Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 30;78(Pt 7):750–754. doi: 10.1107/S2056989022006624

Synthesis and crystal structure of bis­[trans-di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)] trans-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)bis­[4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tris­(hydrogen phenyl­phospho­nato-κO)]nickel(II) deca­hydrate

Liudmyla V Tsymbal a, Rodinel Ardeleanu b, Sergiu Shova b, Yaroslaw D Lampeka a,*
PMCID: PMC9260354  PMID: 35855365

The centrosymmetric trans-NiN4O2 coordination polyhedra of the Ni2+ ions in the complex cations and anions of the title compound are tetra­gonally distorted octa­hedra. In the crystal, O—H⋯O hydrogen bonds between the phospho­nate groups of the anions result in the formation of layers oriented parallel to the bc plane, which are further arranged into a three-dimensional network due to hydrogen-bonding involving the macrocyclic di-aqua cations and water mol­ecules.

Keywords: crystal structure, cyclam, nickel, tri­phospho­nic acid

Abstract

The components of the title compound, [Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2O are two centrosymmetric [Ni(C10H24N4)(H2O)2]2+ dications, a centrosymmetric [Ni(C10H24N4)(C27H24O9P3)2]4− tetra-anion and five crystallographically unique water mol­ecules of crystallization. All of the nickel ions are coordinated by the four secondary N atoms of the macrocyclic cyclam ligands, which adopt the most energetically stable trans-III conformation, and the mutually trans O atoms of either water mol­ecules in the cations or the phospho­nate groups in the anion in a tetra­gonally distorted NiN4O2 octa­hedral coordination geometry. Strong O—H⋯O hydrogen bonds between the protonated and the non-protonated phospho­nate O atoms of neighboring anions result in the formation of layers oriented parallel to the bc plane, which are linked into a three-dimensional network by virtue of numerous N—H⋯O and O—H⋯O hydrogen bonds arising from the sec-NH groups of the macrocycles, phospho­nate O atoms and coordinated and non-coordinated water mol­ecules.

1. Chemical context

First-row transition-metal complexes of 14-membered cyclam-like tetra­aza macrocyles (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane; C10H24N4; L) are characterized by high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985) and are popular metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018). These crystalline coordination polymers, in which oligo­carboxyl­ates are the most common bridging ligands (Rao et al., 2004), possess permanent porosity and demonstrate many promising applications in different areas (MacGillivray & Lukehart, 2014; Kaskel, 2016).

The rigid trigonal aromatic linker 1,3,5-benzene­tri­carboxyl­ate, C9H3O6 3–, is widely used for the assembly of MOFs based on aza­macrocyclic cations (Lampeka & Tsymbal, 2004). Its tris-monodentate coordination in the trans-axial coordination positions of the metal ions leads predominantly to the formation of two-dimensional coordination polymers with hexa­gonal nets of 63 topology (Alexandrov et al., 2017). Usually, the modification of this bridge through the substitution of the carb­oxy­lic groups by para-carb­oxy­benzyl fragments (the ligand H3BTB, 4,4′,4′′-benzene-1,3,5-triyltri­benzoic acid) does not affect the coordination properties of the carboxyl­ate groups or the topological characteristics of polymeric nets but results in the enlargement of the hexa­gonal structural unit of the coordination polymers allowing inter­penetration of the subnets (Lampeka et al., 2012; Gong et al., 2016). Compared to carboxyl­ates, linkers with other coordinating functions, in particular oligo­phospho­nates, have been studied to a much lesser extent (Gagnon et al., 2012; Firmino et al., 2018; Yücesan et al., 2018), though one can expect that the substitution of a mono-anionic carb­oxy­lic group by a di-anionic phospho­nate group with distinct acidity, number of donor atoms and spatial directivity of coordination bonds will strongly influence the composition and topology of the coordination nets. However, except for a very recent publication (Tsymbal et al., 2022), no papers dealing with structural characterization of the complexes formed by metal aza­macrocyclic cations and phospho­nate ligands have been published to date. 1.

We report here the synthesis and crystal structure of the product of the reaction of [Ni(L)](ClO4)2 with 4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tri­phospho­nic acid, H6Me3BTP) – the structural analogue of H3BTB, namely, bis­[trans-di­aqua-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)-nickel(II)] trans-{bis-[4,4′,4′′-(1,3,5-tri­methyl­benzene-2,4,6-tri­yl)tris­(hydrogen phenyl­phospho­nato-κO)-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)-nickel(II)]} deca­hydrate, [Ni(L)(H2O)2]2[Ni(L)(H3Me3BTP)2]·10H2O, I.

2. Structural commentary

The mol­ecular structure of I is shown in Fig. 1. It represents a non-polymeric compound in which atom Ni1 is coordinated by two monodentate H3Me3BTP3– ligands via their phospho­nate O atoms, resulting in the formation of an [Ni(L)(H3Me3BTP)2]4– complex anion, which is charge-balanced by two structurally non-equivalent [Ni(L)(H2O)2]2+ divalent cations formed by atoms Ni2 and Ni3. The coordination geometries of all the nickel ions in I have much in common: the Ni2+ ions (all with site symmetry Inline graphic ) are coordinated by the four secondary N atoms of the macrocyclic ligands L, which adopt the most energetically stable trans-III (R,R,S,S) conformation (Bosnich et al., 1965a ; Barefield et al., 1986) with the five-membered (N—Ni—N bite angles ≃ 85°) and six-membered (N—Ni—N bite angles ≃ 95°) chelate rings in gauche and chair conformations, respectively (Table 1). The coordination polyhedra of the metal ions can be described as tetra­gonally elongated trans-NiN4O2 octa­hedra with the Ni—N bond lengths [average value 2.068 (3) Å] slightly shorter than the Ni—O bonds which, in turn, do not display any dependence on the nature of the donor oxygen atoms. The location of the metal ions on crystallographic inversion centers enforces strict planarity of the Ni(N4) coordination moieties and the axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 2°).

Figure 1.

Figure 1

The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms and uncoordinated water molecules are omitted for clarity. Symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) −x + 2, −y + 2, −z + 1; (iii) −x + 1, −y + 3, −z + 1.

Table 1. Selected geometric parameters (Å, °).

Ni1—N1 2.067 (4) Ni2—O1W 2.105 (4)
Ni1—N2 2.064 (4) Ni3—N5 2.070 (4)
Ni1—O1 2.134 (3) Ni3—N6 2.056 (5)
Ni2—N3 2.072 (4) Ni3—O2W 2.136 (3)
Ni2—N4 2.076 (4)    
       
N1—Ni1—N2i 85.31 (16) N3—Ni2—N4 95.34 (16)
N1—Ni1—N2 94.69 (16) N5—Ni3—N6iii 85.2 (2)
N3—Ni2—N4ii 84.66 (16) N5—Ni3—N6 94.8 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

The pendant benzene rings of the H3Me3BTP3– tri-anion in I are substanti­ally tilted relative to the central aromatic core [average angle between the mean planes = 76 (5)°] and this feature is caused by repulsive inter­actions between the hydrogen atoms of the pendant rings and those of the methyl substituents of the central ring. The P—OH bond lengths [average value 1.57 (3) Å] are larger than the other P—O bonds [average value 1.501 (5) Å], thus indicating the partially delocalized character of the phospho­nate groups.

3. Supra­molecular features

In the crystal of I, the [Ni1(L)(H3Me3BTP)2]4– anions, [Ni2/Ni3(L)(H2O)2]2+ cations and water mol­ecules of crystallization are linked by numerous hydrogen bonds with participation of the phospho­nate groups, the secondary amino groups of the macrocycles and both the coordinated and crystalline water mol­ecules (Table 2). A distinct lamellar structure is inherent for this compound. In particular, strong hydrogen-bonding inter­actions between the protonated fragments of the P1 and P3 phospho­nate groups of one mol­ecule as the donors with the non-protonated O4 and O5 atoms of the P2 group of another mol­ecule as the acceptors [P1—O3—H3C⋯O5(x, y − 1, z), P3—O9—H9C⋯O49(x, y − 1, z + 1)], together with a weak N1—H1⋯O6 (x, y − 1, z) hydrogen bond between the secondary amino group of the macrocyclic cation [Ni1(L)] and protonated P2—O6 phospho­nate fragment result in the formation of anionic layers oriented parallel to the bc plane. The distance between the parallel mean planes of the staggered by 60° tri­methyl­benzene rings of neighboring H3Me3BTP3– anions is 5.248 (3) Å, thus allowing us to exclude the possibility of aromatic π–π stacking inter­actions between them. Additionally, the negative charge of the layers are partially compensated by the incorporation within the layers of the [Ni2(L)(H2O)2]2+ cations via hydrogen bonding between the coordinated water mol­ecules and the phos­phon­ate O7 atom [O1W—H1WB⋯O7(x, y, z − 1)] (Fig. 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6iv 1.00 2.32 3.196 (5) 146
N2—H2⋯O6W 1.00 2.18 3.039 (6) 143
N3—H3⋯O7v 1.00 2.13 3.102 (6) 162
N4—H4⋯O4W 1.00 2.06 3.056 (6) 173
N5—H5⋯O9vi 1.00 2.07 3.003 (6) 155
N6—H6⋯O7W ii 1.00 1.98 2.956 (6) 166
O3—H3C⋯O5iv 0.84 1.84 2.654 (5) 162
O6—H6C⋯O3W vii 0.84 1.75 2.550 (5) 159
O9—H9C⋯O4viii 0.84 1.74 2.517 (5) 154
O1W—H1WB⋯O7v 0.87 1.81 2.679 (5) 173
O1W—H1WA⋯O4W 0.87 2.45 3.256 (6) 155
O2W—H2WB⋯O4 0.86 1.90 2.729 (5) 164
O2W—H2WA⋯O7W ix 0.86 1.81 2.675 (6) 174
O3W—H3WB⋯O2 0.87 1.81 2.676 (4) 177
O3W—H3WA⋯O7v 0.85 1.84 2.689 (5) 174
O4W—H4WB⋯O3 0.87 2.26 3.115 (6) 167
O4W—H4WA⋯O8v 0.87 1.93 2.796 (6) 172
O5W—H5WB⋯O5x 0.87 1.98 2.813 (5) 159
O5W—H5WA⋯O8xi 0.87 1.87 2.725 (5) 168
O6W—H6WB⋯O2 0.87 2.02 2.799 (6) 149
O6W—H6WA⋯O5W 0.87 2.00 2.842 (5) 164
O7W—H7WB⋯O3W 0.85 2.02 2.731 (5) 140
O7W—H7WA⋯O5W 0.86 1.83 2.688 (5) 173

Symmetry codes: (ii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic ; (viii) Inline graphic ; (ix) Inline graphic ; (x) Inline graphic ; (xi) Inline graphic .

Figure 2.

Figure 2

The hydrogen-bonded (dashed lines) layers in I viewed down the a axis. C-bound H atoms and macrocyclic cations formed by Ni3 have been omitted; C and N atoms of the macrocyclic cations formed by Ni2 are shown in green.

The second macrocyclic aqua cation [Ni3(L)(H2O)2]2+, due to hydrogen bonding of the coordinated water mol­ecule with the phospho­nate O4 atom (O2W—H2WB⋯O4), serves as the bridge between the layers, arranging them into a three-dimensional network (Fig. 3), which is further stabilized by numerous O—H⋯O hydrogen bonds involving the water mol­ecules of crystallization, O3W–O7W (Table 2).

Figure 3.

Figure 3

The structure of I viewed down the b axis. C-bound H atoms have been omitted; C and N atoms of the macrocyclic cation formed by Ni2 and Ni3 are shown in green and violet, respectively. Water mol­ecules of crystallization are not shown; hydrogen bonds are depicted as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016) gave no hits related to H6Me3BTP or its complexes with metal ions, so the present work is the first structural characterization of a complex of this ligand. At the same time, several works dealing with the structures of the non-methyl­ated analogue of the phospho­nate under consideration, namely, 4,4′,4′′-benzene-1,3,5-triyl-tri­phospho­nic acid (H6BTP), have been published. They include a methanol solvate of the free acid (CSD refcode AKEPEO; Vilela et al., 2021) and its pyridinium salt (YOLGEM; Beckmann et al., 2008), mol­ecular complexes with solvated CoII and NiII ions (OQIZAR and OQIZEV; Pili et al., 2016) and coordination polymers formed by SrII (SOTZOR; Vaidhyanathan et al., 2009), ZnII (ISELAV02; Hermer et al., 2016), YIII (AKEPOY; Vilela et al., 2021), ZrIV (COCLIR; Taddei et al., 2014) and VIV/V (COQNAY; Ouellette et al., 2009). Inter­estingly, as in I, in all the metal complexes except COCLIR and ISELAV02, the ligand acts as a H3BTP3– tri-anion with three monodeprotonated phos­phon­ate groups. On the other hand, because of the absence of methyl substituents, the mol­ecules of the anions H n BTP(6–n)– as a whole are flatter than H3Me3BTP3– in I with a maximal tilting angle of pendant versus central benzene rings of ca 49° observed in ISELAV02. In addition, in the majority of complexes formed by H n BTP(6–n)– ligands (except AKEPOY and ISELAV02), aromatic π–π stacking inter­actions of different strengths are observed with centroid-to-centroid distances between the central aromatic rings ranging from 3.4 to 3.9 Å.

The Cambridge Structural Database contains also 18 hits describing the structure of the [Ni(L)(H2O)2]2+ complex cation in salts of different inorganic and organic anions as well as the charge-compensating part in anionic coordination polymers. In general, the structure of this cation in I is similar to other compounds, both from the point of view of the conformation of the macrocycle and the bond distances and angles characterizing the coordination polyhedron of the metal.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H6Me3BTP was synthesized according to a procedure described previously for the preparation of H6BTP (Vaidhyanathan et al., 2009), starting from 1,3,5-trimethyl-2,4,6-tris­(4′-bromo­phen­yl)benzene instead of 1,3,5-tris­(4′-bromo­phen­yl)benzene. The complex [Ni(L)](ClO4)2 was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965b ).

The title compound [Ni( L )(H2O)2]2[Ni( L )(H3Me3BTP)2]·10H2O, I, was prepared as follows. A solution of [Ni(L)](ClO4)2 (46 mg, 0.1 mmol) in 5 ml of water was added to 5 ml of an aqueous solution of H6Me3BTP (18 mg, 0.03 mmol) containing 2 ml of pyridine. The pink precipitate, which formed in a week, was filtered off, washed with small amounts of water, methanol and diethyl ether, and dried in air. Yield: 7 mg (10% based on acid). Analysis calculated for C84H148N12Ni3O32P6: C 45.85, H 6.78, N 7.64%. Found: C 45.73, H 6.87, N 7.51%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å (ring H atoms), 0.98 Å (methyl H atoms), 0.99 Å (methyl­ene H atoms), N—H distances of 1.00 Å, O—H distances of 0.84 Å (protonated phospho­nate groups) and 0.87 Å (water mol­ecules) with U iso(H) values of 1.2U eq or 1.5U eq times those of the corresponding parent atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2O
M r 2200.09
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 160
a, b, c (Å) 9.8779 (5), 17.2467 (11), 17.6707 (11)
α, β, γ (°) 61.409 (6), 77.515 (5), 77.713 (5)
V3) 2559.7 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.40 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.701, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23737, 9657, 6598
R int 0.063
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.161, 1.02
No. of reflections 9657
No. of parameters 629
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.46

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022006624/hb8026sup1.cif

e-78-00750-sup1.cif (828.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006624/hb8026Isup2.hkl

e-78-00750-Isup2.hkl (528.8KB, hkl)

CCDC reference: 2178456

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni(C10H24N4)(H2O)2]2[Ni(C10H24N4)(C27H24O9P3)2]·10H2O Z = 1
Mr = 2200.09 F(000) = 1166
Triclinic, P1 Dx = 1.427 Mg m3
a = 9.8779 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 17.2467 (11) Å Cell parameters from 5403 reflections
c = 17.6707 (11) Å θ = 2.1–26.3°
α = 61.409 (6)° µ = 0.72 mm1
β = 77.515 (5)° T = 160 K
γ = 77.713 (5)° Prism, clear light colourless
V = 2559.7 (3) Å3 0.40 × 0.10 × 0.10 mm

Data collection

Rigaku Xcalibur Eos diffractometer 9657 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 6598 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
Detector resolution: 16.1593 pixels mm-1 θmax = 25.7°, θmin = 2.1°
ω scans h = −11→12
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −21→20
Tmin = 0.701, Tmax = 1.000 l = −21→21
23737 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0527P)2 + 4.2781P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
9657 reflections Δρmax = 0.67 e Å3
629 parameters Δρmin = −0.46 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 1.000000 0.500000 1.000000 0.0228 (2)
P2 0.77348 (14) 1.51832 (8) 0.73137 (8) 0.0273 (3)
P1 0.86291 (13) 0.70402 (8) 0.82874 (8) 0.0243 (3)
P3 0.75955 (15) 0.78200 (9) 1.49060 (8) 0.0332 (3)
O5 0.6838 (4) 1.5710 (2) 0.7750 (2) 0.0380 (9)
C29 0.7561 (5) 1.4015 (3) 0.7965 (3) 0.0241 (10)
O4 0.7456 (4) 1.5452 (2) 0.6413 (2) 0.0333 (8)
O3W 1.0380 (3) 0.6623 (2) 0.6411 (2) 0.0311 (8)
H3WA 0.998703 0.703601 0.598132 0.047*
H3WB 1.016063 0.687031 0.675752 0.047*
O4W 0.6258 (4) 0.8895 (3) 0.6511 (3) 0.0607 (12)
H4WA 0.622702 0.869018 0.615193 0.091*
H4WB 0.655562 0.843018 0.696393 0.091*
C22 0.7292 (4) 0.9758 (3) 0.9717 (3) 0.0193 (10)
C38 0.7501 (5) 0.8505 (3) 1.3753 (3) 0.0274 (11)
C26 0.7310 (5) 1.2190 (3) 0.9041 (3) 0.0230 (10)
N1 0.9914 (4) 0.4354 (3) 0.9286 (2) 0.0275 (9)
H1 0.956271 0.481640 0.873064 0.033*
O3 0.7242 (4) 0.7049 (2) 0.7985 (2) 0.0387 (9)
H3C 0.724711 0.656089 0.798510 0.058*
C34 0.7272 (4) 0.9926 (3) 1.1008 (3) 0.0211 (10)
N2 1.1919 (4) 0.5419 (3) 0.9365 (3) 0.0330 (10)
H2 1.173656 0.596679 0.881233 0.040*
C3 1.2935 (5) 0.4794 (4) 0.9119 (4) 0.0421 (14)
H3A 1.320107 0.425875 0.965248 0.051*
H3B 1.378830 0.507709 0.878884 0.051*
O2 0.9773 (4) 0.7334 (2) 0.7517 (2) 0.0349 (8)
O9 0.7490 (5) 0.6880 (2) 1.5017 (2) 0.0490 (11)
H9C 0.757613 0.649777 1.553173 0.074*
C35 0.7357 (5) 0.9486 (3) 1.1963 (3) 0.0245 (10)
C41 0.7258 (5) 0.9377 (3) 1.0620 (3) 0.0229 (10)
C23 0.7243 (5) 1.0683 (3) 0.9212 (3) 0.0229 (10)
C30 0.6330 (5) 1.3737 (3) 0.8509 (3) 0.0335 (12)
H30 0.555907 1.416974 0.852158 0.040*
C25 0.7243 (5) 1.1221 (3) 0.9602 (3) 0.0216 (10)
C5 0.8806 (6) 0.3769 (4) 0.9791 (3) 0.0381 (13)
H5A 0.916444 0.324112 1.029994 0.046*
H5B 0.851180 0.356262 0.942372 0.046*
C33 0.7319 (5) 1.1422 (3) 1.0923 (3) 0.0280 (11)
H33A 0.769682 1.105369 1.147602 0.042*
H33B 0.637231 1.170079 1.102996 0.042*
H33C 0.791865 1.188533 1.053584 0.042*
C39 0.6285 (5) 0.9036 (3) 1.3453 (3) 0.0321 (12)
H39 0.549541 0.906986 1.385777 0.039*
C42 0.7241 (6) 0.8387 (3) 1.1158 (3) 0.0333 (12)
H42A 0.818887 0.807974 1.111379 0.050*
H42B 0.661713 0.818665 1.094399 0.050*
H42C 0.690678 0.825159 1.176739 0.050*
O7 0.9019 (4) 0.7838 (2) 1.5071 (2) 0.0399 (9)
C36 0.8576 (5) 0.8993 (3) 1.2269 (3) 0.0283 (11)
H36 0.938419 0.898840 1.186477 0.034*
C19 0.7533 (4) 0.9154 (3) 0.9299 (3) 0.0194 (10)
C21 0.6772 (5) 0.8176 (3) 0.8889 (3) 0.0282 (11)
H21 0.603252 0.793241 0.884480 0.034*
O8 0.6378 (4) 0.8126 (3) 1.5414 (2) 0.0476 (10)
C20 0.6477 (5) 0.8787 (3) 0.9222 (3) 0.0287 (11)
H20 0.553187 0.895677 0.940187 0.034*
C2 1.2358 (6) 0.4512 (4) 0.8569 (3) 0.0407 (14)
H2A 1.196217 0.505379 0.808660 0.049*
H2B 1.314402 0.421415 0.830904 0.049*
C37 0.8665 (5) 0.8500 (3) 1.3151 (3) 0.0306 (12)
H37 0.952338 0.815768 1.334400 0.037*
C32 0.7271 (4) 1.0848 (3) 1.0504 (3) 0.0211 (10)
C24 0.7140 (6) 1.1079 (3) 0.8254 (3) 0.0314 (12)
H24A 0.660985 1.072081 0.815897 0.047*
H24B 0.808141 1.108441 0.793050 0.047*
H24C 0.666278 1.168989 0.805139 0.047*
Ni2 1.000000 1.000000 0.500000 0.0233 (2)
O1W 0.9604 (4) 0.8687 (2) 0.5872 (2) 0.0452 (10)
H1WA 0.881040 0.872384 0.618973 0.068*
H1WB 0.944450 0.844264 0.557414 0.068*
N3 0.9605 (4) 0.9803 (3) 0.4004 (2) 0.0297 (10)
H3 0.924717 0.921388 0.427638 0.036*
C10 1.0986 (5) 0.9720 (4) 0.3496 (3) 0.0380 (13)
H10A 1.128892 1.031639 0.311897 0.046*
H10B 1.091906 0.945314 0.312116 0.046*
N4 0.7940 (5) 1.0447 (3) 0.5321 (3) 0.0377 (11)
H4 0.744740 0.990779 0.568716 0.045*
C9 0.7973 (6) 1.0856 (4) 0.5889 (3) 0.0408 (14)
H9A 0.703665 1.090138 0.621780 0.049*
H9B 0.824723 1.146279 0.553175 0.049*
C7 0.7183 (6) 1.0577 (4) 0.4022 (3) 0.0418 (14)
H7A 0.689758 0.997677 0.440380 0.050*
H7B 0.646435 1.092349 0.362786 0.050*
C6 0.8543 (5) 1.0479 (3) 0.3477 (3) 0.0350 (12)
H6A 0.837243 1.030970 0.304733 0.042*
H6B 0.891090 1.106025 0.315290 0.042*
C8 0.7168 (6) 1.1019 (4) 0.4586 (4) 0.0434 (14)
H8A 0.758644 1.158069 0.423021 0.052*
H8B 0.618830 1.116899 0.480465 0.052*
Ni3 0.500000 1.500000 0.500000 0.0280 (2)
O2W 0.5104 (4) 1.5055 (2) 0.6168 (2) 0.0374 (9)
H2WA 0.451405 1.548647 0.620771 0.056*
H2WB 0.589347 1.520291 0.613928 0.056*
N5 0.3476 (5) 1.4161 (3) 0.5683 (3) 0.0436 (12)
H5 0.333782 1.392139 0.529340 0.052*
O7W 1.3235 (4) 0.6425 (3) 0.6174 (3) 0.0660 (14)
H7WA 1.366682 0.665639 0.637536 0.099*
H7WB 1.244232 0.671069 0.624896 0.099*
N6 0.6644 (5) 1.3992 (3) 0.5280 (3) 0.0464 (12)
H6 0.671366 1.374659 0.486100 0.056*
C14 0.7918 (6) 1.4389 (5) 0.5068 (4) 0.0558 (18)
H14A 0.873557 1.397569 0.499126 0.067*
H14B 0.802863 1.450247 0.554899 0.067*
O6W 1.2369 (4) 0.7283 (3) 0.7946 (2) 0.0541 (11)
H6WA 1.317921 0.726218 0.763661 0.081*
H6WB 1.177461 0.729258 0.764271 0.081*
O5W 1.4763 (3) 0.7022 (2) 0.6828 (2) 0.0395 (9)
H5WA 1.538341 0.732237 0.641517 0.059*
H5WB 1.524801 0.660758 0.722817 0.059*
O1 0.9002 (4) 0.6178 (2) 0.9039 (2) 0.0326 (8)
O6 0.9335 (4) 1.5164 (2) 0.7321 (2) 0.0402 (9)
H6C 0.960853 1.564111 0.692096 0.060*
C17 0.9212 (5) 0.8304 (3) 0.8664 (3) 0.0229 (10)
H17 1.015334 0.815323 0.846193 0.027*
C16 0.8155 (5) 0.7918 (3) 0.8618 (3) 0.0216 (10)
C18 0.8904 (5) 0.8913 (3) 0.9005 (3) 0.0238 (10)
H18 0.964113 0.916614 0.903815 0.029*
C40 0.6201 (5) 0.9525 (3) 1.2561 (3) 0.0302 (12)
H40 0.535465 0.988328 1.236326 0.036*
C1 1.1247 (6) 0.3895 (3) 0.9048 (3) 0.0375 (13)
H1A 1.108999 0.364727 0.867554 0.045*
H1B 1.157958 0.339182 0.958205 0.045*
C28 0.8659 (5) 1.3371 (3) 0.7957 (3) 0.0323 (12)
H28 0.950712 1.353974 0.758385 0.039*
C31 0.6206 (5) 1.2844 (3) 0.9032 (3) 0.0319 (12)
H31 0.534822 1.267424 0.939145 0.038*
C13 0.6486 (8) 1.3227 (4) 0.6163 (4) 0.0614 (19)
H13A 0.651043 1.342483 0.660143 0.074*
H13B 0.728211 1.275571 0.620745 0.074*
C15 0.2154 (6) 1.4748 (5) 0.5758 (4) 0.0502 (16)
H15A 0.212231 1.487228 0.625394 0.060*
H15B 0.133940 1.444182 0.586810 0.060*
C11 0.3777 (8) 1.3401 (5) 0.6484 (4) 0.0606 (19)
H11A 0.300674 1.302890 0.671624 0.073*
H11B 0.383358 1.360212 0.691424 0.073*
C27 0.8528 (5) 1.2485 (3) 0.8489 (3) 0.0315 (12)
H27 0.930342 1.205552 0.847868 0.038*
C12 0.5140 (8) 1.2849 (4) 0.6361 (4) 0.065 (2)
H12A 0.519087 1.227524 0.689642 0.078*
H12B 0.509541 1.271311 0.588269 0.078*
C4 1.2423 (5) 0.5705 (4) 0.9910 (3) 0.0360 (13)
H4A 1.318132 0.607996 0.956861 0.043*
H4B 1.279137 0.517994 1.041693 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0278 (5) 0.0183 (4) 0.0225 (4) 0.0031 (4) −0.0059 (3) −0.0108 (4)
P2 0.0380 (8) 0.0178 (6) 0.0273 (7) −0.0020 (6) −0.0117 (6) −0.0089 (5)
P1 0.0314 (7) 0.0195 (6) 0.0258 (6) 0.0026 (6) −0.0079 (5) −0.0139 (5)
P3 0.0495 (9) 0.0290 (7) 0.0222 (7) −0.0109 (7) −0.0112 (6) −0.0074 (6)
O5 0.056 (2) 0.0220 (18) 0.042 (2) 0.0005 (18) −0.0129 (18) −0.0184 (17)
C29 0.031 (3) 0.023 (2) 0.019 (2) 0.000 (2) −0.0063 (19) −0.010 (2)
O4 0.051 (2) 0.0229 (18) 0.0265 (18) −0.0077 (17) −0.0132 (16) −0.0072 (15)
O3W 0.0317 (19) 0.0298 (19) 0.0354 (19) 0.0021 (16) −0.0082 (15) −0.0185 (16)
O4W 0.064 (3) 0.059 (3) 0.060 (3) −0.013 (2) −0.008 (2) −0.026 (2)
C22 0.017 (2) 0.022 (2) 0.020 (2) −0.002 (2) 0.0003 (18) −0.012 (2)
C38 0.040 (3) 0.022 (2) 0.025 (3) −0.007 (2) −0.011 (2) −0.010 (2)
C26 0.030 (3) 0.019 (2) 0.022 (2) −0.002 (2) −0.005 (2) −0.011 (2)
N1 0.036 (2) 0.021 (2) 0.026 (2) 0.0064 (19) −0.0090 (18) −0.0131 (18)
O3 0.049 (2) 0.027 (2) 0.054 (2) 0.0082 (18) −0.0240 (18) −0.0272 (19)
C34 0.019 (2) 0.025 (2) 0.021 (2) 0.006 (2) −0.0042 (18) −0.014 (2)
N2 0.039 (3) 0.031 (2) 0.030 (2) −0.003 (2) −0.0034 (19) −0.016 (2)
C3 0.033 (3) 0.052 (4) 0.046 (3) −0.004 (3) 0.006 (2) −0.032 (3)
O2 0.047 (2) 0.031 (2) 0.0312 (19) −0.0057 (17) 0.0045 (16) −0.0216 (17)
O9 0.090 (3) 0.034 (2) 0.028 (2) −0.021 (2) −0.022 (2) −0.0065 (17)
C35 0.028 (3) 0.023 (2) 0.024 (2) −0.004 (2) −0.004 (2) −0.012 (2)
C41 0.023 (2) 0.019 (2) 0.027 (2) 0.000 (2) −0.0026 (19) −0.012 (2)
C23 0.026 (3) 0.022 (2) 0.019 (2) 0.004 (2) −0.0033 (19) −0.010 (2)
C30 0.028 (3) 0.022 (3) 0.046 (3) 0.003 (2) −0.006 (2) −0.014 (2)
C25 0.021 (2) 0.018 (2) 0.025 (2) 0.001 (2) −0.0017 (19) −0.010 (2)
C5 0.053 (4) 0.030 (3) 0.034 (3) −0.007 (3) −0.010 (3) −0.014 (2)
C33 0.035 (3) 0.022 (2) 0.031 (3) 0.000 (2) −0.008 (2) −0.016 (2)
C39 0.033 (3) 0.040 (3) 0.023 (3) −0.007 (3) −0.003 (2) −0.013 (2)
C42 0.052 (3) 0.021 (3) 0.027 (3) −0.004 (2) −0.009 (2) −0.010 (2)
O7 0.053 (2) 0.038 (2) 0.0282 (19) −0.0107 (19) −0.0119 (17) −0.0096 (17)
C36 0.038 (3) 0.025 (3) 0.024 (3) 0.001 (2) −0.006 (2) −0.014 (2)
C19 0.023 (2) 0.018 (2) 0.015 (2) 0.001 (2) −0.0015 (18) −0.0077 (19)
C21 0.026 (3) 0.032 (3) 0.036 (3) −0.002 (2) −0.006 (2) −0.023 (2)
O8 0.054 (2) 0.053 (3) 0.0258 (19) −0.001 (2) −0.0044 (17) −0.0116 (19)
C20 0.023 (3) 0.033 (3) 0.036 (3) 0.004 (2) −0.001 (2) −0.024 (2)
C2 0.036 (3) 0.048 (4) 0.041 (3) 0.010 (3) −0.005 (2) −0.029 (3)
C37 0.038 (3) 0.025 (3) 0.030 (3) 0.007 (2) −0.015 (2) −0.013 (2)
C32 0.020 (2) 0.023 (2) 0.022 (2) 0.004 (2) −0.0025 (18) −0.013 (2)
C24 0.050 (3) 0.021 (2) 0.025 (3) −0.003 (2) −0.007 (2) −0.012 (2)
Ni2 0.0292 (5) 0.0196 (4) 0.0220 (4) 0.0031 (4) −0.0055 (4) −0.0117 (4)
O1W 0.073 (3) 0.036 (2) 0.033 (2) −0.014 (2) −0.0077 (19) −0.0169 (18)
N3 0.042 (3) 0.027 (2) 0.023 (2) −0.007 (2) −0.0027 (18) −0.0130 (18)
C10 0.049 (3) 0.044 (3) 0.031 (3) −0.007 (3) −0.005 (2) −0.024 (3)
N4 0.046 (3) 0.031 (2) 0.040 (3) −0.002 (2) −0.009 (2) −0.019 (2)
C9 0.041 (3) 0.047 (3) 0.037 (3) −0.002 (3) 0.001 (2) −0.025 (3)
C7 0.046 (3) 0.041 (3) 0.037 (3) 0.001 (3) −0.014 (3) −0.016 (3)
C6 0.050 (3) 0.029 (3) 0.031 (3) 0.001 (3) −0.015 (2) −0.016 (2)
C8 0.047 (4) 0.039 (3) 0.043 (3) 0.002 (3) −0.009 (3) −0.020 (3)
Ni3 0.0357 (5) 0.0258 (5) 0.0275 (5) −0.0032 (4) −0.0080 (4) −0.0148 (4)
O2W 0.046 (2) 0.043 (2) 0.034 (2) −0.0071 (19) −0.0093 (17) −0.0240 (18)
N5 0.058 (3) 0.045 (3) 0.039 (3) −0.017 (3) −0.008 (2) −0.023 (2)
O7W 0.037 (2) 0.102 (4) 0.104 (4) 0.006 (2) −0.008 (2) −0.089 (3)
N6 0.050 (3) 0.050 (3) 0.056 (3) 0.008 (3) −0.023 (2) −0.037 (3)
C14 0.042 (4) 0.071 (5) 0.079 (5) 0.013 (3) −0.014 (3) −0.059 (4)
O6W 0.052 (3) 0.059 (3) 0.042 (2) 0.004 (2) −0.0005 (19) −0.023 (2)
O5W 0.035 (2) 0.041 (2) 0.041 (2) −0.0007 (18) −0.0030 (16) −0.0199 (18)
O1 0.045 (2) 0.0221 (18) 0.0296 (19) 0.0041 (16) −0.0121 (16) −0.0115 (15)
O6 0.042 (2) 0.026 (2) 0.044 (2) −0.0058 (18) −0.0156 (17) −0.0044 (17)
C17 0.023 (2) 0.022 (2) 0.021 (2) 0.000 (2) 0.0004 (19) −0.010 (2)
C16 0.028 (3) 0.020 (2) 0.019 (2) 0.000 (2) −0.0066 (19) −0.010 (2)
C18 0.025 (3) 0.022 (2) 0.028 (3) −0.004 (2) −0.005 (2) −0.014 (2)
C40 0.025 (3) 0.034 (3) 0.031 (3) 0.001 (2) −0.007 (2) −0.015 (2)
C1 0.048 (3) 0.030 (3) 0.043 (3) 0.010 (3) −0.016 (3) −0.025 (3)
C28 0.036 (3) 0.027 (3) 0.032 (3) −0.007 (2) 0.009 (2) −0.017 (2)
C31 0.021 (3) 0.024 (3) 0.041 (3) 0.000 (2) 0.004 (2) −0.011 (2)
C13 0.090 (5) 0.038 (4) 0.060 (4) 0.013 (4) −0.044 (4) −0.020 (3)
C15 0.041 (4) 0.070 (5) 0.058 (4) −0.014 (3) 0.006 (3) −0.046 (4)
C11 0.087 (5) 0.057 (4) 0.042 (4) −0.035 (4) −0.005 (3) −0.017 (3)
C27 0.035 (3) 0.023 (3) 0.031 (3) 0.000 (2) 0.006 (2) −0.013 (2)
C12 0.106 (6) 0.034 (4) 0.048 (4) −0.015 (4) −0.034 (4) −0.002 (3)
C4 0.039 (3) 0.035 (3) 0.034 (3) −0.003 (3) −0.011 (2) −0.014 (3)

Geometric parameters (Å, º)

Ni1—N1i 2.067 (4) C24—H24A 0.9800
Ni1—N1 2.067 (4) C24—H24B 0.9800
Ni1—N2 2.064 (4) C24—H24C 0.9800
Ni1—N2i 2.064 (4) Ni2—N3ii 2.072 (4)
Ni1—O1i 2.134 (3) Ni2—N3 2.072 (4)
Ni1—O1 2.134 (3) Ni2—N4 2.076 (4)
P2—O5 1.495 (4) Ni2—N4ii 2.076 (4)
P2—C29 1.804 (5) Ni2—O1Wii 2.105 (4)
P2—O4 1.502 (3) Ni2—O1W 2.105 (4)
P2—O6 1.576 (4) O1W—H1WA 0.8701
P1—O3 1.570 (4) O1W—H1WB 0.8691
P1—O2 1.518 (3) N3—H3 1.0000
P1—O1 1.483 (3) N3—C10 1.481 (6)
P1—C16 1.811 (5) N3—C6 1.479 (6)
P3—C38 1.813 (5) C10—H10A 0.9900
P3—O9 1.562 (4) C10—H10B 0.9900
P3—O7 1.506 (4) C10—C9ii 1.496 (7)
P3—O8 1.499 (4) N4—H4 1.0000
C29—C30 1.391 (7) N4—C9 1.486 (6)
C29—C28 1.381 (7) N4—C8 1.457 (7)
O3W—H3WA 0.8523 C9—H9A 0.9900
O3W—H3WB 0.8700 C9—H9B 0.9900
O4W—H4WA 0.8687 C7—H7A 0.9900
O4W—H4WB 0.8702 C7—H7B 0.9900
C22—C41 1.400 (6) C7—C6 1.504 (7)
C22—C23 1.402 (6) C7—C8 1.513 (7)
C22—C19 1.497 (6) C6—H6A 0.9900
C38—C39 1.380 (7) C6—H6B 0.9900
C38—C37 1.390 (7) C8—H8A 0.9900
C26—C25 1.488 (6) C8—H8B 0.9900
C26—C31 1.388 (6) Ni3—N5 2.070 (4)
C26—C27 1.392 (6) Ni3—N5iii 2.070 (5)
N1—H1 1.0000 Ni3—N6 2.056 (5)
N1—C5 1.482 (6) Ni3—N6iii 2.056 (5)
N1—C1 1.474 (6) Ni3—O2Wiii 2.137 (3)
O3—H3C 0.8400 Ni3—O2W 2.136 (3)
C34—C35 1.497 (6) O2W—H2WA 0.8638
C34—C41 1.414 (6) O2W—H2WB 0.8553
C34—C32 1.401 (6) N5—H5 1.0000
N2—H2 1.0000 N5—C15 1.497 (7)
N2—C3 1.469 (6) N5—C11 1.431 (8)
N2—C4 1.477 (6) O7W—H7WA 0.8613
C3—H3A 0.9900 O7W—H7WB 0.8521
C3—H3B 0.9900 N6—H6 1.0000
C3—C2 1.521 (7) N6—C14 1.452 (7)
O9—H9C 0.8400 N6—C13 1.487 (8)
C35—C36 1.368 (7) C14—H14A 0.9900
C35—C40 1.392 (6) C14—H14B 0.9900
C41—C42 1.507 (6) C14—C15iii 1.507 (9)
C23—C25 1.396 (6) O6W—H6WA 0.8706
C23—C24 1.510 (6) O6W—H6WB 0.8688
C30—H30 0.9500 O5W—H5WA 0.8696
C30—C31 1.382 (7) O5W—H5WB 0.8704
C25—C32 1.409 (6) O6—H6C 0.8400
C5—H5A 0.9900 C17—H17 0.9500
C5—H5B 0.9900 C17—C16 1.387 (6)
C5—C4i 1.513 (7) C17—C18 1.396 (6)
C33—H33A 0.9800 C18—H18 0.9500
C33—H33B 0.9800 C40—H40 0.9500
C33—H33C 0.9800 C1—H1A 0.9900
C33—C32 1.506 (6) C1—H1B 0.9900
C39—H39 0.9500 C28—H28 0.9500
C39—C40 1.399 (6) C28—C27 1.375 (7)
C42—H42A 0.9800 C31—H31 0.9500
C42—H42B 0.9800 C13—H13A 0.9900
C42—H42C 0.9800 C13—H13B 0.9900
C36—H36 0.9500 C13—C12 1.506 (9)
C36—C37 1.385 (6) C15—H15A 0.9900
C19—C20 1.391 (6) C15—H15B 0.9900
C19—C18 1.393 (6) C11—H11A 0.9900
C21—H21 0.9500 C11—H11B 0.9900
C21—C20 1.389 (6) C11—C12 1.514 (10)
C21—C16 1.398 (6) C27—H27 0.9500
C20—H20 0.9500 C12—H12A 0.9900
C2—H2A 0.9900 C12—H12B 0.9900
C2—H2B 0.9900 C4—H4A 0.9900
C2—C1 1.513 (7) C4—H4B 0.9900
C37—H37 0.9500
N1—Ni1—N1i 180.0 N4—Ni2—O1W 89.10 (17)
N1—Ni1—O1i 91.79 (14) N4ii—Ni2—O1W 90.90 (17)
N1i—Ni1—O1i 88.21 (14) N4ii—Ni2—O1Wii 89.10 (17)
N1i—Ni1—O1 91.79 (14) N4—Ni2—N4ii 180.00 (13)
N1—Ni1—O1 88.21 (14) Ni2—O1W—H1WA 106.8
N1—Ni1—N2i 85.31 (16) Ni2—O1W—H1WB 108.1
N1i—Ni1—N2 85.31 (16) H1WA—O1W—H1WB 104.5
N1i—Ni1—N2i 94.69 (16) Ni2—N3—H3 107.3
N1—Ni1—N2 94.69 (16) C10—N3—Ni2 105.7 (3)
N2i—Ni1—N2 180.0 C10—N3—H3 107.3
N2i—Ni1—O1 90.47 (15) C6—N3—Ni2 114.6 (3)
N2—Ni1—O1 89.53 (15) C6—N3—H3 107.3
N2i—Ni1—O1i 89.53 (15) C6—N3—C10 114.3 (4)
N2—Ni1—O1i 90.47 (15) N3—C10—H10A 109.9
O1i—Ni1—O1 180.0 N3—C10—H10B 109.9
O5—P2—C29 110.3 (2) N3—C10—C9ii 109.1 (4)
O5—P2—O4 115.4 (2) H10A—C10—H10B 108.3
O5—P2—O6 111.3 (2) C9ii—C10—H10A 109.9
O4—P2—C29 108.0 (2) C9ii—C10—H10B 109.9
O4—P2—O6 110.5 (2) Ni2—N4—H4 106.9
O6—P2—C29 100.2 (2) C9—N4—Ni2 106.4 (3)
O3—P1—C16 102.1 (2) C9—N4—H4 106.9
O2—P1—O3 110.2 (2) C8—N4—Ni2 115.2 (3)
O2—P1—C16 107.1 (2) C8—N4—H4 106.9
O1—P1—O3 111.4 (2) C8—N4—C9 114.0 (4)
O1—P1—O2 115.2 (2) C10ii—C9—H9A 110.1
O1—P1—C16 110.06 (19) C10ii—C9—H9B 110.1
O9—P3—C38 101.5 (2) N4—C9—C10ii 108.1 (4)
O7—P3—C38 107.6 (2) N4—C9—H9A 110.1
O7—P3—O9 109.8 (2) N4—C9—H9B 110.1
O8—P3—C38 109.4 (2) H9A—C9—H9B 108.4
O8—P3—O9 111.8 (2) H7A—C7—H7B 107.3
O8—P3—O7 115.7 (2) C6—C7—H7A 108.1
C30—C29—P2 120.9 (4) C6—C7—H7B 108.1
C28—C29—P2 121.0 (4) C6—C7—C8 116.9 (5)
C28—C29—C30 118.0 (4) C8—C7—H7A 108.1
H3WA—O3W—H3WB 98.3 C8—C7—H7B 108.1
H4WA—O4W—H4WB 104.4 N3—C6—C7 112.6 (4)
C41—C22—C23 120.1 (4) N3—C6—H6A 109.1
C41—C22—C19 118.6 (4) N3—C6—H6B 109.1
C23—C22—C19 120.9 (4) C7—C6—H6A 109.1
C39—C38—P3 121.3 (4) C7—C6—H6B 109.1
C39—C38—C37 118.6 (4) H6A—C6—H6B 107.8
C37—C38—P3 120.1 (4) N4—C8—C7 111.9 (5)
C31—C26—C25 123.6 (4) N4—C8—H8A 109.2
C31—C26—C27 116.3 (4) N4—C8—H8B 109.2
C27—C26—C25 120.1 (4) C7—C8—H8A 109.2
Ni1—N1—H1 106.9 C7—C8—H8B 109.2
C5—N1—Ni1 104.8 (3) H8A—C8—H8B 107.9
C5—N1—H1 106.9 O2W—Ni3—O2Wiii 180.0
C1—N1—Ni1 116.4 (3) N5iii—Ni3—O2W 91.54 (15)
C1—N1—H1 106.9 N5—Ni3—O2W 88.46 (15)
C1—N1—C5 114.2 (4) N5iii—Ni3—O2Wiii 88.46 (15)
P1—O3—H3C 109.5 N5—Ni3—O2Wiii 91.54 (15)
C41—C34—C35 117.8 (4) N5—Ni3—N5iii 180.0
C32—C34—C35 121.4 (4) N6—Ni3—O2W 89.19 (16)
C32—C34—C41 120.8 (4) N6iii—Ni3—O2W 90.81 (16)
Ni1—N2—H2 106.6 N6iii—Ni3—O2Wiii 89.19 (16)
C3—N2—Ni1 116.1 (3) N6—Ni3—O2Wiii 90.81 (16)
C3—N2—H2 106.6 N5—Ni3—N6iii 85.2 (2)
C3—N2—C4 114.4 (4) N5—Ni3—N6 94.8 (2)
C4—N2—Ni1 106.0 (3) N5iii—Ni3—N6 85.2 (2)
C4—N2—H2 106.6 N5iii—Ni3—N6iii 94.8 (2)
N2—C3—H3A 109.1 N6iii—Ni3—N6 180.0
N2—C3—H3B 109.1 Ni3—O2W—H2WA 110.2
N2—C3—C2 112.3 (4) Ni3—O2W—H2WB 109.7
H3A—C3—H3B 107.9 H2WA—O2W—H2WB 103.1
C2—C3—H3A 109.1 Ni3—N5—H5 106.1
C2—C3—H3B 109.1 C15—N5—Ni3 105.8 (4)
P3—O9—H9C 109.5 C15—N5—H5 106.1
C36—C35—C34 119.7 (4) C11—N5—Ni3 117.4 (4)
C36—C35—C40 118.5 (4) C11—N5—H5 106.1
C40—C35—C34 121.7 (4) C11—N5—C15 114.5 (5)
C22—C41—C34 119.4 (4) H7WA—O7W—H7WB 94.0
C22—C41—C42 119.5 (4) Ni3—N6—H6 106.1
C34—C41—C42 121.1 (4) C14—N6—Ni3 107.9 (4)
C22—C23—C24 118.7 (4) C14—N6—H6 106.1
C25—C23—C22 120.0 (4) C14—N6—C13 114.0 (5)
C25—C23—C24 121.2 (4) C13—N6—Ni3 115.9 (4)
C29—C30—H30 119.4 C13—N6—H6 106.1
C31—C30—C29 121.2 (5) N6—C14—H14A 109.8
C31—C30—H30 119.4 N6—C14—H14B 109.8
C23—C25—C26 118.9 (4) N6—C14—C15iii 109.4 (5)
C23—C25—C32 120.8 (4) H14A—C14—H14B 108.2
C32—C25—C26 120.2 (4) C15iii—C14—H14A 109.8
N1—C5—H5A 110.0 C15iii—C14—H14B 109.8
N1—C5—H5B 110.0 H6WA—O6W—H6WB 104.5
N1—C5—C4i 108.4 (4) H5WA—O5W—H5WB 104.5
H5A—C5—H5B 108.4 P1—O1—Ni1 167.3 (2)
C4i—C5—H5A 110.0 P2—O6—H6C 109.5
C4i—C5—H5B 110.0 C16—C17—H17 119.7
H33A—C33—H33B 109.5 C16—C17—C18 120.5 (4)
H33A—C33—H33C 109.5 C18—C17—H17 119.7
H33B—C33—H33C 109.5 C21—C16—P1 122.4 (4)
C32—C33—H33A 109.5 C17—C16—P1 118.7 (3)
C32—C33—H33B 109.5 C17—C16—C21 118.7 (4)
C32—C33—H33C 109.5 C19—C18—C17 121.1 (4)
C38—C39—H39 119.6 C19—C18—H18 119.5
C38—C39—C40 120.8 (5) C17—C18—H18 119.5
C40—C39—H39 119.6 C35—C40—C39 120.0 (5)
C41—C42—H42A 109.5 C35—C40—H40 120.0
C41—C42—H42B 109.5 C39—C40—H40 120.0
C41—C42—H42C 109.5 N1—C1—C2 112.0 (4)
H42A—C42—H42B 109.5 N1—C1—H1A 109.2
H42A—C42—H42C 109.5 N1—C1—H1B 109.2
H42B—C42—H42C 109.5 C2—C1—H1A 109.2
C35—C36—H36 119.1 C2—C1—H1B 109.2
C35—C36—C37 121.8 (5) H1A—C1—H1B 107.9
C37—C36—H36 119.1 C29—C28—H28 120.0
C20—C19—C22 124.0 (4) C27—C28—C29 120.1 (5)
C20—C19—C18 117.9 (4) C27—C28—H28 120.0
C18—C19—C22 118.0 (4) C26—C31—H31 119.3
C20—C21—H21 119.9 C30—C31—C26 121.4 (4)
C20—C21—C16 120.2 (4) C30—C31—H31 119.3
C16—C21—H21 119.9 N6—C13—H13A 109.2
C19—C20—H20 119.3 N6—C13—H13B 109.2
C21—C20—C19 121.5 (4) N6—C13—C12 112.1 (5)
C21—C20—H20 119.3 H13A—C13—H13B 107.9
C3—C2—H2A 108.4 C12—C13—H13A 109.2
C3—C2—H2B 108.4 C12—C13—H13B 109.2
H2A—C2—H2B 107.5 N5—C15—C14iii 110.1 (5)
C1—C2—C3 115.4 (4) N5—C15—H15A 109.6
C1—C2—H2A 108.4 N5—C15—H15B 109.6
C1—C2—H2B 108.4 C14iii—C15—H15A 109.6
C38—C37—H37 120.0 C14iii—C15—H15B 109.6
C36—C37—C38 120.1 (5) H15A—C15—H15B 108.2
C36—C37—H37 120.0 N5—C11—H11A 109.3
C34—C32—C25 118.8 (4) N5—C11—H11B 109.3
C34—C32—C33 120.2 (4) N5—C11—C12 111.5 (5)
C25—C32—C33 121.0 (4) H11A—C11—H11B 108.0
C23—C24—H24A 109.5 C12—C11—H11A 109.3
C23—C24—H24B 109.5 C12—C11—H11B 109.3
C23—C24—H24C 109.5 C26—C27—H27 118.5
H24A—C24—H24B 109.5 C28—C27—C26 123.0 (5)
H24A—C24—H24C 109.5 C28—C27—H27 118.5
H24B—C24—H24C 109.5 C13—C12—C11 118.5 (6)
O1Wii—Ni2—O1W 180.0 C13—C12—H12A 107.7
N3—Ni2—O1W 88.65 (15) C13—C12—H12B 107.7
N3ii—Ni2—O1Wii 88.65 (15) C11—C12—H12A 107.7
N3—Ni2—O1Wii 91.35 (15) C11—C12—H12B 107.7
N3ii—Ni2—O1W 91.35 (15) H12A—C12—H12B 107.1
N3—Ni2—N3ii 180.0 N2—C4—C5i 107.4 (4)
N3—Ni2—N4ii 84.66 (16) N2—C4—H4A 110.2
N3ii—Ni2—N4ii 95.34 (16) N2—C4—H4B 110.2
N3ii—Ni2—N4 84.66 (16) C5i—C4—H4A 110.2
N3—Ni2—N4 95.34 (16) C5i—C4—H4B 110.2
N4—Ni2—O1Wii 90.90 (17) H4A—C4—H4B 108.5
Ni1—N1—C5—C4i 44.0 (4) O7—P3—C38—C37 38.0 (5)
Ni1—N1—C1—C2 −55.0 (5) C36—C35—C40—C39 −2.7 (7)
Ni1—N2—C3—C2 55.3 (5) C19—C22—C41—C34 169.3 (4)
Ni1—N2—C4—C5i −42.6 (4) C19—C22—C41—C42 −9.3 (6)
P2—C29—C30—C31 −177.8 (4) C19—C22—C23—C25 −169.7 (4)
P2—C29—C28—C27 177.0 (4) C19—C22—C23—C24 12.3 (6)
P3—C38—C39—C40 −176.5 (4) O8—P3—C38—C39 −15.9 (5)
P3—C38—C37—C36 177.2 (4) O8—P3—C38—C37 164.4 (4)
O5—P2—C29—C30 29.0 (5) C20—C19—C18—C17 −1.5 (7)
O5—P2—C29—C28 −149.2 (4) C20—C21—C16—P1 173.3 (4)
C29—C30—C31—C26 0.7 (8) C20—C21—C16—C17 −2.0 (7)
C29—C28—C27—C26 1.1 (8) C37—C38—C39—C40 3.2 (7)
O4—P2—C29—C30 −98.0 (4) C32—C34—C35—C36 −105.9 (5)
O4—P2—C29—C28 83.8 (4) C32—C34—C35—C40 77.4 (6)
C22—C23—C25—C26 175.0 (4) C32—C34—C41—C22 2.2 (7)
C22—C23—C25—C32 −1.0 (7) C32—C34—C41—C42 −179.2 (4)
C22—C19—C20—C21 −174.9 (4) C24—C23—C25—C26 −7.1 (7)
C22—C19—C18—C17 175.5 (4) C24—C23—C25—C32 176.9 (4)
C38—C39—C40—C35 −0.6 (8) Ni2—N3—C10—C9ii 43.0 (5)
C26—C25—C32—C34 −177.1 (4) Ni2—N3—C6—C7 −54.7 (5)
C26—C25—C32—C33 2.1 (7) Ni2—N4—C9—C10ii −41.1 (5)
O3—P1—O1—Ni1 149.1 (9) Ni2—N4—C8—C7 55.8 (5)
O3—P1—C16—C21 25.1 (4) C10—N3—C6—C7 −176.9 (4)
O3—P1—C16—C17 −159.6 (3) C9—N4—C8—C7 179.2 (5)
C34—C35—C36—C37 −173.4 (4) C6—N3—C10—C9ii 170.0 (4)
C34—C35—C40—C39 174.0 (4) C6—C7—C8—N4 −71.7 (6)
N2—C3—C2—C1 −71.6 (6) C8—N4—C9—C10ii −169.2 (4)
C3—N2—C4—C5i −171.9 (4) C8—C7—C6—N3 71.3 (6)
C3—C2—C1—N1 71.1 (6) Ni3—N5—C15—C14iii 37.7 (5)
O2—P1—O1—Ni1 22.6 (10) Ni3—N5—C11—C12 −53.9 (6)
O2—P1—C16—C21 141.0 (4) Ni3—N6—C14—C15iii −39.2 (5)
O2—P1—C16—C17 −43.8 (4) Ni3—N6—C13—C12 52.9 (6)
O9—P3—C38—C39 102.4 (4) N5—C11—C12—C13 69.6 (7)
O9—P3—C38—C37 −77.3 (4) N6—C13—C12—C11 −69.2 (7)
C35—C34—C41—C22 −175.0 (4) C14—N6—C13—C12 178.9 (5)
C35—C34—C41—C42 3.6 (7) O1—P1—C16—C21 −93.2 (4)
C35—C34—C32—C25 177.6 (4) O1—P1—C16—C17 82.0 (4)
C35—C34—C32—C33 −1.6 (7) O6—P2—C29—C30 146.4 (4)
C35—C36—C37—C38 −0.8 (8) O6—P2—C29—C28 −31.8 (4)
C41—C22—C23—C25 3.8 (7) C16—P1—O1—Ni1 −98.5 (10)
C41—C22—C23—C24 −174.2 (4) C16—C21—C20—C19 −0.2 (7)
C41—C22—C19—C20 85.7 (6) C16—C17—C18—C19 −0.7 (7)
C41—C22—C19—C18 −91.1 (5) C18—C19—C20—C21 1.9 (7)
C41—C34—C35—C36 71.2 (6) C18—C17—C16—P1 −173.0 (3)
C41—C34—C35—C40 −105.5 (5) C18—C17—C16—C21 2.4 (7)
C41—C34—C32—C25 0.6 (7) C40—C35—C36—C37 3.4 (7)
C41—C34—C32—C33 −178.6 (4) C1—N1—C5—C4i 172.6 (4)
C23—C22—C41—C34 −4.4 (7) C28—C29—C30—C31 0.4 (8)
C23—C22—C41—C42 177.0 (4) C31—C26—C25—C23 110.8 (5)
C23—C22—C19—C20 −100.7 (5) C31—C26—C25—C32 −73.2 (6)
C23—C22—C19—C18 82.5 (5) C31—C26—C27—C28 0.1 (7)
C23—C25—C32—C34 −1.2 (7) C13—N6—C14—C15iii −169.4 (5)
C23—C25—C32—C33 178.0 (4) C15—N5—C11—C12 −179.0 (5)
C30—C29—C28—C27 −1.3 (7) C11—N5—C15—C14iii 168.7 (5)
C25—C26—C31—C30 178.9 (5) C27—C26—C25—C23 −69.4 (6)
C25—C26—C27—C28 −179.7 (5) C27—C26—C25—C32 106.6 (5)
C5—N1—C1—C2 −177.5 (4) C27—C26—C31—C30 −0.9 (7)
C39—C38—C37—C36 −2.5 (7) C4—N2—C3—C2 179.3 (5)
O7—P3—C38—C39 −142.3 (4)

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+3, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6iv 1.00 2.32 3.196 (5) 146
N2—H2···O6W 1.00 2.18 3.039 (6) 143
N3—H3···07v 1.00 2.13 3.102 (6) 162
N4—H4···O4W 1.00 2.06 3.056 (6) 173
N5—H5···O9vi 1.00 2.07 3.003 (6) 155
N6—H6···O7Wii 1.00 1.98 2.956 (6) 166
O3—H3C···O5iv 0.84 1.84 2.654 (5) 162
O6—H6C···O3Wvii 0.84 1.75 2.550 (5) 159
O9—H9C···O4viii 0.84 1.74 2.517 (5) 154
O1W—H1WB···O7v 0.87 1.81 2.679 (5) 173
O1W—H1WA···O4W 0.87 2.45 3.256 (6) 155
O2W—H2WB···O4 0.86 1.90 2.729 (5) 164
O2W—H2WA···O7Wix 0.86 1.81 2.675 (6) 174
O3W—H3WB···O2 0.87 1.81 2.676 (4) 177
O3W—H3WA···O7v 0.85 1.84 2.689 (5) 174
O4W—H4WB···O3 0.87 2.26 3.115 (6) 167
O4W—H4WA···O8v 0.87 1.93 2.796 (6) 172
O5W—H5WB···O5x 0.87 1.98 2.813 (5) 159
O5W—H5WA···O8xi 0.87 1.87 2.725 (5) 168
O6W—H6WB···O2 0.87 2.02 2.799 (6) 149
O6W—H6WA···O5W 0.87 2.00 2.842 (5) 164
O7W—H7WB···O3W 0.85 2.02 2.731 (5) 140
O7W—H7WA···O5W 0.86 1.83 2.688 (5) 173

Symmetry codes: (ii) −x+2, −y+2, −z+1; (iv) x, y−1, z; (v) x, y, z−1; (vi) −x+1, −y+2, −z+2; (vii) x, y+1, z; (viii) x, y−1, z+1; (ix) x−1, y+1, z; (x) x+1, y−1, z; (xi) x+1, y, z−1.

References

  1. Alexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2017). CrystEngComm, 19, 1993–2006.
  2. Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.
  3. Beckmann, J., Rüttinger, R. & Schwich, T. (2008). Cryst. Growth Des. 8, 3271–3276.
  4. Bosnich, B., Poon, C. K. & Tobe, M. L. (1965a). Inorg. Chem. 4, 1102–1108.
  5. Bosnich, B., Tobe, M. L. & Webb, G. A. (1965b). Inorg. Chem. 4, 1109–1112.
  6. Firmino, A. D. G., Figueira, F., Tomé, J. P. C., Paz, F. A. A. & Rocha, J. (2018). Coord. Chem. Rev. 355, 133–149.
  7. Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054. [DOI] [PubMed]
  8. Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2016). CrystEngComm, 18, 2596–2606.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hermer, N., Reinsch, H., Mayer, P. & Stock, N. (2016). CrystEngComm, 18, 8147–8150.
  11. Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.
  12. Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.
  13. Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shuĺga, Y. L., Shova, S. & Arion, V. B. (2012). Dalton Trans. 41, 4118–4125. [DOI] [PubMed]
  14. MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. Ouellette, W., Wang, G., Liu, H., Yee, G. T., O’Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 953–963. [DOI] [PubMed]
  17. Pili, S., Argent, S. P., Morris, C. G., Rought, P., García-Sakai, V., Silverwood, I. P., Easun, T. L., Li, M., Warren, M. R., Murray, C. A., Tang, C. C., Yang, S. & Schröder, M. (2016). J. Am. Chem. Soc. 138, 6352–6355. [DOI] [PMC free article] [PubMed]
  18. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. [DOI] [PubMed]
  19. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
  23. Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
  24. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. [DOI] [PubMed]
  25. Taddei, M., Costantino, F., Vivani, R., Sabatini, S., Lim, S.-H. & Cohen, S. M. (2014). Chem. Commun. 50, 5737–5740. [DOI] [PubMed]
  26. Tsymbal, L. V., Andriichuk, I. L., Lozan, V., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 625–628. [DOI] [PMC free article] [PubMed]
  27. Vaidhyanathan, R., Mahmoudkhani, A. H. & Shimizu, G. K. H. (2009). Can. J. Chem. 87, 247–253.
  28. Vilela, S. M. F., Navarro, J. A. R., Barbosa, P., Mendes, R. F., Pérez-Sánchez, G., Nowell, H., Ananias, D., Figueiredo, F., Gomes, J. R. B., Tomé, J. P. C. & Paz, F. A. A. (2021). J. Am. Chem. Soc. 143, 1365–1376. [DOI] [PubMed]
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka (in Russian).
  31. Yücesan, G., Zorlu, Y., Stricker, M. & Beckmann, J. (2018). Coord. Chem. Rev. 369, 105–122.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022006624/hb8026sup1.cif

e-78-00750-sup1.cif (828.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006624/hb8026Isup2.hkl

e-78-00750-Isup2.hkl (528.8KB, hkl)

CCDC reference: 2178456

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES