Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 10;78(Pt 7):699–702. doi: 10.1107/S2056989022005904

Synthesis and crystal structure of rac-2-(1,3-dioxo­isoindolin-2-yl)ethyl 4-methyl-N-phenyl-N′-(tri­iso­propyl­sil­yl)benzene­sulfondiimidoate: the first member of a new substance class

Erik Friedrich a, Timo Heinrich b, Lara Rosenberger b, Mireille Krier b, Stephanie Marek b, Michael Reggelin a,*
PMCID: PMC9260357  PMID: 35855363

The synthesis and crystal structure of rac-2-[7-methyl-4-(4-methyl­phen­yl)-4-(phenyl­imino)-6,6-bis­(propan-2-yl)-3-oxa-4λ6-thia-5-aza-6-silaoct-4-en-1-yl]-2,3-di­hydro-1H-iso­indole-1,3-dione are reported.

Keywords: sulfondiimidoate, sulfondiimidate, crystal structure, bioisosters

Abstract

The title compound {systematic name: rac-2-[7-methyl-4-(4-methylphenyl)-4-(phenylimino)-6,6-bis(propan-2-yl)-3-oxa-4λ6-thia-5-aza-6-silaoct-4-en-1-yl]-2,3-dihydro-1H-isoindole-1,3-dione}, C32H41N3O3SSi, was synthesized by desoxychlorination of 4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sul­fon­imid­am­ide and subsequent reaction with 2-(2-hy­droxy­eth­yl)isoindoline-1,3-dione. The racemic compound was crystallized from isopropanol. The structural characterization by single-crystal X-ray diffraction revealed two double-bonded nitro­gen atoms to the central sulfur atom and an overall crystal packing driven by its aromatic inter­actions.

1. Chemical context

Since 2013 (Lücking, 2013, 2019), there has been an increased research inter­est in bioisosters of sulfonamides and sulfones. In addition to vigorous inter­est in the development of new synthetic procedures towards sulfonimidamides (Nandi & Arvidsson, 2018; Chen & Gibson, 2015; Wen et al., 2016; Izzo et al., 2017; Greed et al., 2020; Liu et al., 2021), activities towards the synthesis of sulfondi­imides have recently just begun (Zhang et al., 2019; Bohmann et al., 2019). With the synthesis of stable sulfondiimidamides, Zhang & Willis (2022) introduced a new functional group for medicinal chemistry.

The different aza-analogs of sulfonamides and sulfones have inter­esting properties for medicinal chemistry due to the (additional) nitro­gen atom(s). Besides the potential centrochirality of sulfur, the nitro­gen substituents offer new possibilities for functionalization optimizing steric demand, solubility and reactivity. 1.

The herein reported sulfondiimidoate 1 is, based on extensive database searches, not yet described in the literature and therefore represents the first member of a new substance class. It can be described as an aza-oxo-inverse sulfonamide or an aza-analogue of a sulfonimidoate.

2. Structural commentary

The title compound 1 crystallizes in the triclinic crystal system and P Inline graphic as the centrosymmetric space group, having one mol­ecule in the asymmetric unit (Fig. 1). Geometric parameters may be regarded as normal. A selection is listed in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of 2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfondiimidoate (1) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

S1—N1 1.5139 (16) S1—C17 1.7718 (19)
S1—N2 1.4838 (16) Si—N2 1.7240 (17)
S1—O1 1.6257 (14) N1—C11 1.412 (2)
       
N1—S1—O1 105.93 (8) N2—S1—N1 126.60 (9)
N1—S1—C17 101.98 (9) S1—N2—Si 142.24 (11)
N2—S1—O1 107.27 (8) N2—Si—C27 105.99 (9)

The tetra­hedral mol­ecular structure shows a sulfur as the central atom, surrounded by four substituents, including two sulfur–nitro­gen double bonds. As a result of the steric repulsion of the aniline ring and the bulky triisopropyl­silyl group, the angle N2—S1—N1 at 126.60 (9)° is larger than the typical tetra­hedral angle (109.5°), whereas the angle between the aniline and toluene ring (N1—S1—C17) and also the 1,3-dioxoisoindolin moiety (N1—S1—O1) are smaller at 101.98 (9) and 105.93 (8)°, respectively. The remaining angle (N2—S1—O1) is 107.27 (8)°. The bond lengths between S1—N1 [1.5139 (16) Å] and S1—N2 [1.4838 (16) Å] are similar to those observed in crystal structures of sulfoximines [1.484 Å; CSD refcode: LISJAZ (Lemasson et al., 2007) or 1.518 Å; CSD refcode: NADNAH; (Mash et al., 1996)], and therefore confirming the presence of the double bonds (Reggelin & Zur, 2000). The ring systems are planar (r.m.s values of 0.003 and 0.007 Å for the phenyl rings and 0.022 Å for the phthalimide).

3. Supra­molecular features

The title compound 1 contains secondary nitro­gen groups and a dicarboximide, which are hydrogen-bond acceptors, but no strong or moderate inter­molecular hydrogen bonds were detected in the crystal. Geometric details of some possible weak hydrogen bonds are listed in Table 2. This includes three borderline C—H⋯O hydrogen bonds, which link the chains via the operators 1 + x, −1 + y, z and 2 − x, 1 − y, 1 − z. The contact C31—H31⋯N1, involving a tertiary methyl group, connects the mol­ecules via the operator x, 1 + y, z. Fig. 2 shows the unit cell of the compound along the b-axis. It appears that the crystal structure contains anti-parallel π stacking inter­actions of the phthalimide between its electron-rich six-membered ring and electron-poor five-membered ring (Ahmed et al., 2019). The centroid-to-centroid distance of 3.470 (1) Å, which is in the range of π–π stacking inter­actions, confirms its presence. The crystal packing is mainly driven by its attractive inter­molecular aromatic inter­actions, as can be shown by the Aromatics Analyser (feature available in Mercury as part of the CSD-Materials and CSD-Enterprise suites). The distance between centroids for which the assessment was labelled ‘strong’ equals to 4.11 Å (score: 9.3) and for the ‘moderate’ ones between 4.48 and 6.39 Å (score: 6.9–3.7) by the CCDC’s Aromatics Analyser using a score from 0 (no stabilizing contribution) to 10 (an ideal aromatic inter­action geometry) (assessment: ‘weak’ 0–3, ‘moderate’ 3–7, ‘strong’ 7–10. Mercury 2021.3.0 (Build 333817) used (Macrae et al., 2020).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.52 3.429 (3) 160
C22—H22⋯O2ii 0.95 2.64 3.348 (3) 132
C14—H14⋯O3iii 0.95 2.52 3.429 (3) 161
C31—H31B⋯N1iv 0.98 2.60 3.361 (3) 135

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

Crystal packing in rac-2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfondiimidoate (1) viewed along the b axis. Anti­parallel stacking of the phthalimide occurs with a centroid–centroid distance of 3.470 (1) Å. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

4. Database survey

The herein reported sulfondiimidoate 1 is, based on extensive database searches, not yet described in the literature. A Scifindern structure search with undefined bonds on all substituents of the sulfur and a substituent on the oxygen atom resulted in no structure matches as drawn (SciFinder; Chemical Abstracts Service: Columbus, OH; https://scifinder.cas.org; accessed: 06.05.2022). A broadly defined Cambridge Structural Database search with the five central atoms and any type of bonds (SMARTS pattern [#7]∼[#16](∼[#8])(∼[#6])∼[#7]) on CSD version 5.43 November 2021 plus update of March 2022 found 85 hits (Groom et al., 2016), all of which are sulfonimidamides.

Restricting this query to a single bond (instead of any bond) between the sulfur and the oxygen returns zero hits. The mean distance between sulfur and oxygen in the 85 hits dataset is 1.436 with a standard deviation of 0.014. The distance S1—O1 (see also Table 1) is hence clearly a single bond and similar functional groups have not been missed by setting the query in too narrow a way.

5. Synthesis and crystallization

Mol­ecular schemes with the atom numbering used in the NMR assignments can be found in Figures S1–S3 in the supporting information. Solvent residue signals were used as inter­nal standard according to the literature [1H-NMR: δ (CHCl3) = 7.26 ppm; 13C-NMR: δ (CDCl3) = 77.16 ppm; (Gottlieb et al., 1997)]. The synthesis is shown in Fig. 3.

Figure 3.

Figure 3

Synthesis of the sulfondiimidoate 1. (a) TIPS-Cl, NEt3; (b) C2Cl6, PPh3, NEt3, aniline; (c) C2Cl6, PPh3, NEt3, N-hy­droxy­ethyl­phthalimide.

N -(Tri -iso -propyl­sil­yl)-4-methyl­benzene­sulfonamide (3)

7.51 mL (6.82 g, 35.0 mmol, 1.2 eq.) of TIPS-Cl and 12.1 mL (8.87 g, 87.6 mmol, 3.0 eq.) of NEt3 were added to a suspension of 5.00 g (29.2 mmol, 1.0 eq.) of p-toluene­sulfonamide (2) in 100 mL of CH2Cl2. After stirring for 62 h, 100 mL of 1M HCl were added to the reaction mixture. The aqueous layer was extracted with CH2Cl2 three times, the combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the crude product was dissolved in 100 mL of CH2Cl2. After addition of 300 mL of petroleum ether, the CH2Cl2 was removed under reduced pressure. The resulting precipitate was filtered off and washed with pentane. After drying, the protected sulfonamide 3 (9.12 g, 27.8 mmol, 95%) was obtained as a colorless solid. Rf 0.75 (20% EtOAc in penta­ne). M.p. = 427 K. IR (ATR)/cm−1 1462, 1344, 1286, 1154, 1094, 1004, 936. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.80 (d, J = 8.3 Hz, 4-H2), 7.27 (d, J = 8.3 Hz, 3-H2), 4.43 (bs, 6-H1), 2.42 (s, 1-H3), 1.29 (hep., J = 7.5 Hz, 7-H3), 1.15 (d, J = 7.5 Hz, 8-H18) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 142.6 (2-C), 141.1 (5-C), 129.5 (3-C2), 126.2 (4-C2), 21.6 (1-C), 18.1 (8-C6), 12.1 (7-C3) ppm. Calculated for C16H29NO2SSi: C 58.67, H 8.92, N 4.28; found: C 58.68, H 9.30, N 4.53. ESI–MS: m/z = 328.18 [M + H]+, 677.33 [2M + Na]+.

4-Methyl- N -phenyl- N -(tri- iso -propyl­sil­yl)benzene­sulf­on­im­id­amide (4)

3.98 g (16.8 mmol, 1.1 eq) of C2Cl6 and 4.40 g (16.8 mmol, 1.1 eq) of PPh3 were heated to reflux of the solvent in 60 mL of CHCl3 for 6 h. After cooling to room temperature, 3.19 mL (2.32 g, 22.9 mmol, 1.5 eq) of NEt3 was added via syringe. After five minutes, the reaction mixture was cooled to 273 K. After another five minutes, 5.00 g (15.3 mmol, 1.0 eq) of 4-methyl-N-(triisopropyl­sil­yl)benzene­sulfon­amide (3) were added. After ten more minutes, 5.58 mL (5.69 g, 61.1 mmol, 4.0 eq) of aniline were added via syringe and the mixture was stirred for one h, at which point the reaction was stopped by the addition of 100 mL of saturated NH4Cl solution. The aqueous phase was extracted three times with 50 mL of CH2Cl2. The combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (5% EtOAc in penta­ne) affording the sulfonimidamide 4 (5.64 g, 14.0 mmol, 92%) as a colorless solid. Rf 0.63 (20% EtOAc in penta­ne). M.p. = 364 K. IR (ATR)/cm−1 3228, 1600, 1480, 1410, 1347, 1282, 1141, 1091, 895. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.68 (d, J = 8.3Hz, 4-H2), 7.19–7.13 (m, 3/8-H4), 7.03–6.97 (m, 9/10-H3), 6.30 (bs, 6-H), 2.34 (s, 1-H3), 1.18–1.03 (m, 11/12-H21) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 142.2 (7-C), 141.0 (2-C), 138.9 (5-C), 129.2 (9-C2), 129.0 (3-C2), 127.1 (4-C2), 124.2 (8-C2), 121.2 (10-C), 21.5 (1-C), 18.5 (12-C6), 13.3 (11-C3) ppm. Calculated for C22H34N2OSSi: C 65.62, H 6.96, N 8.51; found: C 65.65, H 6.97, N 8.55. ESI–MS: m/z = 403.22 [M + H]+.

rac -2-(1,3-Dioxo- iso -indolin-2-yl)ethyl-4-methyl- N -phenyl- N -(tri- iso -propyl­sil­yl)­benzene­sulfondiimidoate (1)

282 mg (1.19 mmol, 1.2 eq) of C2Cl6 and 313 mg (1.19 mmol, 1.2 eq) of PPh3 were heated to reflux of the solvent in 5 mL of CHCl3 for 6 h. After cooling to room temperature, 0.83 mL (603 mg, 5.96 mmol, 6.0 eq) of NEt3 were added via syringe. After five minutes, the reaction mixture was cooled to 273 K. After five more minutes, 400 mg (0.99 mmol, 1.0 eq) of 4-methyl-N-phenyl-N′-(triisopropyl­sil­yl)benzene­sulfonimid­amide (4) were added and the reaction mixture was stirred for 20 more minutes at 273 K, at which point 1.52 g (7.95 mmol, 8.0 eq) of 2-(2-hy­droxy­eth­yl)isoindoline-1,3-dione were added. The mixture was stirred for another 30 min and then quenched with 20 mL of saturated NH4Cl solution. After phase separation, the aqueous solution was extracted three times with 20 mL of CH2Cl2, the combined organic layers were dried over MgSO4, the solvent was removed under reduced pressure and the resulting crude product was purified by flash chromatography (8% EtOAc in penta­ne) affording the sulfondiimidoate 1 (447 mg, 0.78 mmol, 78%) as a colorless solid. Crystals suitable for X-ray structure analysis were obtained by recrystallization from iso-propanol. Rf 0.16 (10% EtOAc in penta­ne). M.p. = 380 K. IR (ATR)/cm−1 2941, 2862, 1712, 1594, 1488, 1391, 1294, 1056, 995. 1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.83–7.77 (m, 4/16-H4), 7.75–7.70 (m, 17-H2), 7.11–7.04 (m, 3/10-H4), 6.98–6.96 (m, 9-H2), 6.82 (t, J = 7.3 Hz, 11-H), 4.19–4.06 (m, 12-H2), 3.88 (t, J = 5.6 Hz, 13-H2), 2.30 (s, 1-H3), 0.94–0.88 (m, 6/7-H21) ppm. 13C-NMR (CDCl3, 125 MHz, 300 K): δ = 167.9 (14-C2), 144.6 (8-C), 142.4 (2-C), 139.3 (5-C), 134.0 (17-C2), 132.2 (1-C2), 129.3 (3-C2), 128.7 (10-C2), 127.5 (4-C2), 123.7 (9-C2), 123.4 (16-C2), 121.2 (11-C), 64.5 (12-C), 37.2 (13-C), 21.6 (1-C), 18.3 (7-C3), 18.3 (7′-C3), 13.3 (6-C3) ppm. Calculated for C32H41N3O3SSi: C 66.75, H 7.18, N 7.30; found: C 66.62, H 6.86, N 7.13. ESI–MS: m/z = 576.27 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were refined isotropically using a riding model. The C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties, and to 1.00, 0.99 and 0.98 Å for aliphatic C—H, CH2 and CH3 moieties, respectively. Methyl-H atoms were allowed to rotate but not to tip to best fit the experimental electron density. U iso(H) values were set to a multiple of U eq(C) with 1.5 for CH3, and 1.2 for C—H, CH2 groups, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula C32H41N3O3SSi
M r 575.83
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.6752 (2), 8.8765 (2), 20.2299 (6)
α, β, γ (°) 78.107 (2), 87.922 (2), 89.512 (2)
V3) 1523.37 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.61
Crystal size (mm) 0.21 × 0.16 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy R, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku, 2021)
T min, T max 0.555, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28106, 5410, 4426
R int 0.047
(sin θ/λ)max−1) 0.597
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.108, 1.05
No. of reflections 5410
No. of parameters 368
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.38

Computer programs: CrysAlis PRO (Rigaku, 2021), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005904/zl5029sup1.cif

e-78-00699-sup1.cif (834.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005904/zl5029Isup2.hkl

e-78-00699-Isup2.hkl (430.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup5.cdx

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup6.cdx

Molecular schemes with atom numbering used in the NMR assignments. DOI: 10.1107/S2056989022005904/zl5029sup3.pdf

e-78-00699-sup3.pdf (402.4KB, pdf)

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup7.cml

CCDC reference: 2163661

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C32H41N3O3SSi Z = 2
Mr = 575.83 F(000) = 616
Triclinic, P1 Dx = 1.255 Mg m3
a = 8.6752 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.8765 (2) Å Cell parameters from 4930 reflections
c = 20.2299 (6) Å θ = 4.5–72.1°
α = 78.107 (2)° µ = 1.61 mm1
β = 87.922 (2)° T = 100 K
γ = 89.512 (2)° Needle, colourless
V = 1523.37 (7) Å3 0.21 × 0.16 × 0.06 mm

Data collection

XtaLAB Synergy R, HyPix-Arc 150 diffractometer 5410 independent reflections
Radiation source: Rotating-anode X-ray tube, PhotonJet R (Cu) X-ray Source 4426 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.047
Detector resolution: 10.0000 pixels mm-1 θmax = 67.1°, θmin = 4.5°
ω scans h = −10→9
Absorption correction: gaussian (CrysAlisPro; Rigaku, 2021) k = −10→10
Tmin = 0.555, Tmax = 1.000 l = −24→24
28106 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.4269P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
5410 reflections Δρmax = 0.56 e Å3
368 parameters Δρmin = −0.38 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.64242 (5) 0.36921 (5) 0.76180 (2) 0.01884 (13)
Si 0.82253 (6) 0.58177 (6) 0.83046 (3) 0.01969 (14)
O1 0.53274 (15) 0.43170 (15) 0.69843 (7) 0.0213 (3)
O2 0.37133 (16) 0.92827 (16) 0.67134 (7) 0.0286 (3)
O3 0.61871 (16) 0.63745 (16) 0.53826 (7) 0.0293 (3)
N1 0.75807 (18) 0.26207 (18) 0.73756 (9) 0.0224 (4)
N3 0.47858 (18) 0.75010 (18) 0.61476 (8) 0.0220 (4)
N2 0.67766 (18) 0.50250 (18) 0.79249 (8) 0.0215 (4)
C17 0.5169 (2) 0.2380 (2) 0.81561 (10) 0.0191 (4)
C11 0.8812 (2) 0.3081 (2) 0.69029 (10) 0.0215 (4)
C4 0.6598 (2) 0.9038 (2) 0.54781 (10) 0.0238 (4)
C30 0.8671 (2) 0.7773 (2) 0.77709 (11) 0.0249 (5)
H30 0.941234 0.829050 0.801923 0.030*
C16 1.0089 (2) 0.2104 (2) 0.69474 (11) 0.0252 (5)
H16 1.013655 0.123095 0.730762 0.030*
C9 0.5850 (2) 0.9926 (2) 0.58821 (10) 0.0247 (4)
C20 0.3301 (2) 0.0244 (2) 0.90149 (11) 0.0252 (5)
C18 0.5129 (2) 0.2342 (2) 0.88389 (10) 0.0227 (4)
H18 0.573253 0.304358 0.901627 0.027*
C3 0.5901 (2) 0.7473 (2) 0.56355 (10) 0.0226 (4)
C21 0.3360 (2) 0.0304 (2) 0.83209 (11) 0.0268 (5)
H21 0.275146 −0.039010 0.814108 0.032*
C10 0.4654 (2) 0.8955 (2) 0.63090 (10) 0.0234 (4)
C12 0.8784 (2) 0.4379 (2) 0.63815 (10) 0.0239 (4)
H12 0.792938 0.506435 0.634980 0.029*
C22 0.4293 (2) 0.1361 (2) 0.78878 (11) 0.0246 (4)
H22 0.433214 0.138741 0.741556 0.030*
C1 0.4033 (2) 0.5309 (2) 0.70767 (10) 0.0231 (4)
H1A 0.429808 0.598387 0.738910 0.028*
H1B 0.312386 0.468228 0.727047 0.028*
C19 0.4200 (2) 0.1271 (2) 0.92686 (11) 0.0256 (5)
H19 0.417784 0.123993 0.974110 0.031*
C24 0.9990 (2) 0.4556 (2) 0.83641 (11) 0.0243 (4)
H24 1.024122 0.441481 0.789435 0.029*
C2 0.3681 (2) 0.6264 (2) 0.63933 (11) 0.0239 (4)
H2A 0.366244 0.558188 0.606327 0.029*
H2B 0.263929 0.671795 0.641762 0.029*
C13 0.9999 (2) 0.4674 (2) 0.59088 (11) 0.0278 (5)
H13 0.997509 0.556827 0.555804 0.033*
C27 0.7421 (2) 0.5970 (2) 0.91717 (11) 0.0246 (4)
H27 0.750357 0.492007 0.946548 0.030*
C8 0.6216 (3) 1.1462 (2) 0.58321 (11) 0.0317 (5)
H8 0.570588 1.207038 0.610828 0.038*
C28 0.5708 (2) 0.6429 (3) 0.91904 (12) 0.0294 (5)
H28A 0.558879 0.749867 0.894987 0.044*
H28B 0.533930 0.632856 0.966109 0.044*
H28C 0.510518 0.575262 0.897214 0.044*
C25 0.9721 (2) 0.2933 (2) 0.87942 (12) 0.0296 (5)
H25A 0.947197 0.300481 0.926309 0.044*
H25B 1.065707 0.231402 0.877778 0.044*
H25C 0.886315 0.244644 0.861586 0.044*
C5 0.7750 (2) 0.9636 (2) 0.50117 (11) 0.0282 (5)
H5 0.826384 0.902115 0.473913 0.034*
C15 1.1291 (2) 0.2406 (3) 0.64663 (12) 0.0301 (5)
H15 1.215207 0.172932 0.649736 0.036*
C14 1.1246 (2) 0.3683 (3) 0.59417 (12) 0.0303 (5)
H14 1.206057 0.387532 0.560883 0.036*
C7 0.7370 (3) 1.2071 (3) 0.53569 (11) 0.0344 (5)
H7 0.764486 1.312400 0.530483 0.041*
C23 0.2284 (3) −0.0901 (3) 0.94846 (12) 0.0357 (6)
H23A 0.120046 −0.067014 0.938481 0.054*
H23B 0.246165 −0.083527 0.995349 0.054*
H23C 0.252958 −0.194293 0.942108 0.054*
C26 1.1435 (2) 0.5273 (3) 0.85938 (12) 0.0333 (5)
H26A 1.161285 0.629633 0.830942 0.050*
H26B 1.233053 0.461466 0.855196 0.050*
H26C 1.128079 0.536457 0.906621 0.050*
C29 0.8374 (3) 0.7056 (3) 0.94995 (12) 0.0371 (6)
H29A 0.945592 0.672665 0.951077 0.056*
H29B 0.797407 0.702220 0.996161 0.056*
H29C 0.829942 0.810909 0.923502 0.056*
C6 0.8126 (3) 1.1179 (3) 0.49584 (11) 0.0323 (5)
H6 0.891433 1.162922 0.464320 0.039*
C31 0.7218 (3) 0.8771 (3) 0.76655 (14) 0.0431 (6)
H31A 0.639953 0.820185 0.750234 0.065*
H31B 0.744630 0.971775 0.733154 0.065*
H31C 0.687716 0.903397 0.809501 0.065*
C32 0.9431 (3) 0.7677 (3) 0.70892 (13) 0.0485 (7)
H32A 1.035816 0.703364 0.716090 0.073*
H32B 0.971724 0.871329 0.684381 0.073*
H32C 0.870715 0.722351 0.682492 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0187 (2) 0.0157 (2) 0.0222 (3) −0.00142 (18) 0.00128 (19) −0.00441 (18)
Si 0.0192 (3) 0.0161 (3) 0.0241 (3) −0.0013 (2) 0.0001 (2) −0.0050 (2)
O1 0.0210 (7) 0.0205 (7) 0.0231 (8) 0.0017 (5) −0.0009 (6) −0.0061 (6)
O2 0.0307 (8) 0.0274 (8) 0.0293 (8) 0.0035 (6) 0.0014 (7) −0.0099 (6)
O3 0.0310 (8) 0.0248 (8) 0.0324 (9) 0.0012 (6) 0.0034 (7) −0.0072 (7)
N1 0.0217 (8) 0.0165 (8) 0.0285 (10) −0.0009 (7) 0.0028 (7) −0.0043 (7)
N3 0.0216 (8) 0.0197 (8) 0.0248 (9) −0.0007 (7) −0.0004 (7) −0.0048 (7)
N2 0.0200 (8) 0.0174 (8) 0.0284 (10) −0.0009 (7) −0.0009 (7) −0.0079 (7)
C17 0.0173 (9) 0.0145 (9) 0.0250 (11) 0.0001 (7) 0.0016 (8) −0.0028 (8)
C11 0.0200 (10) 0.0218 (10) 0.0258 (11) −0.0034 (8) 0.0006 (8) −0.0125 (8)
C4 0.0222 (10) 0.0243 (10) 0.0241 (11) −0.0004 (8) −0.0059 (8) −0.0020 (8)
C30 0.0274 (11) 0.0192 (10) 0.0296 (12) −0.0060 (8) −0.0017 (9) −0.0079 (9)
C16 0.0242 (11) 0.0237 (10) 0.0300 (12) 0.0011 (8) −0.0012 (9) −0.0111 (9)
C9 0.0265 (11) 0.0247 (10) 0.0229 (11) −0.0026 (9) −0.0067 (9) −0.0040 (9)
C20 0.0204 (10) 0.0188 (10) 0.0344 (13) −0.0001 (8) 0.0052 (9) −0.0015 (9)
C18 0.0232 (10) 0.0189 (9) 0.0264 (11) −0.0016 (8) 0.0008 (8) −0.0056 (8)
C3 0.0213 (10) 0.0231 (10) 0.0230 (11) 0.0008 (8) −0.0030 (8) −0.0035 (9)
C21 0.0223 (10) 0.0193 (10) 0.0395 (13) −0.0033 (8) −0.0017 (9) −0.0078 (9)
C10 0.0249 (10) 0.0228 (10) 0.0235 (11) 0.0011 (8) −0.0066 (9) −0.0061 (8)
C12 0.0226 (10) 0.0226 (10) 0.0285 (12) −0.0012 (8) 0.0002 (9) −0.0097 (9)
C22 0.0260 (11) 0.0230 (10) 0.0259 (11) −0.0016 (8) 0.0009 (9) −0.0076 (9)
C1 0.0188 (10) 0.0239 (10) 0.0264 (11) 0.0010 (8) 0.0025 (8) −0.0054 (9)
C19 0.0281 (11) 0.0229 (10) 0.0248 (11) 0.0018 (9) 0.0037 (9) −0.0032 (9)
C24 0.0218 (10) 0.0239 (10) 0.0283 (12) 0.0000 (8) −0.0008 (9) −0.0076 (9)
C2 0.0194 (10) 0.0230 (10) 0.0287 (12) −0.0034 (8) 0.0010 (8) −0.0042 (9)
C13 0.0311 (11) 0.0255 (11) 0.0284 (12) −0.0091 (9) 0.0047 (9) −0.0100 (9)
C27 0.0231 (10) 0.0251 (10) 0.0265 (11) 0.0004 (8) −0.0001 (8) −0.0074 (9)
C8 0.0402 (13) 0.0267 (11) 0.0292 (12) −0.0027 (10) −0.0073 (10) −0.0068 (9)
C28 0.0256 (11) 0.0321 (11) 0.0329 (13) −0.0004 (9) 0.0039 (9) −0.0131 (10)
C25 0.0263 (11) 0.0248 (11) 0.0376 (13) 0.0044 (9) −0.0068 (9) −0.0055 (10)
C5 0.0242 (11) 0.0304 (11) 0.0274 (12) −0.0012 (9) −0.0035 (9) 0.0008 (9)
C15 0.0211 (11) 0.0327 (12) 0.0409 (14) 0.0001 (9) 0.0015 (9) −0.0183 (10)
C14 0.0241 (11) 0.0350 (12) 0.0365 (13) −0.0104 (9) 0.0085 (9) −0.0193 (10)
C7 0.0419 (13) 0.0284 (11) 0.0319 (13) −0.0137 (10) −0.0111 (11) −0.0014 (10)
C23 0.0301 (12) 0.0289 (12) 0.0441 (15) −0.0060 (10) 0.0086 (10) 0.0008 (10)
C26 0.0219 (11) 0.0357 (12) 0.0435 (14) 0.0002 (9) −0.0011 (10) −0.0111 (11)
C29 0.0293 (12) 0.0521 (15) 0.0368 (14) −0.0035 (11) 0.0009 (10) −0.0254 (12)
C6 0.0297 (12) 0.0353 (12) 0.0290 (12) −0.0102 (10) −0.0053 (10) 0.0011 (10)
C31 0.0372 (13) 0.0207 (11) 0.0650 (18) −0.0019 (10) −0.0084 (12) 0.0075 (11)
C32 0.0789 (19) 0.0266 (12) 0.0378 (15) −0.0098 (13) 0.0190 (14) −0.0045 (11)

Geometric parameters (Å, º)

S1—N1 1.5139 (16) C19—H19 0.9500
S1—N2 1.4838 (16) C24—H24 1.0000
S1—O1 1.6257 (14) C24—C25 1.537 (3)
S1—C17 1.7718 (19) C24—C26 1.539 (3)
Si—N2 1.7240 (17) C2—H2A 0.9900
Si—C30 1.881 (2) C2—H2B 0.9900
Si—C24 1.882 (2) C13—H13 0.9500
Si—C27 1.894 (2) C13—C14 1.383 (3)
O1—C1 1.452 (2) C27—H27 1.0000
O2—C10 1.211 (2) C27—C28 1.539 (3)
O3—C3 1.211 (2) C27—C29 1.539 (3)
N1—C11 1.412 (2) C8—H8 0.9500
N3—C3 1.396 (2) C8—C7 1.394 (3)
N3—C10 1.398 (2) C28—H28A 0.9800
N3—C2 1.459 (2) C28—H28B 0.9800
C17—C18 1.374 (3) C28—H28C 0.9800
C17—C22 1.392 (3) C25—H25A 0.9800
C11—C16 1.394 (3) C25—H25B 0.9800
C11—C12 1.394 (3) C25—H25C 0.9800
C4—C9 1.388 (3) C5—H5 0.9500
C4—C3 1.489 (3) C5—C6 1.392 (3)
C4—C5 1.380 (3) C15—H15 0.9500
C30—H30 1.0000 C15—C14 1.386 (3)
C30—C31 1.531 (3) C14—H14 0.9500
C30—C32 1.525 (3) C7—H7 0.9500
C16—H16 0.9500 C7—C6 1.387 (3)
C16—C15 1.389 (3) C23—H23A 0.9800
C9—C10 1.486 (3) C23—H23B 0.9800
C9—C8 1.385 (3) C23—H23C 0.9800
C20—C21 1.393 (3) C26—H26A 0.9800
C20—C19 1.392 (3) C26—H26B 0.9800
C20—C23 1.507 (3) C26—H26C 0.9800
C18—H18 0.9500 C29—H29A 0.9800
C18—C19 1.389 (3) C29—H29B 0.9800
C21—H21 0.9500 C29—H29C 0.9800
C21—C22 1.387 (3) C6—H6 0.9500
C12—H12 0.9500 C31—H31A 0.9800
C12—C13 1.387 (3) C31—H31B 0.9800
C22—H22 0.9500 C31—H31C 0.9800
C1—H1A 0.9900 C32—H32A 0.9800
C1—H1B 0.9900 C32—H32B 0.9800
C1—C2 1.505 (3) C32—H32C 0.9800
O1—S1—C17 101.13 (8) N3—C2—C1 113.82 (17)
N1—S1—O1 105.93 (8) N3—C2—H2A 108.8
N1—S1—C17 101.98 (9) N3—C2—H2B 108.8
N2—S1—O1 107.27 (8) C1—C2—H2A 108.8
N2—S1—N1 126.60 (9) C1—C2—H2B 108.8
N2—S1—C17 111.06 (9) H2A—C2—H2B 107.7
N2—Si—C30 107.57 (9) C12—C13—H13 119.6
N2—Si—C24 110.09 (9) C14—C13—C12 120.8 (2)
S1—N2—Si 142.24 (11) C14—C13—H13 119.6
N2—Si—C27 105.99 (9) Si—C27—H27 106.6
C30—Si—C24 110.30 (9) C28—C27—Si 114.45 (15)
C30—Si—C27 111.23 (9) C28—C27—H27 106.6
C24—Si—C27 111.50 (9) C29—C27—Si 112.48 (14)
C1—O1—S1 118.87 (12) C29—C27—H27 106.6
C11—N1—S1 125.44 (14) C29—C27—C28 109.50 (17)
C3—N3—C10 112.05 (16) C9—C8—H8 121.6
C3—N3—C2 123.98 (16) C9—C8—C7 116.8 (2)
C10—N3—C2 122.95 (16) C7—C8—H8 121.6
C18—C17—S1 119.20 (15) C27—C28—H28A 109.5
C18—C17—C22 120.93 (18) C27—C28—H28B 109.5
C22—C17—S1 119.81 (15) C27—C28—H28C 109.5
C16—C11—N1 116.63 (18) H28A—C28—H28B 109.5
C12—C11—N1 124.22 (17) H28A—C28—H28C 109.5
C12—C11—C16 119.04 (19) H28B—C28—H28C 109.5
C9—C4—C3 108.23 (18) C24—C25—H25A 109.5
C5—C4—C9 121.8 (2) C24—C25—H25B 109.5
C5—C4—C3 129.93 (19) C24—C25—H25C 109.5
Si—C30—H30 107.8 H25A—C25—H25B 109.5
C31—C30—Si 111.13 (14) H25A—C25—H25C 109.5
C31—C30—H30 107.8 H25B—C25—H25C 109.5
C32—C30—Si 112.26 (14) C4—C5—H5 121.5
C32—C30—H30 107.8 C4—C5—C6 117.0 (2)
C32—C30—C31 110.0 (2) C6—C5—H5 121.5
C11—C16—H16 119.9 C16—C15—H15 119.7
C15—C16—C11 120.2 (2) C14—C15—C16 120.6 (2)
C15—C16—H16 119.9 C14—C15—H15 119.7
C4—C9—C10 108.12 (18) C13—C14—C15 119.2 (2)
C8—C9—C4 121.5 (2) C13—C14—H14 120.4
C8—C9—C10 130.3 (2) C15—C14—H14 120.4
C21—C20—C23 121.1 (2) C8—C7—H7 119.2
C19—C20—C21 118.59 (18) C6—C7—C8 121.6 (2)
C19—C20—C23 120.3 (2) C6—C7—H7 119.2
C17—C18—H18 120.2 C20—C23—H23A 109.5
C17—C18—C19 119.65 (19) C20—C23—H23B 109.5
C19—C18—H18 120.2 C20—C23—H23C 109.5
O3—C3—N3 125.02 (18) H23A—C23—H23B 109.5
O3—C3—C4 129.27 (19) H23A—C23—H23C 109.5
N3—C3—C4 105.70 (16) H23B—C23—H23C 109.5
C20—C21—H21 119.4 C24—C26—H26A 109.5
C22—C21—C20 121.12 (19) C24—C26—H26B 109.5
C22—C21—H21 119.4 C24—C26—H26C 109.5
O2—C10—N3 124.20 (19) H26A—C26—H26B 109.5
O2—C10—C9 129.97 (19) H26A—C26—H26C 109.5
N3—C10—C9 105.82 (17) H26B—C26—H26C 109.5
C11—C12—H12 119.9 C27—C29—H29A 109.5
C13—C12—C11 120.15 (19) C27—C29—H29B 109.5
C13—C12—H12 119.9 C27—C29—H29C 109.5
C17—C22—H22 120.5 H29A—C29—H29B 109.5
C21—C22—C17 118.94 (19) H29A—C29—H29C 109.5
C21—C22—H22 120.5 H29B—C29—H29C 109.5
O1—C1—H1A 110.2 C5—C6—H6 119.4
O1—C1—H1B 110.2 C7—C6—C5 121.2 (2)
O1—C1—C2 107.48 (15) C7—C6—H6 119.4
H1A—C1—H1B 108.5 C30—C31—H31A 109.5
C2—C1—H1A 110.2 C30—C31—H31B 109.5
C2—C1—H1B 110.2 C30—C31—H31C 109.5
C20—C19—H19 119.6 H31A—C31—H31B 109.5
C18—C19—C20 120.8 (2) H31A—C31—H31C 109.5
C18—C19—H19 119.6 H31B—C31—H31C 109.5
Si—C24—H24 106.0 C30—C32—H32A 109.5
C25—C24—Si 113.53 (14) C30—C32—H32B 109.5
C25—C24—H24 106.0 C30—C32—H32C 109.5
C25—C24—C26 110.03 (18) H32A—C32—H32B 109.5
C26—C24—Si 114.45 (14) H32A—C32—H32C 109.5
C26—C24—H24 106.0 H32B—C32—H32C 109.5
S1—O1—C1—C2 154.80 (13) C9—C4—C3—N3 −1.7 (2)
S1—N1—C11—C16 153.82 (16) C9—C4—C5—C6 −0.5 (3)
S1—N1—C11—C12 −30.1 (3) C9—C8—C7—C6 −0.7 (3)
S1—C17—C18—C19 −177.16 (14) C20—C21—C22—C17 −0.5 (3)
S1—C17—C22—C21 177.63 (15) C18—C17—C22—C21 0.5 (3)
O1—S1—N1—C11 71.56 (18) C3—N3—C10—O2 176.21 (19)
O1—S1—N2—Si −143.37 (17) C3—N3—C10—C9 −2.9 (2)
O1—S1—C17—C18 −138.15 (15) C3—N3—C2—C1 105.9 (2)
O1—S1—C17—C22 44.69 (16) C3—C4—C9—C10 0.0 (2)
O1—C1—C2—N3 −74.8 (2) C3—C4—C9—C8 −177.80 (19)
N1—S1—O1—C1 176.34 (13) C3—C4—C5—C6 177.5 (2)
N1—S1—N2—Si −17.3 (2) C21—C20—C19—C18 0.4 (3)
N1—S1—C17—C18 112.72 (16) C10—N3—C3—O3 −176.40 (19)
N1—S1—C17—C22 −64.45 (17) C10—N3—C3—C4 2.9 (2)
N1—C11—C16—C15 174.52 (18) C10—N3—C2—C1 −86.5 (2)
N1—C11—C12—C13 −174.88 (18) C10—C9—C8—C7 −177.2 (2)
N2—S1—O1—C1 −46.09 (15) C12—C11—C16—C15 −1.8 (3)
N2—S1—N1—C11 −55.1 (2) C12—C13—C14—C15 −1.8 (3)
N2—S1—C17—C18 −24.57 (18) C22—C17—C18—C19 0.0 (3)
N2—S1—C17—C22 158.26 (15) C19—C20—C21—C22 0.1 (3)
N2—Si—C30—C31 55.01 (18) C24—Si—N2—S1 −0.8 (2)
N2—Si—C30—C32 −68.60 (19) C24—Si—C30—C31 175.10 (16)
N2—Si—C24—C25 −61.52 (17) C24—Si—C30—C32 51.5 (2)
N2—Si—C24—C26 171.01 (15) C24—Si—C27—C28 −157.85 (14)
N2—Si—C27—C28 −38.05 (17) C24—Si—C27—C29 76.34 (17)
N2—Si—C27—C29 −163.87 (15) C2—N3—C3—O3 −7.7 (3)
C17—S1—O1—C1 70.31 (14) C2—N3—C3—C4 171.58 (17)
C17—S1—N1—C11 176.97 (17) C2—N3—C10—O2 7.4 (3)
C17—S1—N2—Si 106.97 (18) C2—N3—C10—C9 −171.74 (17)
C17—C18—C19—C20 −0.5 (3) C27—Si—N2—S1 −121.54 (18)
C11—C16—C15—C14 0.6 (3) C27—Si—C30—C31 −60.64 (18)
C11—C12—C13—C14 0.7 (3) C27—Si—C30—C32 175.74 (17)
C4—C9—C10—O2 −177.3 (2) C27—Si—C24—C25 55.82 (18)
C4—C9—C10—N3 1.7 (2) C27—Si—C24—C26 −71.65 (18)
C4—C9—C8—C7 0.0 (3) C8—C9—C10—O2 0.2 (4)
C4—C5—C6—C7 −0.1 (3) C8—C9—C10—N3 179.2 (2)
C30—Si—N2—S1 119.40 (18) C8—C7—C6—C5 0.7 (3)
C30—Si—C24—C25 179.92 (15) C5—C4—C9—C10 178.36 (18)
C30—Si—C24—C26 52.46 (18) C5—C4—C9—C8 0.6 (3)
C30—Si—C27—C28 78.57 (17) C5—C4—C3—O3 −0.7 (4)
C30—Si—C27—C29 −47.24 (18) C5—C4—C3—N3 −179.9 (2)
C16—C11—C12—C13 1.1 (3) C23—C20—C21—C22 179.82 (19)
C16—C15—C14—C13 1.2 (3) C23—C20—C19—C18 −179.31 (18)
C9—C4—C3—O3 177.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O2i 0.95 2.52 3.429 (3) 160
C22—H22···O2ii 0.95 2.64 3.348 (3) 132
C14—H14···O3iii 0.95 2.52 3.429 (3) 161
C31—H31B···N1iv 0.98 2.60 3.361 (3) 135

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) −x+2, −y+1, −z+1; (iv) x, y+1, z.

Funding Statement

Funding for this research was provided by: Merck KGaA.

References

  1. Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131.
  2. Bohmann, R. A., Schöbel, J.-H., Unoh, Y., Miura, M. & Bolm, C. (2019). Adv. Synth. Catal. 361, 2000–2003.
  3. Chen, Y. & Gibson, J. (2015). RSC Adv. 5, 4171–4174.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512–7515. [DOI] [PubMed]
  6. Greed, S., Briggs, E. L., Idiris, F. I. M., White, A. J. P., Lücking, U. & Bull, J. A. (2020). Chem. Eur. J. 26, 12533–12538. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Izzo, F., Schäfer, M., Stockman, R. & Lücking, U. (2017). Chem. Eur. J. 23, 15189–15193. [DOI] [PMC free article] [PubMed]
  9. Lemasson, F., Gais, H.-J. & Raabe, G. (2007). Tetrahedron Lett. 48, 8752–8756.
  10. Liu, Y., Pan, Q., Hu, X., Guo, Y., Chen, Q.-Y. & Liu, C. (2021). Org. Lett. 23, 3975–3980. [DOI] [PubMed]
  11. Lücking, U. (2013). Angew. Chem. Int. Ed. 52, 9399–9408. [DOI] [PubMed]
  12. Lücking, U. (2019). Org. Chem. Front. 6, 1319–1324.
  13. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  14. Mash, E. A., Gregg, T. M. & Kaczynski, M. A. (1996). J. Org. Chem. 61, 2743–2752. [DOI] [PubMed]
  15. Nandi, G. C. & Arvidsson, P. I. (2018). Adv. Synth. Catal. 360, 2976–3001.
  16. Reggelin, M. & Zur, C. (2000). Synthesis, pp. 1–64.
  17. Rigaku (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Wen, J., Cheng, H., Dong, S. & Bolm, C. (2016). Chem. Eur. J. 22, 5547–5550. [DOI] [PubMed]
  21. Zhang, Z.-X., Davies, T. Q. & Willis, M. C. (2019). J. Am. Chem. Soc. 141, 13022–13027. [DOI] [PMC free article] [PubMed]
  22. Zhang, Z.-X. & Willis, M. C. (2022). Chem, 8, 1137–1146.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005904/zl5029sup1.cif

e-78-00699-sup1.cif (834.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005904/zl5029Isup2.hkl

e-78-00699-Isup2.hkl (430.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup5.cdx

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup6.cdx

Molecular schemes with atom numbering used in the NMR assignments. DOI: 10.1107/S2056989022005904/zl5029sup3.pdf

e-78-00699-sup3.pdf (402.4KB, pdf)

Supporting information file. DOI: 10.1107/S2056989022005904/zl5029Isup7.cml

CCDC reference: 2163661

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES