Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 16;78(Pt 7):732–736. doi: 10.1107/S205698902200620X

Crystal structure and Hirshfeld surface analysis of (E)-2-(4-bromo­phen­yl)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]diazene

Mehmet Akkurt a, Sema Öztürk Yıldırım b,a, Namiq Q Shikhaliyev c, Naila A Mammadova c, Ayten A Niyazova c,d, Victor N Khrustalev e,f, Ajaya Bhattarai g,*
PMCID: PMC9260355  PMID: 35855357

C—H⋯Br inter­actions connect mol­ecules in the crystal, resulting in zigzag C(8) chains along the [100] direction. C—Br⋯π inter­actions connect these chains into parallel layers to (002). van der Waals inter­actions between the layers aid in the cohesion of the crystal packing.

Keywords: crystal structure, non-covalent inter­actions, C—H⋯Br inter­actions, C(8) chains, Hirshfeld surface analysis

Abstract

The mol­ecule of the title compound, C14H8Br3N3O2, consists of three almost planar groups: the central di­bromo­ethenyldiazene fragment and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for bromine- and nitro-substituted rings, respectively. In the crystal, C—H⋯Br inter­actions connect mol­ecules, generating zigzag C(8) chains along the [100] direction. These chains are linked by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. The most substantial contributions to crystal packing, according to a Hirshfeld surface analysis, are from Br⋯H/H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts.

1. Chemical context

Azo dyes constitute the largest production volume (ca 70%) of the dye industry today, and their relative importance may increase further in the future (Lipskikh et al., 2018). They play a crucial role in the printing market, the design of functional materials attributed to smart hydrogen bonding, photo-triggered structural switching, self-assembled layers, ionophores, liquid crystals, semiconductors, indicators, spectrophotometric reagents for determination of metal ions, photoluminescent materials, catalysts, anti­microbial agents, optical recording media, spin-coating films, etc (Zollinger, 1994, 1995; Gurbanov et al., 2020a ,b ; Mahmudov et al., 2010, 2013). Depending on the attached substituents, the functional properties of azo compounds and their metal complexes can be improved/controlled (Ma et al., 2020, 2021). Both E/Z isomerism and azo–hydrazo tautomerism properties of azo dyes are key phenomena in the synthesis and development of new functional materials (Shixaliyev et al., 2018, 2019). The attachment of non-covalent bond acceptor or donor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of their metal complexes (Mahmudov et al., 2020, 2021, 2022). Thus, we have attached bromine atoms and a nitro group together with aryl rings to the –N=N– linkage leading to a new azo compound, (E)-2-(4-bromo­phen­yl)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]diazene, which can provide inter­molecular halogen and hydrogen bonds as well as π-inter­actions. 1.

2. Structural commentary

The mol­ecule of the title compound (Fig. 1) consists of three almost planar groups: the central di­bromo­ethenyldiazene fragment [largest deviation from the l.s. plane is 0.039 (3) Å for N2] and two attached aromatic rings. The mean planes of these rings form dihedral angles with the plane of the central fragment of 26.35 (15) and 72.57 (14)° for the bromine- and nitro-substituted rings, respectively. The nitro group is twisted by 8.1 (2)° with respect to the C3–C8 aromatic ring. The C2—N2 bond distance of 1.406 (4) Å indicates π-conjugation between ethene and diazo groups. All other bond lengths and angles in the title compound are similar to those reported for the related azo compounds discussed in the Database survey section.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, C—H⋯Br inter­actions connect the mol­ecules, generating zigzag C(8) chains (Bernstein et al., 1995) along the [100] direction (Table 1, Figs. 2 and 3). These chains are linked by C—Br⋯π inter­actions [C1—Br1⋯Cg1ii; C1—Br1 = 1.864 (3) Å, Br1⋯Cg1ii = 3.5803 (16) Å, C1⋯Cg1ii = 4.722 (3) Å, C1—Br1⋯Cg1ii = 116.77 (9)°; Cg1 is the centroid of the C3–C8 ring; symmetry code (ii): x +  Inline graphic , −y +  Inline graphic , z] into layers parallel to (001) (Fig. 4). van der Waals inter­actions between the layers help to keep the crystal packing together.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.95 2.89 3.530 (4) 126

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

View down the a-axis of the title compound showing the C—H⋯Br inter­actions.

Figure 3.

Figure 3

View down the b-axis of the title compound, showing the C—Br⋯π inter­actions.

Figure 4.

Figure 4

View down the c axis of the title compound, showing the C—Br⋯π inter­actions.

Crystal Explorer 17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed color scale of −0.1401 (red) to 1.1158 (blue) a.u. (Fig. 5). The red patches represent short contacts and negative d norm values on the surface, which correspond to the C—H⋯Br hydrogen bonds discussed above (Table 1). The C10—H10⋯Br1 inter­actions, which are important for mol­ecular packing of the title compound, are responsible for the red patch that appears around Br1.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1401 to 1.1158 a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into Br⋯H / H⋯Br (20.9%), C⋯H/H⋯C (15.2%), O⋯H/H⋯O (12.6%) and H⋯H (11.7%) contacts are shown in Fig. 6, while numerical details for short inter­molecular contacts are given in Table 2. Br⋯C/C⋯Br (8.8%), Br⋯Br (6.7%), N⋯H/H⋯N (6.5%), Br⋯O/O⋯Br (5.6%), O⋯C/C⋯O (4.1%), Br⋯N/N⋯Br (3.9%), C⋯C (2.5%), O⋯N/N⋯O (1.3%) and N⋯C/C⋯N (0.1%) contacts have little directional influence on the mol­ecular packing.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a) and delineated into (b) Br⋯H/H⋯Br, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, and (e) H⋯H inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Br1⋯H10 2.89 Inline graphic  + x, Inline graphic  − y, z
H14⋯H5 2.40 Inline graphic  − x, − Inline graphic  + y, − Inline graphic  + z
Br2⋯Br3 3.44 Inline graphic  + x, Inline graphic  − y, z
H10⋯C13 3.02 x, 1 − y, Inline graphic  + z
O1⋯H13 2.75 x, 1 + y, z
H7⋯N2 2.65 Inline graphic  − x, Inline graphic  + y, − Inline graphic  + z

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the (E)-1-(2,2-di­bromo-1-phenyl­ethen­yl)-2-phenyl­diazene fragment showed that the nine closest are those of CSD refcodes TAZDIL [(I); Atioğlu et al., 2022], PAXDOL [(II); Çelikesir et al., 2022], GUPHIL [(III); Özkaraca et al., 2020b ], HONBUK [(IV); Akkurt et al., 2019], HONBOE [(V); Akkurt et al., 2019], HODQAV [(VI); Shikhaliyev et al., 2019], XIZREG [(VII); Atioğlu et al., 2019], LEQXOX [(VIII); Shikhaliyev et al., 2018] and LEQXIR [(IX); Shikhaliyev et al., 2018].

In (I), the mol­ecules are connected by C—H⋯O and C—H⋯F hydrogen bonds into layers parallel to (011). The crystal packing is consolidated by C—Br⋯π and C—F⋯π contacts, as well as by π–π stacking inter­actions. In the crystal of (II), the mol­ecules are linked into chains running parallel to [001] by C—H⋯O hydrogen bonds. The crystal packing is consolidated by C—F⋯π contacts and π–π stacking inter­actions, and short Br⋯O [2.9828 (13) Å] distances are also observed. In the crystal of (III), the mol­ecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified, and the shortest aromatic ring centroid separation is greater than 5.25 Å. In the crystals of (IV) and (V), the mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (IV) and Br for (V)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to (001). In the crystal of (VI), the mol­ecules are stacked in columns parallel to [100] via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (VII), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In (VIII), C—H⋯N and short Cl⋯Cl contacts are observed, and in (IX), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.

5. Synthesis and crystallization

This dye was synthesized according to the reported method (Akkurt et al., 2019; Atioğlu et al., 2019; Maharramov et al., 2018; Özkaraca et al., 2020a ,b ). A 20 mL screw neck vial was charged with DMSO (10 mL), (E)-1-(4-bromo­phen­yl)-2-(4-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylene­di­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1-3 h (until TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Red solid (58%); m.p. 398 K. Analysis calculated for C14H8Br3N3O2 (M = 489.95): C 34.32, H 1.65, N 8.58; found: C 34.27, H 1.70, N 8.56%. 1H NMR (300 MHz, CDCl3) δ 8.16–7.41 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 150.89, 149.62, 148.26, 136.43, 132.25, 127.77, 125.57, 124.53, 123.57, 93.24. ESI–MS: m/z: 490.96 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.95 Å) with U iso(H) = 1.2U eq(C). One reflection (110), affected by the beam stop, was omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C14H8Br3N3O2
M r 489.96
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 100
a, b, c (Å) 13.8678 (5), 13.5442 (5), 8.3017 (3)
V3) 1559.29 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.77
Crystal size (mm) 0.31 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST, Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.044, 0.110
No. of measured, independent and observed [I > 2σ(I)] reflections 75835, 7370, 5962
R int 0.057
(sin θ/λ)max−1) 0.826
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.085, 1.02
No. of reflections 7370
No. of parameters 199
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.41, −0.97
Absolute structure Flack parameter determined using 2437 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.003 (5)

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902200620X/yk2170sup1.cif

e-78-00732-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902200620X/yk2170Isup2.hkl

e-78-00732-Isup2.hkl (585.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698902200620X/yk2170Isup3.cml

CCDC reference: 2178832

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, SÖY, VNK and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.

supplementary crystallographic information

Crystal data

C14H8Br3N3O2 Dx = 2.087 Mg m3
Mr = 489.96 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 9976 reflections
a = 13.8678 (5) Å θ = 2.9–34.8°
b = 13.5442 (5) Å µ = 7.77 mm1
c = 8.3017 (3) Å T = 100 K
V = 1559.29 (10) Å3 Block, red
Z = 4 0.31 × 0.14 × 0.08 mm
F(000) = 936

Data collection

Bruker D8 QUEST, Photon III detector diffractometer 7370 independent reflections
Radiation source: fine-focus sealed X-Ray tube 5962 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
Detector resolution: 7.31 pixels mm-1 θmax = 36.0°, θmin = 2.9°
φ and ω shutterless scans h = −22→22
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.044, Tmax = 0.110 l = −13→13
75835 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.8309P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
7370 reflections Δρmax = 1.41 e Å3
199 parameters Δρmin = −0.97 e Å3
1 restraint Absolute structure: Flack parameter determined using 2437 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.003 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.49964 (2) 0.72932 (3) 0.49158 (6) 0.02765 (8)
Br2 0.44572 (2) 0.50470 (2) 0.51189 (7) 0.02906 (8)
Br3 −0.10955 (3) 0.24165 (3) 0.55241 (7) 0.03182 (9)
O1 0.1810 (2) 1.1045 (2) 0.3729 (4) 0.0333 (6)
O2 0.1662 (3) 1.1002 (2) 0.6323 (4) 0.0326 (6)
N1 0.18506 (19) 1.0613 (2) 0.5020 (5) 0.0231 (5)
N2 0.24431 (19) 0.57755 (19) 0.5188 (4) 0.0207 (5)
N3 0.15599 (19) 0.5982 (2) 0.5376 (4) 0.0228 (6)
C1 0.4020 (2) 0.6350 (2) 0.5012 (6) 0.0222 (6)
C2 0.3073 (2) 0.6586 (2) 0.5080 (5) 0.0205 (5)
C3 0.2727 (2) 0.7629 (2) 0.5040 (5) 0.0196 (5)
C4 0.2373 (3) 0.8055 (3) 0.6449 (5) 0.0221 (6)
H4 0.233234 0.767615 0.741062 0.027*
C5 0.2076 (3) 0.9043 (3) 0.6441 (5) 0.0222 (6)
H5 0.184039 0.934772 0.739348 0.027*
C6 0.2136 (2) 0.9563 (2) 0.5016 (5) 0.0212 (5)
C7 0.2468 (3) 0.9148 (3) 0.3596 (5) 0.0249 (7)
H7 0.248972 0.952162 0.262834 0.030*
C8 0.2769 (3) 0.8171 (3) 0.3629 (5) 0.0235 (6)
H8 0.300598 0.787169 0.267351 0.028*
C9 0.0971 (2) 0.5110 (2) 0.5422 (5) 0.0208 (6)
C10 0.0066 (3) 0.5207 (3) 0.6113 (5) 0.0251 (7)
H10 −0.013356 0.582330 0.654399 0.030*
C11 −0.0553 (3) 0.4391 (3) 0.6172 (5) 0.0262 (7)
H11 −0.117165 0.444374 0.665505 0.031*
C12 −0.0249 (3) 0.3509 (2) 0.5516 (5) 0.0243 (6)
C13 0.0662 (2) 0.3397 (2) 0.4837 (5) 0.0246 (7)
H13 0.085933 0.277960 0.440465 0.030*
C14 0.1275 (2) 0.4203 (2) 0.4803 (5) 0.0236 (6)
H14 0.190380 0.413915 0.435972 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01833 (12) 0.02119 (13) 0.0434 (2) −0.00217 (10) 0.00069 (14) 0.00037 (16)
Br2 0.02025 (12) 0.01897 (13) 0.0480 (2) 0.00223 (10) −0.00256 (15) −0.00061 (14)
Br3 0.02917 (16) 0.02402 (15) 0.0423 (2) −0.00937 (12) −0.00254 (18) 0.00189 (17)
O1 0.0460 (17) 0.0222 (13) 0.0317 (15) 0.0060 (12) 0.0009 (13) 0.0062 (11)
O2 0.0450 (16) 0.0217 (13) 0.0310 (16) 0.0042 (12) 0.0006 (13) −0.0038 (11)
N1 0.0211 (10) 0.0185 (11) 0.0296 (15) 0.0000 (8) 0.0007 (13) −0.0001 (12)
N2 0.0179 (10) 0.0190 (10) 0.0251 (15) −0.0007 (8) −0.0006 (10) 0.0012 (11)
N3 0.0184 (11) 0.0192 (11) 0.0306 (17) −0.0012 (8) 0.0016 (10) 0.0014 (11)
C1 0.0181 (11) 0.0170 (11) 0.0315 (16) 0.0001 (9) −0.0020 (13) −0.0003 (13)
C2 0.0182 (11) 0.0171 (11) 0.0263 (15) 0.0002 (9) −0.0010 (12) 0.0015 (12)
C3 0.0164 (10) 0.0167 (11) 0.0257 (15) −0.0004 (8) −0.0012 (13) 0.0022 (12)
C4 0.0237 (14) 0.0183 (13) 0.0243 (16) 0.0015 (11) 0.0002 (12) 0.0010 (12)
C5 0.0215 (14) 0.0211 (14) 0.0241 (16) 0.0024 (11) 0.0005 (12) −0.0010 (12)
C6 0.0194 (11) 0.0166 (11) 0.0275 (15) 0.0000 (9) −0.0004 (13) −0.0007 (13)
C7 0.0262 (15) 0.0209 (14) 0.0276 (18) 0.0018 (12) 0.0018 (13) 0.0031 (12)
C8 0.0238 (14) 0.0202 (14) 0.0265 (17) 0.0003 (11) 0.0022 (13) 0.0003 (12)
C9 0.0189 (12) 0.0167 (11) 0.0269 (17) −0.0010 (9) −0.0007 (11) 0.0000 (12)
C10 0.0230 (14) 0.0182 (13) 0.0342 (19) 0.0003 (11) 0.0021 (13) −0.0015 (13)
C11 0.0203 (13) 0.0209 (14) 0.037 (2) −0.0021 (11) 0.0034 (13) −0.0005 (13)
C12 0.0238 (13) 0.0185 (12) 0.0305 (17) −0.0061 (10) −0.0016 (13) 0.0016 (14)
C13 0.0246 (13) 0.0182 (12) 0.0312 (19) −0.0007 (10) 0.0009 (14) −0.0027 (13)
C14 0.0205 (12) 0.0208 (13) 0.0295 (19) −0.0005 (10) 0.0035 (13) −0.0024 (13)

Geometric parameters (Å, º)

Br1—C1 1.864 (3) C5—H5 0.9500
Br2—C1 1.868 (3) C6—C7 1.384 (6)
Br3—C12 1.888 (3) C7—C8 1.388 (5)
O1—N1 1.223 (5) C7—H7 0.9500
O2—N1 1.231 (5) C8—H8 0.9500
N1—C6 1.477 (4) C9—C10 1.386 (5)
N2—N3 1.266 (4) C9—C14 1.397 (5)
N2—C2 1.406 (4) C10—C11 1.400 (5)
N3—C9 1.437 (4) C10—H10 0.9500
C1—C2 1.352 (4) C11—C12 1.378 (5)
C2—C3 1.492 (4) C11—H11 0.9500
C3—C8 1.384 (5) C12—C13 1.392 (5)
C3—C4 1.394 (5) C13—C14 1.384 (5)
C4—C5 1.400 (5) C13—H13 0.9500
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.379 (5)
O1—N1—O2 123.8 (3) C6—C7—H7 121.0
O1—N1—C6 118.1 (3) C8—C7—H7 121.0
O2—N1—C6 118.1 (3) C3—C8—C7 120.7 (3)
N3—N2—C2 115.9 (3) C3—C8—H8 119.6
N2—N3—C9 111.8 (3) C7—C8—H8 119.6
C2—C1—Br1 123.1 (2) C10—C9—C14 120.6 (3)
C2—C1—Br2 122.4 (2) C10—C9—N3 116.6 (3)
Br1—C1—Br2 114.43 (15) C14—C9—N3 122.8 (3)
C1—C2—N2 115.0 (3) C9—C10—C11 119.7 (3)
C1—C2—C3 122.3 (3) C9—C10—H10 120.2
N2—C2—C3 122.7 (3) C11—C10—H10 120.2
C8—C3—C4 120.3 (3) C12—C11—C10 118.9 (3)
C8—C3—C2 120.5 (3) C12—C11—H11 120.6
C4—C3—C2 119.1 (3) C10—C11—H11 120.6
C3—C4—C5 119.7 (3) C11—C12—C13 122.1 (3)
C3—C4—H4 120.2 C11—C12—Br3 119.2 (3)
C5—C4—H4 120.2 C13—C12—Br3 118.7 (3)
C6—C5—C4 118.3 (3) C14—C13—C12 118.7 (3)
C6—C5—H5 120.8 C14—C13—H13 120.7
C4—C5—H5 120.8 C12—C13—H13 120.7
C5—C6—C7 122.9 (3) C13—C14—C9 120.0 (3)
C5—C6—N1 118.3 (3) C13—C14—H14 120.0
C7—C6—N1 118.8 (3) C9—C14—H14 120.0
C6—C7—C8 118.0 (3)
C2—N2—N3—C9 178.1 (3) O2—N1—C6—C7 −171.8 (3)
Br1—C1—C2—N2 −178.4 (3) C5—C6—C7—C8 −1.2 (5)
Br2—C1—C2—N2 −1.8 (6) N1—C6—C7—C8 177.5 (3)
Br1—C1—C2—C3 1.6 (6) C4—C3—C8—C7 0.6 (5)
Br2—C1—C2—C3 178.2 (3) C2—C3—C8—C7 −178.5 (3)
N3—N2—C2—C1 174.8 (4) C6—C7—C8—C3 0.6 (5)
N3—N2—C2—C3 −5.2 (5) N2—N3—C9—C10 160.3 (4)
C1—C2—C3—C8 72.2 (5) N2—N3—C9—C14 −20.0 (5)
N2—C2—C3—C8 −107.7 (4) C14—C9—C10—C11 −0.9 (6)
C1—C2—C3—C4 −106.9 (5) N3—C9—C10—C11 178.9 (4)
N2—C2—C3—C4 73.1 (5) C9—C10—C11—C12 −0.9 (6)
C8—C3—C4—C5 −1.3 (5) C10—C11—C12—C13 1.7 (7)
C2—C3—C4—C5 177.8 (3) C10—C11—C12—Br3 −177.8 (3)
C3—C4—C5—C6 0.8 (5) C11—C12—C13—C14 −0.8 (6)
C4—C5—C6—C7 0.5 (5) Br3—C12—C13—C14 178.8 (3)
C4—C5—C6—N1 −178.2 (3) C12—C13—C14—C9 −1.0 (6)
O1—N1—C6—C5 −172.7 (3) C10—C9—C14—C13 1.8 (6)
O2—N1—C6—C5 6.9 (4) N3—C9—C14—C13 −177.9 (4)
O1—N1—C6—C7 8.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···Br1i 0.95 2.89 3.530 (4) 126

Symmetry code: (i) x−1/2, −y+3/2, z.

Funding Statement

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530–535. [DOI] [PMC free article] [PubMed]
  3. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  10. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Lipskikh, O. I., Korotkova, E. I., Khristunova, Y. P., Barek, J. & Kratochvil, B. (2018). Electrochim. Acta, 260, 974–985.
  13. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  14. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  15. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  16. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  17. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  18. Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. [DOI] [PubMed]
  19. Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.
  20. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  21. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
  22. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
  23. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  27. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  28. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  29. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.http://hirshfeldsuface.net
  30. Zollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.
  31. Zollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902200620X/yk2170sup1.cif

e-78-00732-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902200620X/yk2170Isup2.hkl

e-78-00732-Isup2.hkl (585.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698902200620X/yk2170Isup3.cml

CCDC reference: 2178832

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES