |
C9 | 0.052 (4) | 0.088 (5) | 0.075 (4) | 0.009 (4) | −0.010 (3) | −0.028 (4) |
C7 | 0.086 (6) | 0.074 (5) | 0.071 (4) | −0.029 (4) | 0.002 (4) | −0.003 (4) |
C3 | 0.064 (5) | 0.079 (5) | 0.101 (5) | 0.010 (4) | −0.007 (4) | −0.016 (4) |
C8 | 0.098 (6) | 0.053 (4) | 0.087 (5) | −0.003 (5) | −0.028 (5) | 0.000 (4) |
C5 | 0.056 (5) | 0.122 (7) | 0.079 (5) | −0.035 (5) | 0.022 (4) | −0.023 (5) |
C4 | 0.050 (5) | 0.130 (7) | 0.104 (6) | 0.006 (5) | 0.008 (4) | −0.029 (6) |
Dibromidobis(quinoline N-oxide-κO)zinc(II) (II) . Geometric parameters (Å, º)
Zn1—Br2 | 2.3472 (10) | C11—H11 | 0.9300 |
Zn1—Br1 | 2.3575 (8) | C11—C12 | 1.364 (8) |
Zn1—O1 | 1.975 (3) | C6—C7 | 1.395 (8) |
Zn1—O2 | 1.989 (4) | C6—C5 | 1.422 (9) |
O1—N1 | 1.345 (5) | C2—H2 | 0.9300 |
O2—N2 | 1.339 (5) | C2—C3 | 1.356 (8) |
N2—C10 | 1.388 (6) | C14—H14 | 0.9300 |
N2—C18 | 1.323 (6) | C14—C13 | 1.352 (8) |
N1—C1 | 1.386 (6) | C13—H13 | 0.9300 |
N1—C9 | 1.313 (7) | C13—C12 | 1.392 (8) |
C10—C15 | 1.406 (7) | C12—H12 | 0.9300 |
C10—C11 | 1.402 (7) | C9—H9 | 0.9300 |
C1—C6 | 1.410 (7) | C9—C8 | 1.400 (9) |
C1—C2 | 1.380 (7) | C7—H7 | 0.9300 |
C15—C16 | 1.408 (7) | C7—C8 | 1.354 (9) |
C15—C14 | 1.405 (7) | C3—H3 | 0.9300 |
C16—H16 | 0.9300 | C3—C4 | 1.378 (10) |
C16—C17 | 1.346 (7) | C8—H8 | 0.9300 |
C18—H18 | 0.9300 | C5—H5 | 0.9300 |
C18—C17 | 1.387 (7) | C5—C4 | 1.338 (9) |
C17—H17 | 0.9300 | C4—H4 | 0.9300 |
Br2—Zn1—Br1 | 123.45 (4) | C12—C11—H11 | 121.0 |
O1—Zn1—Br2 | 105.44 (12) | C1—C6—C5 | 116.5 (6) |
O1—Zn1—Br1 | 108.21 (11) | C7—C6—C1 | 119.2 (6) |
O1—Zn1—O2 | 103.10 (16) | C7—C6—C5 | 124.2 (7) |
O2—Zn1—Br2 | 109.17 (11) | C1—C2—H2 | 120.4 |
O2—Zn1—Br1 | 105.72 (11) | C3—C2—C1 | 119.3 (6) |
N1—O1—Zn1 | 118.1 (3) | C3—C2—H2 | 120.4 |
N2—O2—Zn1 | 116.6 (3) | C15—C14—H14 | 119.6 |
O2—N2—C10 | 118.5 (4) | C13—C14—C15 | 120.8 (6) |
C18—N2—O2 | 120.1 (4) | C13—C14—H14 | 119.6 |
C18—N2—C10 | 121.4 (5) | C14—C13—H13 | 119.9 |
O1—N1—C1 | 117.1 (5) | C14—C13—C12 | 120.2 (6) |
C9—N1—O1 | 120.5 (5) | C12—C13—H13 | 119.9 |
C9—N1—C1 | 122.4 (6) | C11—C12—C13 | 121.8 (6) |
N2—C10—C15 | 118.6 (5) | C11—C12—H12 | 119.1 |
N2—C10—C11 | 120.1 (5) | C13—C12—H12 | 119.1 |
C11—C10—C15 | 121.3 (5) | N1—C9—H9 | 119.9 |
N1—C1—C6 | 118.0 (6) | N1—C9—C8 | 120.2 (6) |
C2—C1—N1 | 120.5 (5) | C8—C9—H9 | 119.9 |
C2—C1—C6 | 121.5 (6) | C6—C7—H7 | 120.0 |
C10—C15—C16 | 118.6 (5) | C8—C7—C6 | 119.9 (7) |
C14—C15—C10 | 117.9 (5) | C8—C7—H7 | 120.0 |
C14—C15—C16 | 123.6 (5) | C2—C3—H3 | 119.7 |
C15—C16—H16 | 119.8 | C2—C3—C4 | 120.7 (7) |
C17—C16—C15 | 120.3 (5) | C4—C3—H3 | 119.7 |
C17—C16—H16 | 119.8 | C9—C8—H8 | 119.9 |
N2—C18—H18 | 119.4 | C7—C8—C9 | 120.2 (7) |
N2—C18—C17 | 121.1 (5) | C7—C8—H8 | 119.9 |
C17—C18—H18 | 119.4 | C6—C5—H5 | 119.7 |
C16—C17—C18 | 120.0 (5) | C4—C5—C6 | 120.5 (7) |
C16—C17—H17 | 120.0 | C4—C5—H5 | 119.7 |
C18—C17—H17 | 120.0 | C3—C4—H4 | 119.3 |
C10—C11—H11 | 121.0 | C5—C4—C3 | 121.5 (7) |
C12—C11—C10 | 118.0 (6) | C5—C4—H4 | 119.3 |
Zn1—O1—N1—C1 | −122.3 (4) | C1—C6—C7—C8 | 1.1 (9) |
Zn1—O1—N1—C9 | 57.8 (6) | C1—C6—C5—C4 | 0.7 (9) |
Zn1—O2—N2—C10 | −97.8 (4) | C1—C2—C3—C4 | 0.2 (9) |
Zn1—O2—N2—C18 | 83.4 (5) | C15—C10—C11—C12 | −2.0 (8) |
O1—N1—C1—C6 | −178.5 (4) | C15—C16—C17—C18 | 0.9 (9) |
O1—N1—C1—C2 | 0.7 (7) | C15—C14—C13—C12 | 0.3 (10) |
O1—N1—C9—C8 | 179.3 (5) | C16—C15—C14—C13 | 178.8 (6) |
O2—N2—C10—C15 | −178.1 (4) | C18—N2—C10—C15 | 0.6 (7) |
O2—N2—C10—C11 | −0.3 (7) | C18—N2—C10—C11 | 178.4 (5) |
O2—N2—C18—C17 | 178.4 (5) | C11—C10—C15—C16 | −177.9 (5) |
N2—C10—C15—C16 | −0.2 (7) | C11—C10—C15—C14 | 2.6 (8) |
N2—C10—C15—C14 | −179.7 (5) | C6—C1—C2—C3 | 1.1 (8) |
N2—C10—C11—C12 | −179.7 (5) | C6—C7—C8—C9 | −0.3 (10) |
N2—C18—C17—C16 | −0.5 (8) | C6—C5—C4—C3 | 0.5 (11) |
N1—C1—C6—C7 | −1.6 (7) | C2—C1—C6—C7 | 179.2 (5) |
N1—C1—C6—C5 | 177.7 (5) | C2—C1—C6—C5 | −1.5 (8) |
N1—C1—C2—C3 | −178.1 (5) | C2—C3—C4—C5 | −1.0 (11) |
N1—C9—C8—C7 | 0.1 (10) | C14—C15—C16—C17 | 178.9 (6) |
C10—N2—C18—C17 | −0.3 (8) | C14—C13—C12—C11 | 0.4 (10) |
C10—C15—C16—C17 | −0.6 (8) | C9—N1—C1—C6 | 1.4 (7) |
C10—C15—C14—C13 | −1.7 (9) | C9—N1—C1—C2 | −179.4 (5) |
C10—C11—C12—C13 | 0.5 (9) | C7—C6—C5—C4 | 179.9 (6) |
C1—N1—C9—C8 | −0.6 (8) | C5—C6—C7—C8 | −178.1 (6) |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Crystal data
[ZnI2(C9H7NO)2] | F(000) = 1152 |
Mr = 609.48 | Dx = 2.019 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.7231 (7) Å | Cell parameters from 3422 reflections |
b = 7.6155 (4) Å | θ = 2.6–24.1° |
c = 15.8689 (7) Å | µ = 4.32 mm−1 |
β = 97.192 (4)° | T = 297 K |
V = 2005.08 (16) Å3 | Block, clear colourless |
Z = 4 | 0.3 × 0.3 × 0.3 mm |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Data collection
Rigaku XtaLAB mini diffractometer | 2748 reflections with I > 2σ(I) |
ω scans | Rint = 0.032 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | θmax = 25.4°, θmin = 2.5° |
Tmin = 0.896, Tmax = 1.000 | h = −20→20 |
11510 measured reflections | k = −8→9 |
3668 independent reflections | l = −19→19 |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0249P)2 + 3.8317P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.80 e Å−3 |
3668 reflections | Δρmin = −0.81 e Å−3 |
227 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00071 (11) |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
I1 | 0.26214 (2) | 0.37499 (6) | 0.22453 (2) | 0.07021 (17) | |
I2 | 0.22463 (3) | −0.02923 (6) | 0.41988 (3) | 0.07442 (17) | |
Zn1 | 0.25578 (3) | 0.28426 (10) | 0.37845 (4) | 0.0553 (2) | |
O1 | 0.3601 (2) | 0.3426 (7) | 0.4449 (3) | 0.0780 (13) | |
O2 | 0.1777 (2) | 0.4466 (5) | 0.4234 (3) | 0.0627 (10) | |
N1 | 0.4094 (3) | 0.4544 (7) | 0.4109 (3) | 0.0592 (12) | |
N2 | 0.1160 (3) | 0.3728 (6) | 0.4566 (3) | 0.0509 (11) | |
C1 | 0.4847 (3) | 0.3925 (8) | 0.3984 (3) | 0.0545 (14) | |
C2 | 0.5069 (4) | 0.2175 (9) | 0.4180 (4) | 0.0707 (17) | |
H2 | 0.470599 | 0.140389 | 0.438341 | 0.085* | |
C3 | 0.5817 (5) | 0.1635 (11) | 0.4068 (5) | 0.095 (2) | |
H3 | 0.596812 | 0.048098 | 0.419687 | 0.114* | |
C4 | 0.6360 (5) | 0.2760 (13) | 0.3768 (6) | 0.105 (3) | |
H4 | 0.687500 | 0.235837 | 0.370683 | 0.126* | |
C5 | 0.6159 (4) | 0.4433 (12) | 0.3560 (5) | 0.088 (2) | |
H5 | 0.653406 | 0.516920 | 0.335438 | 0.106* | |
C6 | 0.5378 (4) | 0.5077 (9) | 0.3652 (4) | 0.0641 (16) | |
C7 | 0.5127 (5) | 0.6797 (10) | 0.3444 (5) | 0.082 (2) | |
H7 | 0.547198 | 0.757244 | 0.321637 | 0.099* | |
C8 | 0.4374 (5) | 0.7327 (10) | 0.3576 (5) | 0.085 (2) | |
H8 | 0.419938 | 0.846144 | 0.343511 | 0.102* | |
C9 | 0.3871 (4) | 0.6157 (10) | 0.3923 (4) | 0.0758 (19) | |
H9 | 0.336222 | 0.652818 | 0.402601 | 0.091* | |
C10 | 0.0431 (3) | 0.3575 (7) | 0.4054 (3) | 0.0487 (12) | |
C11 | 0.0343 (4) | 0.4227 (8) | 0.3219 (4) | 0.0638 (16) | |
H11 | 0.077050 | 0.475911 | 0.299604 | 0.077* | |
C12 | −0.0388 (5) | 0.4051 (10) | 0.2751 (4) | 0.081 (2) | |
H12 | −0.046101 | 0.448351 | 0.219880 | 0.098* | |
C13 | −0.1039 (4) | 0.3237 (11) | 0.3073 (5) | 0.088 (2) | |
H13 | −0.153042 | 0.311918 | 0.273148 | 0.106* | |
C14 | −0.0955 (4) | 0.2624 (9) | 0.3879 (5) | 0.0755 (19) | |
H14 | −0.138783 | 0.208570 | 0.408920 | 0.091* | |
C15 | −0.0218 (3) | 0.2796 (7) | 0.4398 (4) | 0.0534 (13) | |
C16 | −0.0094 (4) | 0.2205 (8) | 0.5249 (4) | 0.0632 (16) | |
H16 | −0.051513 | 0.168071 | 0.548760 | 0.076* | |
C17 | 0.0633 (4) | 0.2398 (9) | 0.5717 (4) | 0.0666 (17) | |
H17 | 0.071247 | 0.201324 | 0.627730 | 0.080* | |
C18 | 0.1257 (4) | 0.3171 (8) | 0.5358 (4) | 0.0589 (15) | |
H18 | 0.175593 | 0.330122 | 0.568251 | 0.071* |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0640 (3) | 0.0961 (4) | 0.0508 (2) | −0.0078 (2) | 0.00801 (19) | −0.0018 (2) |
I2 | 0.0652 (3) | 0.0668 (3) | 0.0928 (3) | 0.0106 (2) | 0.0157 (2) | 0.0090 (2) |
Zn1 | 0.0377 (3) | 0.0742 (5) | 0.0542 (4) | −0.0006 (3) | 0.0070 (3) | −0.0005 (3) |
O1 | 0.048 (2) | 0.122 (4) | 0.063 (3) | −0.014 (2) | 0.002 (2) | 0.006 (3) |
O2 | 0.055 (2) | 0.059 (3) | 0.078 (3) | −0.0007 (19) | 0.024 (2) | 0.003 (2) |
N1 | 0.043 (3) | 0.079 (4) | 0.052 (3) | −0.001 (3) | −0.003 (2) | −0.012 (3) |
N2 | 0.047 (2) | 0.052 (3) | 0.057 (3) | 0.007 (2) | 0.016 (2) | −0.001 (2) |
C1 | 0.042 (3) | 0.075 (4) | 0.044 (3) | −0.001 (3) | −0.005 (2) | −0.014 (3) |
C2 | 0.066 (4) | 0.069 (5) | 0.073 (4) | −0.001 (3) | −0.007 (3) | −0.004 (3) |
C3 | 0.073 (5) | 0.086 (6) | 0.120 (7) | 0.013 (4) | −0.009 (5) | −0.026 (5) |
C4 | 0.064 (5) | 0.114 (7) | 0.136 (8) | 0.012 (5) | 0.011 (5) | −0.054 (6) |
C5 | 0.061 (4) | 0.110 (7) | 0.097 (6) | −0.016 (4) | 0.021 (4) | −0.026 (5) |
C6 | 0.053 (3) | 0.073 (5) | 0.066 (4) | −0.011 (3) | 0.006 (3) | −0.017 (3) |
C7 | 0.083 (5) | 0.076 (5) | 0.086 (5) | −0.022 (4) | 0.001 (4) | −0.008 (4) |
C8 | 0.087 (5) | 0.065 (5) | 0.095 (5) | 0.004 (4) | −0.018 (4) | −0.013 (4) |
C9 | 0.063 (4) | 0.084 (5) | 0.076 (4) | 0.008 (4) | −0.011 (4) | −0.024 (4) |
C10 | 0.051 (3) | 0.047 (3) | 0.049 (3) | 0.007 (2) | 0.013 (3) | 0.000 (2) |
C11 | 0.070 (4) | 0.071 (4) | 0.051 (3) | 0.005 (3) | 0.012 (3) | 0.003 (3) |
C12 | 0.092 (5) | 0.099 (6) | 0.052 (4) | 0.014 (4) | 0.002 (4) | −0.001 (4) |
C13 | 0.065 (4) | 0.110 (6) | 0.085 (5) | 0.005 (4) | −0.015 (4) | −0.006 (5) |
C14 | 0.056 (4) | 0.083 (5) | 0.086 (5) | −0.008 (3) | 0.004 (4) | −0.010 (4) |
C15 | 0.050 (3) | 0.053 (3) | 0.058 (3) | 0.004 (3) | 0.011 (3) | −0.003 (3) |
C16 | 0.062 (4) | 0.060 (4) | 0.071 (4) | 0.005 (3) | 0.025 (3) | 0.013 (3) |
C17 | 0.067 (4) | 0.080 (5) | 0.056 (4) | 0.014 (3) | 0.016 (3) | 0.011 (3) |
C18 | 0.056 (3) | 0.069 (4) | 0.051 (3) | 0.009 (3) | 0.005 (3) | 0.000 (3) |
Diiodidodobis(quinoline N-oxide-κO)zinc(II) (III) . Geometric parameters (Å, º)
I1—Zn1 | 2.5534 (8) | C7—H7 | 0.9300 |
I2—Zn1 | 2.5473 (9) | C7—C8 | 1.363 (10) |
Zn1—O1 | 1.973 (4) | C8—H8 | 0.9300 |
Zn1—O2 | 1.994 (4) | C8—C9 | 1.386 (10) |
O1—N1 | 1.345 (6) | C9—H9 | 0.9300 |
O2—N2 | 1.339 (5) | C10—C11 | 1.405 (8) |
N1—C1 | 1.381 (7) | C10—C15 | 1.405 (7) |
N1—C9 | 1.307 (8) | C11—H11 | 0.9300 |
N2—C10 | 1.383 (7) | C11—C12 | 1.356 (9) |
N2—C18 | 1.317 (7) | C12—H12 | 0.9300 |
C1—C2 | 1.408 (9) | C12—C13 | 1.404 (10) |
C1—C6 | 1.397 (8) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C13—C14 | 1.352 (10) |
C2—C3 | 1.350 (9) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.400 (8) |
C3—C4 | 1.377 (12) | C15—C16 | 1.414 (8) |
C4—H4 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.348 (12) | C16—C17 | 1.350 (8) |
C5—H5 | 0.9300 | C17—H17 | 0.9300 |
C5—C6 | 1.420 (9) | C17—C18 | 1.382 (8) |
C6—C7 | 1.402 (10) | C18—H18 | 0.9300 |
I2—Zn1—I1 | 122.33 (3) | C8—C7—H7 | 120.2 |
O1—Zn1—I1 | 108.10 (13) | C7—C8—H8 | 120.4 |
O1—Zn1—I2 | 105.60 (15) | C7—C8—C9 | 119.3 (7) |
O1—Zn1—O2 | 104.13 (19) | C9—C8—H8 | 120.4 |
O2—Zn1—I1 | 106.36 (12) | N1—C9—C8 | 121.6 (7) |
O2—Zn1—I2 | 108.93 (12) | N1—C9—H9 | 119.2 |
N1—O1—Zn1 | 118.3 (3) | C8—C9—H9 | 119.2 |
N2—O2—Zn1 | 116.9 (3) | N2—C10—C11 | 120.3 (5) |
O1—N1—C1 | 117.2 (5) | N2—C10—C15 | 118.3 (5) |
C9—N1—O1 | 120.9 (5) | C15—C10—C11 | 121.4 (5) |
C9—N1—C1 | 121.9 (6) | C10—C11—H11 | 121.2 |
O2—N2—C10 | 118.0 (4) | C12—C11—C10 | 117.6 (6) |
C18—N2—O2 | 120.2 (5) | C12—C11—H11 | 121.2 |
C18—N2—C10 | 121.8 (5) | C11—C12—H12 | 118.9 |
N1—C1—C2 | 120.7 (6) | C11—C12—C13 | 122.1 (6) |
N1—C1—C6 | 118.3 (6) | C13—C12—H12 | 118.9 |
C6—C1—C2 | 121.0 (6) | C12—C13—H13 | 119.9 |
C1—C2—H2 | 120.6 | C14—C13—C12 | 120.2 (7) |
C3—C2—C1 | 118.8 (7) | C14—C13—H13 | 119.9 |
C3—C2—H2 | 120.6 | C13—C14—H14 | 119.8 |
C2—C3—H3 | 119.4 | C13—C14—C15 | 120.3 (7) |
C2—C3—C4 | 121.3 (8) | C15—C14—H14 | 119.8 |
C4—C3—H3 | 119.4 | C10—C15—C16 | 118.5 (5) |
C3—C4—H4 | 119.4 | C14—C15—C10 | 118.4 (5) |
C5—C4—C3 | 121.2 (8) | C14—C15—C16 | 123.0 (6) |
C5—C4—H4 | 119.4 | C15—C16—H16 | 119.9 |
C4—C5—H5 | 119.8 | C17—C16—C15 | 120.3 (6) |
C4—C5—C6 | 120.4 (8) | C17—C16—H16 | 119.9 |
C6—C5—H5 | 119.8 | C16—C17—H17 | 120.2 |
C1—C6—C5 | 117.3 (7) | C16—C17—C18 | 119.6 (6) |
C1—C6—C7 | 119.3 (6) | C18—C17—H17 | 120.2 |
C7—C6—C5 | 123.4 (7) | N2—C18—C17 | 121.5 (6) |
C6—C7—H7 | 120.2 | N2—C18—H18 | 119.3 |
C8—C7—C6 | 119.7 (7) | C17—C18—H18 | 119.3 |
Zn1—O1—N1—C1 | −119.9 (4) | C4—C5—C6—C1 | 1.6 (10) |
Zn1—O1—N1—C9 | 61.5 (6) | C4—C5—C6—C7 | −179.6 (7) |
Zn1—O2—N2—C10 | −96.9 (5) | C5—C6—C7—C8 | −178.0 (7) |
Zn1—O2—N2—C18 | 83.1 (5) | C6—C1—C2—C3 | 2.1 (9) |
O1—N1—C1—C2 | 2.2 (7) | C6—C7—C8—C9 | 0.6 (11) |
O1—N1—C1—C6 | −178.3 (5) | C7—C8—C9—N1 | −1.6 (11) |
O1—N1—C9—C8 | 179.7 (5) | C9—N1—C1—C2 | −179.2 (6) |
O2—N2—C10—C11 | −1.7 (7) | C9—N1—C1—C6 | 0.3 (8) |
O2—N2—C10—C15 | 179.7 (5) | C10—N2—C18—C17 | 0.3 (9) |
O2—N2—C18—C17 | −179.7 (5) | C10—C11—C12—C13 | −0.6 (11) |
N1—C1—C2—C3 | −178.4 (6) | C10—C15—C16—C17 | 0.3 (9) |
N1—C1—C6—C5 | 177.6 (5) | C11—C10—C15—C14 | 2.1 (9) |
N1—C1—C6—C7 | −1.2 (8) | C11—C10—C15—C16 | −178.5 (5) |
N2—C10—C11—C12 | −179.5 (6) | C11—C12—C13—C14 | 1.2 (12) |
N2—C10—C15—C14 | −179.4 (5) | C12—C13—C14—C15 | 0.0 (12) |
N2—C10—C15—C16 | 0.0 (8) | C13—C14—C15—C10 | −1.6 (10) |
C1—N1—C9—C8 | 1.1 (9) | C13—C14—C15—C16 | 179.1 (7) |
C1—C2—C3—C4 | −0.1 (11) | C14—C15—C16—C17 | 179.6 (6) |
C1—C6—C7—C8 | 0.7 (10) | C15—C10—C11—C12 | −1.0 (9) |
C2—C1—C6—C5 | −2.9 (9) | C15—C16—C17—C18 | −0.3 (10) |
C2—C1—C6—C7 | 178.3 (6) | C16—C17—C18—N2 | 0.0 (10) |
C2—C3—C4—C5 | −1.2 (13) | C18—N2—C10—C11 | 178.3 (5) |
C3—C4—C5—C6 | 0.4 (13) | C18—N2—C10—C15 | −0.2 (8) |
References
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.
- Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694.
- Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P., Chernyshev, V. V. & Schenk, H. (2002). Acta Cryst. C58, m300–m301. [DOI] [PubMed]
- Kidd, M. R., Sager, R. S. & Watson, W. H. (1967). Inorg. Chem. 6, 946–951.
- Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131. [DOI] [PMC free article] [PubMed]
- Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 1, 69–76.
- McConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094–1095.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918–14930. [DOI] [PubMed]
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
- Sager, R. S. & Watson, H. W. (1968). Inorg. Chem. 7, 1358–1362.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shi, J.-M., Liu, Z., Lu, J.-J. & Liu, L.-D. (2005b). Acta Cryst. E61, m856–m857.
- Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005a). Acta Cryst. E61, m2262–m2263.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Steiner, T. (1998). Acta Cryst. B54, 456–463.
- Watson, W. H. & Johnson, D. R. (1971). Inorg. Chem. 10, 1281–1288.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, III. DOI: 10.1107/S2056989022005953/zv2014sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005953/zv2014Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022005953/zv2014IIsup3.hkl
Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022005953/zv2014IIIsup4.hkl
Additional supporting information: crystallographic information; 3D view; checkCIF report