Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 10;78(Pt 7):703–708. doi: 10.1107/S2056989022005710

Syntheses and crystal structures of a nitro–anthracene–isoxazole and its oxidation product

Chun Li a, Matthew J Weaver b,, Michael J Campbell b,, Nicholas R Natale b,*
PMCID: PMC9260358  PMID: 35855371

The title compounds arose as unexpected by-products of an iodination reaction: in each case the fused-ring and isoxazole planes are almost perpendicular to each other.

Keywords: crystal structure, isoxazole, anthracenyl isoxazole, oxidation product

Abstract

The syntheses and structures of an unexpected by-product from an iodination reaction, namely, ethyl 5-methyl-3-(10-nitro­anthracen-9-yl)isoxazole-4-carb­oxy­l­ate, C21H16N2O5, (I), and its oxidation product, ethyl 3-(9-hy­droxy-10-oxo-9,10-di­hydro­anthracen-9-yl)-5-methyl­isoxazole-4-carboxyl­ate, C21H17NO5 (V) are described. Compound (I) crystallizes with two mol­ecules in the asymmetric unit in which the dihedral angles between the anthracene fused-ring systems and isoxazole ring mean planes are 88.67 (16) and 85.64 (16)°; both mol­ecules feature a disordered nitro group. In (V), which crystallizes with one mol­ecule in the asymmetric unit, the equivalent dihedral angle between the almost planar anthrone ring system (r.m.s. deviation = 0.029 Å) and the pendant isoxazole ring is 89.65 (5)°. In the crystal of (I), the mol­ecules are linked by weak C—H⋯O inter­actions into a three-dimensional network and in the extended structure of (V), inversion dimers linked by pairwise O—H⋯O hydrogen bonds generate R 2 2(14) loops.

1. Chemical context

In the course of our study of aryl-isoxazole amide (AIM) anti-tumor agents, we have a standard operating procedure to identify by-products of the synthesis (Weaver, Campbell et al., 2020), and have used the mechanistic insights gained in order to optimize and improve subsequent syntheses. 1.

During recent structure–activity relationship studies, we encountered complications in constructing sterically hindered examples, which we desired for their calculated pharmacokinetic properties. After obtaining mediocre results with bromine as a leaving group in Suzuki couplings, we pursued a fairly routine alternative of moving to the next halogen down in the periodic table. We have encountered more complications in this study than in the previous twenty papers we have published in this area (e.g. Weaver, Stump et al., 2020 and Weaver et al., 2015), and herein report the crystal structures of two compounds observed.

Using conditions usually reported for iodination, the main product observed for reaction of (II) was the nitro ester (I) rather than the expected iodo product (III), which was obtained in small amounts (Fig. 1). The nitro product so obtained exhibits most of the stereoelectronic properties of previously studied analogues that we have considered to be essential for their biological activity (Han et al., 2009). The nitro group is disordered and found in two distinct conformations in the unit cell. We attribute this to an extreme peri-effect, which substanti­ally raises the energy of the co-planar conformer.

Figure 1.

Figure 1

Preparation and mol­ecular structures of the title compounds.

In order to improve on the accuracy of the crystal structure of (I) we attempted numerous recrystallizations; however, what was observed was the addition of oxygen to compound (I), which we attribute to cyclo­addition of di­oxy­gen to an endo-peroxide (IV) (Klaper et al., 2016), and ring opening with loss of a leaving group to the oxidation product anthra­quinone (V). Usually, anthracenes are oxidized in vivo predominantly by cytochrome P450, leading to a potentially toxic arene oxide (Silverman et al., 2014). The rationale for the isoxazole series is that the C-5 isoxazole methyl group represents an opportunity for safer metabolism (Natale et al., 2010). The observation in this manuscript suggests that intra­molecular di­oxy­genation, which would likely be mediated in vivo by mono amine oxidase (MAO), is another plausible route (Silverman, 2002). The observation of a possible endo-peroxide pathway in this study suggests that the metabolism of these 10-substituted anthracenyl isoxazole analogues could go through di­oxy­genation catalysed by COX (cyclo­oxygenase) and other prostaglandin synthases in vivo (Silverman, 2002).

2. Structural commentary

The first title compound (I), C21H16N2O5, crystallizes in the monoclinic Cc space group with two independent mol­ecules in the asymmetric unit (Fig. 2). The dihedral angle between the anthracene ring mean plane and the isoxazole ring mean plane indicate near orthogonality: 88.67 (16) and 85.64 (16)° for mol­ecules A (containing C1) and B (containing C22), respectively. Each independent anthryl ring contains a 10-nitro group with the O atoms disordered over two orientations. The isoxazole group and its attached ethyl ester moiety are virtually co-planar, with the twist angles found to be 3.1 (2)° between the C15–C17/O1/N1 and O2/C19/O3/C20 planes in mol­ecule A, and 4.2 (2)° between the C36–C38/O6/N3 and O7/C40/O8/C41 planes in mol­ecule B. The ester ethyl group is exo- with respect to the anthryl ring in the solid state but this conformation is not completely retained in solution as the proton NMR indicates significant anisotropy at the methyl group of the ethyl ester (δ = 0.41), which indicates at the very least a significant population of the endo- orientation. In addition, many of our other reported anthracenyl isoxazole esters have shown the ester ethyl group in an endo- orientation (Weaver, Stump et al., 2020; Weaver et al., 2015; Li et al., 2013; Li et al., 2006; Han et al., 2003; Mosher et al., 1996).

Figure 2.

Figure 2

The asymmetric unit of compound (I) showing displacement ellipsoids drawn at the 50% probability level. The structure on the left is mol­ecule A and that on the right is mol­ecule B.

The second title compound (V), C21H17NO5, crystallizes in the monoclinic P21/c space group with one independent mol­ecule in the asymmetric unit (Fig. 3). The anthrone ring system is virtually planar with an r.m.s. deviation of 0.029 Å. Like the other anthracenyl isoxazole structures we have reported (vide supra), the isoxazole ring is orthogonal to the anthracene ring, with a dihedral angle of 89.65 (5)°. The ester ethyl group is in endo- orientation and the C19—O3—C20—C21 grouping is twisted [torsion angle = 86.7 (2)°].

Figure 3.

Figure 3

The asymmetric unit of compound (V) with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In compound (I), weak C—H⋯O hydrogen bonds between adjacent A mol­ecules (C7—H7⋯O4 and C1—H1⋯O5) form a column running perpendicular to the [101] direction. Mol­ecule B lies between the columns and its O7 atom accepts a hydrogen bond from H3 of mol­ecule A (Table 1, Fig. 4). There is an aromatic π–π stacking inter­action with a centroid–centroid separation of 3.537 (5) Å between the planes of the C22–C25/C32/C33 and C1–C4/C11/C12 rings. A σ–π inter­action is observed at a distance of 3.774 Å from atom C42 to the plane centroid.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.95 2.46 3.366 (12) 159
C3—H3⋯O7ii 0.95 2.44 3.339 (6) 158
C7—H7⋯O4iii 0.95 2.40 3.24 (4) 147
C7—H7⋯O4A iii 0.95 2.46 3.34 (6) 154

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 4.

Figure 4

The partial packing of compound (I). For clarity, only hydrogen bonds C1—H1⋯O5i and C3—H3⋯O7ii are shown as dashed lines, and H atoms not involved in these hydrogen bonds are removed.

In the crystal of compound (V), inversion dimers linked by pairwise O2—H2⋯O1 hydrogen bonds occur (Table 2, Fig. 5). A short contact distance between the isoxazole ring of one mol­ecule (ring mean plane C15–C17/O5N1) and the carbonyl oxygen (O4) of another mol­ecule [3.1486 (16) Å] may contribute to the head-to-head, tail-to-tail arrangement in the crystal structure, also shown in Fig. 8 b.

Table 2. Hydrogen-bond geometry (Å, °) for (V) .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.91 (3) 1.93 (3) 2.8359 (19) 176 (2)

Symmetry code: (i) Inline graphic .

Figure 5.

Figure 5

The packing of compound (V). Inversion dimers linked by pairwise O2—H2⋯O1 hydrogen bonds are shown in dashed lines.

Figure 8.

Figure 8

(a) The Hirshfeld surface of (V) mapped over d norm. Short and long contacts are indicated as red and blue spots, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. Hydroxyl and carbonyl groups on the anthrone ring contributed major short contacts. (b) π–π inter­actions (anthrone to anthrone and carbonyl to isoxazole ring) and σ–π inter­action (C—H bond to carbon­yl) are shown as orange–red spots with green dashed lines in the shape-index map.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed, and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated to qu­antify the inter­molecular inter­actions using Crystal Explorer 21.5 (Spackman et al., 2021). The Hirshfeld surface of (I) is mapped over d norm in a fixed color scale of −0.31 (red) to 1.26 (blue) arbitrary units (Fig. 6). The delineated two-dimensional fingerprint plots shown in Fig. 7 indicate that two main contributions to the overall Hirshfeld surface area arise from H⋯H contacts (35.3%) and O⋯H/H⋯O contacts (29.0%) with C⋯H/H⋯C inter­actions contributing 17.5% of the Hirshfeld surface.

Figure 6.

Figure 6

(a) The Hirshfeld surface of (I) mapped over d norm. Short and long contacts are indicated as red and blue spots, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. (b) Weak π–π inter­actions are shown as green dashed lines on a surface mapped over curvedness. The π–π stacking is indicated by the green flat regions surrounded by dark blue edges.

Figure 7.

Figure 7

The two-dimensional fingerprint plots for (I) delineated into (a) H⋯H contacts, (b) O⋯H/H⋯O contacts, (c) C⋯H/H⋯C contacts, and (d) N⋯H/H⋯N contacts. Other contact contributions less than 5% are omitted.

The Hirshfeld surface of compound V is mapped over d norm in a fixed color scale of −0.58 (red) to 1.31 (blue) arbitrary units (Fig. 8 a), showing two short contacts from O⋯H hydrogen bonds in red spots. The delineated two-dimensional fingerprint plots (Fig. 9) indicate that H⋯H contacts contribute 47.7% of the Hirshfeld surface. Aromatic π–π stacking is also identifiable from the Hirshfeld surface mapped over the shape-index property (Fig. 8 b).

Figure 9.

Figure 9

The two-dimensional fingerprint plots for (V) delineated into (a) H⋯H contacts, (b) O⋯H/H⋯O contacts, (c) C⋯H/H⋯C contacts, and (d) N⋯H/H⋯N contacts. Other contact contributions less than 5% are omitted.

5. Database survey

A search for the 9-nitro­anthracenyl moiety in the Cambridge Structural Database (CSD version 5.43, November 2021 update; Groom et al., 2016) resulted in 14 hits, of which two crystal structures of 9-nitro­anthracene itself were reported, namely refcodes NTRANT (Trotter, 1959) and NTRANT01 (Glagovich et al., 2004). The reported angles between the NO2 plane and the anthracene plane are 84.78 and 69.40°, respectively, which agree with our observation of the disordered NO2 group in (I).

A search in the same database for the 10-hy­droxy anthrone fragment resulted in 59 hits, of which 10 structures had an aromatic ring at the 10-position, namely refcodes COBWEY (Barker et al., 2019), DULVUB (Skrzat & Roszak, 1986), ELULII (Stepovik et al., 2015), EVETIL (Mao et al., 2021), JAYPAA (Roszak et al., 1990), MOTJIQ (Chen et al., 2015), MOTKEN (Chen et al., 2015), QAJPUQ (Forensi et al., 2020), SAMNEC (Hoffend et al., 2013) and WOKYIH (Pullella et al., 2019). The anthrone unit in these 10 structures are either essentially planar or in a shallow boat conformation. The aromatic rings at the 10-position in these compounds are all at a vertical orientation relative to the anthrone ring. It may be noted that an anthrone isoxazole ester we reported in 2014, refcode TIYZEI, also shares similar structural features (Duncan et al., 2014).

6. Synthesis and crystallization

Iodination of aromatic hydro­carbons with mol­ecular iodine has been accomplished by several methods, typically using an oxidizing agent to generate the iodo­nium cation electrophile. Among the conditions we surveyed, fuming nitric acid in particular (Bansal et al., 1987) with the anthracene isoxazole (II), appears to consistently produce the nitrated anthryl (I) rather than the desired iodo product (III). The anthryl isoxazole ester (II) was prepared as previously described (Mosher et al., 1996), and recrystallized before use. The ester (II) (67 mg, 0.19 mmol) was dissolved in acetic acid (1 ml), and iodine (24.1 mg) was added. To this solution was added concentrated sulfuric acid (1 ml) and sodium nitrite (13.1 mg, 0.19 mmol). The resulting solution was warmed to reflux for 30 minutes, after which it was poured over ice (3 g) and the precipitate collected by filtration. Silica gel chromatography using ethyl acetate in hexane provided the product, which was recrystallized from solutions in methyl­ene chloride, ethyl acetate and hexane by slow evaporation, whereby the product was obtained as dull dark-yellow prisms (15 mg, 21%). 1H NMR: (CDCl3) δppm 7.95 (d, 2H, J = 8Hz); 7.69 (m, 4H); 7.6 (m, 2H); 3.735 (q, 2H, J = 4Hz); 2.94 (s, 3H); 0.41 (t, 3H, J = 4Hz). 13C NMR: (CDCl3) δppm 176.66, 161.03, 159.45, 145.97, 133.59, 130.34, 128.68, 127.11, 125.67, 121.81, 121.57, 111.45, 60.41, 13.47, 12.94. HPLC–MS: calculated for [C21H16N2O5+H]+ 377.1137, observed m/z 377 ([M + 1]+, 100% rel. intensity).

During the re-crystallization of compound (I), different solvent combinations of hexane, methanol, di­chloro­methane, and ethyl acetate were used. Instead of better crystals of compound (I), compound (V) was formed as translucent light-yellow prisms from the slow evaporation of the solvent mixture composed of hexane and methanol at room temperature over a period of two months. 1H NMR: (CDCl3) δppm 8.29 (dd, 2H, J = 1.37 and 7.79 Hz); 7.67 (d, 2H, J = 7.79 Hz); 7.60 (ddd, 2H, J = 1.37, 7.33, and 7.79 Hz); 7.50 (ddd, 2H, J = 1.37, 7.33, and 7.79 Hz); 4.06 (q, 2H, J = 6.87 Hz); 2.60 (s, 3H); 1.06 (t, 3H, J = 6.87 Hz). 13C NMR: (CDCl3) δppm 183.86, 177.58, 167.05, 162.74, 143.92, 133.68, 130.96, 128.86, 127.29, 126.72, 71.26, 61.71, 14.16, 13.96.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In compound (I), the nitro group is disordered in each of the two independent mol­ecules in the asymmetric unit. The occupancies of each disordered part were refined, converging to 0.572 (13) and 0.428 (13) for mol­ecule A, and 0.64 (3) and 0.36 (3) for mol­ecule B. EADP constraints were applied (Sheldrick, 2015) to each nitro group. The C-bound hydrogen atoms on both compounds were fixed geometrically and treated as riding with C—H = 0.95–0.98 Å and refined with U iso(H) = 1.2U eq(CH, CH2) or 1.5U eq(CH3). The O-bound H atom in (V) was found in a difference-Fourier map and refined freely. Four reflections ( Inline graphic 10, 110, Inline graphic 11 and 11 Inline graphic ) in compound (I) and four reflections (100, Inline graphic 4 5, 110 and 011) in compound (V) affected by the beam stop were omitted from the final cycles of refinement because of poor agreement between the observed and calculated intensities. The absolute structure of (I) was indetermin­ate in the present refinement.

Table 3. Experimental details.

  (I) (V)
Crystal data
Chemical formula C21H16N2O5 C21H17NO5
M r 376.36 363.36
Crystal system, space group Monoclinic, C c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 16.4968 (10), 14.8697 (9), 16.1836 (9) 8.2862 (4), 23.5895 (11), 8.6219 (4)
β (°) 114.879 (3) 97.728 (2)
V3) 3601.5 (4) 1669.99 (14)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.29 × 0.24 × 0.22 0.28 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SMART Breeze CCD Bruker SMART Breeze CCD
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.945, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45790, 7615, 5596 44252, 4112, 3252
R int 0.054 0.051
(sin θ/λ)max−1) 0.633 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.158, 1.02 0.051, 0.114, 1.13
No. of reflections 7615 4112
No. of parameters 546 250
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.19 0.37, −0.21
Absolute structure Flack x determined using 2257 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.5 (4)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2018), SHELXS (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, V, global. DOI: 10.1107/S2056989022005710/hb8020sup1.cif

e-78-00703-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005710/hb8020Isup2.hkl

e-78-00703-Isup2.hkl (604.9KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989022005710/hb8020Vsup3.hkl

e-78-00703-Vsup3.hkl (327.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005710/hb8020Isup4.cml

Supporting information file. DOI: 10.1107/S2056989022005710/hb8020Vsup5.cml

CCDC references: 2175007, 2175006

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Crystal data

C21H16N2O5 F(000) = 1568
Mr = 376.36 Dx = 1.388 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 16.4968 (10) Å Cell parameters from 7597 reflections
b = 14.8697 (9) Å θ = 2.7–21.0°
c = 16.1836 (9) Å µ = 0.10 mm1
β = 114.879 (3)° T = 100 K
V = 3601.5 (4) Å3 Prism, yellow
Z = 8 0.29 × 0.24 × 0.22 mm

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Data collection

Bruker SMART Breeze CCD diffractometer Rint = 0.054
Radiation source: 2 kW sealed X-ray tube θmax = 26.7°, θmin = 2.7°
φ and ω scans h = −20→20
45790 measured reflections k = −18→18
7615 independent reflections l = −20→20
5596 reflections with I > 2σ(I)

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0864P)2 + 2.331P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.55 e Å3
7615 reflections Δρmin = −0.19 e Å3
546 parameters Absolute structure: Flack x determined using 2257 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraints Absolute structure parameter: 0.5 (4)
Primary atom site location: structure-invariant direct methods

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3319 (3) 0.2201 (3) 0.5466 (2) 0.0487 (9)
O2 0.3808 (2) 0.0465 (3) 0.3397 (2) 0.0459 (9)
O3 0.4880 (2) 0.0385 (3) 0.4815 (2) 0.0471 (9)
N1 0.2636 (3) 0.2332 (3) 0.4569 (3) 0.0440 (10)
C1 0.3269 (3) 0.2892 (3) 0.2833 (4) 0.0392 (11)
H1 0.363669 0.290494 0.346904 0.047*
C2 0.3469 (4) 0.3427 (4) 0.2259 (4) 0.0519 (14)
H2 0.397851 0.380760 0.250073 0.062*
C3 0.2934 (4) 0.3424 (4) 0.1320 (4) 0.0548 (15)
H3 0.308016 0.380624 0.093210 0.066*
C4 0.2203 (4) 0.2876 (4) 0.0955 (4) 0.0471 (13)
H4 0.184644 0.288156 0.031651 0.056*
C5 0.0334 (3) 0.0476 (3) 0.1397 (3) 0.0375 (11)
H5 0.001 (4) 0.040 (3) 0.083 (4) 0.045 (15)*
C6 0.0166 (4) −0.0086 (4) 0.1956 (4) 0.0447 (13)
H6 −0.030 (4) −0.042 (4) 0.171 (4) 0.042 (15)*
C7 0.0677 (3) −0.0057 (4) 0.2910 (3) 0.0433 (12)
H7 0.054540 −0.045527 0.329570 0.052*
C8 0.1361 (3) 0.0548 (3) 0.3273 (3) 0.0363 (11)
H8 0.170089 0.056581 0.391448 0.044*
C9 0.2294 (3) 0.1746 (3) 0.3054 (3) 0.0335 (10)
C10 0.1272 (3) 0.1697 (3) 0.1202 (3) 0.0359 (11)
C11 0.1972 (3) 0.2301 (3) 0.1519 (3) 0.0354 (11)
C12 0.2511 (3) 0.2315 (3) 0.2482 (3) 0.0326 (10)
C13 0.1573 (3) 0.1148 (3) 0.2714 (3) 0.0295 (10)
C14 0.1042 (3) 0.1105 (3) 0.1749 (3) 0.0325 (10)
C15 0.2857 (3) 0.1785 (3) 0.4056 (3) 0.0330 (10)
C16 0.3647 (3) 0.1298 (3) 0.4562 (3) 0.0353 (10)
C17 0.3904 (3) 0.1590 (4) 0.5441 (3) 0.0404 (12)
C18 0.4659 (4) 0.1363 (4) 0.6323 (3) 0.0537 (15)
H18A 0.516186 0.176866 0.642774 0.081*
H18B 0.484587 0.074058 0.630503 0.081*
H18C 0.446894 0.143120 0.681695 0.081*
C19 0.4107 (3) 0.0671 (4) 0.4186 (3) 0.0402 (12)
C20 0.5375 (4) −0.0214 (4) 0.4483 (4) 0.0517 (14)
H20A 0.556563 0.011073 0.406087 0.062*
H20B 0.499576 −0.072871 0.415356 0.062*
C21 0.6175 (4) −0.0541 (4) 0.5297 (4) 0.0585 (15)
H21A 0.651142 −0.096711 0.509947 0.088*
H21B 0.597864 −0.083994 0.572036 0.088*
H21C 0.655804 −0.002855 0.560146 0.088*
O4 0.1027 (18) 0.111 (3) −0.022 (3) 0.072 (6) 0.572 (13)
O5 −0.0003 (7) 0.1959 (10) −0.0102 (7) 0.068 (3) 0.572 (13)
N2 0.076 (3) 0.156 (2) 0.025 (3) 0.039 (4) 0.572 (13)
O4A 0.073 (3) 0.105 (4) −0.022 (4) 0.072 (6) 0.428 (13)
O5A 0.0259 (10) 0.2395 (14) −0.0113 (10) 0.068 (3) 0.428 (13)
N2A 0.066 (4) 0.178 (3) 0.017 (4) 0.039 (4) 0.428 (13)
O6 0.4350 (3) 0.7239 (3) 0.2788 (2) 0.0553 (11)
O7 0.3756 (2) 0.5736 (2) 0.4917 (2) 0.0424 (8)
O8 0.2920 (2) 0.5316 (2) 0.3474 (2) 0.0422 (8)
N3 0.4850 (3) 0.7577 (3) 0.3678 (3) 0.0561 (13)
N4 0.6061 (3) 0.7796 (3) 0.8043 (3) 0.0495 (12)
C22 0.3713 (4) 0.8310 (4) 0.4975 (4) 0.0506 (14)
H22 0.347573 0.821907 0.433552 0.061*
C23 0.3270 (4) 0.8841 (4) 0.5326 (4) 0.0600 (16)
H23 0.272392 0.911450 0.492941 0.072*
C24 0.3606 (4) 0.8994 (4) 0.6269 (4) 0.0568 (15)
H24 0.328476 0.936589 0.650609 0.068*
C25 0.4393 (4) 0.8609 (3) 0.6845 (4) 0.0506 (14)
H25 0.461760 0.872032 0.748095 0.061*
C26 0.6969 (3) 0.6606 (4) 0.7304 (3) 0.0471 (13)
H26 0.721891 0.669551 0.794480 0.057*
C27 0.7377 (4) 0.6055 (5) 0.6938 (5) 0.0650 (17)
H27 0.792063 0.577059 0.732452 0.078*
C28 0.7018 (4) 0.5891 (5) 0.6000 (4) 0.0635 (17)
H28 0.731967 0.549990 0.575834 0.076*
C29 0.6250 (4) 0.6284 (4) 0.5438 (4) 0.0481 (13)
H29 0.600529 0.615429 0.480499 0.058*
C30 0.4988 (4) 0.7306 (4) 0.5209 (3) 0.0405 (12)
C31 0.5696 (3) 0.7629 (3) 0.7055 (3) 0.0364 (11)
C32 0.4875 (3) 0.8051 (3) 0.6514 (3) 0.0381 (11)
C33 0.4527 (3) 0.7886 (3) 0.5551 (3) 0.0400 (12)
C34 0.5802 (3) 0.6883 (3) 0.5776 (3) 0.0349 (11)
C35 0.6165 (3) 0.7057 (3) 0.6735 (3) 0.0369 (11)
C36 0.4597 (4) 0.7112 (3) 0.4208 (3) 0.0413 (12)
C37 0.3956 (3) 0.6454 (3) 0.3713 (3) 0.0370 (11)
C38 0.3817 (3) 0.6569 (4) 0.2828 (3) 0.0429 (12)
C39 0.3211 (4) 0.6178 (4) 0.1946 (3) 0.0478 (13)
H39A 0.316485 0.552762 0.201431 0.072*
H39B 0.344798 0.629473 0.149346 0.072*
H39C 0.261828 0.645184 0.174453 0.072*
C40 0.3545 (3) 0.5804 (3) 0.4101 (3) 0.0365 (11)
C41 0.2435 (4) 0.4683 (4) 0.3801 (4) 0.0487 (13)
H41A 0.226101 0.498471 0.424769 0.058*
H41B 0.282252 0.416477 0.410479 0.058*
C42 0.1625 (4) 0.4370 (4) 0.3006 (4) 0.0563 (15)
H42A 0.180119 0.410741 0.255014 0.084*
H42B 0.122459 0.488051 0.273756 0.084*
H42C 0.131623 0.391508 0.320559 0.084*
O9 0.5612 (9) 0.7525 (10) 0.8442 (5) 0.075 (5) 0.64 (3)
O10 0.6744 (11) 0.8219 (11) 0.8389 (6) 0.076 (4) 0.64 (3)
O9A 0.6187 (17) 0.7124 (9) 0.8578 (8) 0.060 (6) 0.36 (3)
O10A 0.6276 (15) 0.8540 (10) 0.8356 (9) 0.054 (5) 0.36 (3)

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.052 (2) 0.056 (2) 0.0267 (19) 0.0025 (19) 0.0058 (17) −0.0110 (15)
O2 0.045 (2) 0.058 (2) 0.0280 (19) 0.0043 (17) 0.0083 (16) −0.0063 (15)
O3 0.037 (2) 0.066 (2) 0.0312 (19) 0.0086 (18) 0.0079 (16) −0.0030 (17)
N1 0.044 (2) 0.049 (3) 0.029 (2) 0.006 (2) 0.0054 (19) 0.0002 (19)
C1 0.031 (3) 0.041 (3) 0.038 (3) −0.006 (2) 0.008 (2) 0.003 (2)
C2 0.044 (3) 0.057 (3) 0.055 (4) −0.015 (3) 0.021 (3) 0.001 (3)
C3 0.050 (3) 0.069 (4) 0.048 (3) −0.011 (3) 0.023 (3) 0.018 (3)
C4 0.048 (3) 0.060 (3) 0.031 (3) −0.003 (3) 0.015 (2) 0.006 (2)
C5 0.031 (3) 0.050 (3) 0.026 (2) −0.009 (2) 0.007 (2) −0.008 (2)
C6 0.035 (3) 0.053 (3) 0.044 (3) −0.019 (3) 0.015 (2) −0.009 (2)
C7 0.044 (3) 0.050 (3) 0.039 (3) −0.012 (2) 0.020 (2) 0.001 (2)
C8 0.037 (3) 0.046 (3) 0.027 (2) −0.004 (2) 0.014 (2) −0.003 (2)
C9 0.029 (2) 0.040 (3) 0.029 (2) −0.001 (2) 0.0097 (19) −0.002 (2)
C10 0.032 (2) 0.049 (3) 0.022 (2) 0.000 (2) 0.0062 (19) −0.001 (2)
C11 0.031 (2) 0.042 (3) 0.032 (2) −0.002 (2) 0.012 (2) 0.006 (2)
C12 0.028 (2) 0.038 (2) 0.030 (2) −0.0012 (19) 0.0099 (19) 0.0026 (19)
C13 0.029 (2) 0.033 (2) 0.025 (2) 0.0011 (18) 0.0104 (19) −0.0022 (18)
C14 0.026 (2) 0.043 (3) 0.029 (2) −0.001 (2) 0.0112 (19) −0.005 (2)
C15 0.037 (3) 0.035 (3) 0.024 (2) −0.007 (2) 0.011 (2) −0.0030 (19)
C16 0.033 (2) 0.043 (3) 0.023 (2) −0.006 (2) 0.0047 (19) −0.004 (2)
C17 0.038 (3) 0.047 (3) 0.026 (2) −0.005 (2) 0.004 (2) −0.004 (2)
C18 0.053 (3) 0.073 (4) 0.019 (2) 0.000 (3) −0.001 (2) −0.007 (2)
C19 0.041 (3) 0.048 (3) 0.028 (3) −0.008 (2) 0.011 (2) −0.003 (2)
C20 0.051 (3) 0.060 (4) 0.045 (3) 0.010 (3) 0.021 (3) 0.002 (3)
C21 0.049 (3) 0.069 (4) 0.050 (4) 0.009 (3) 0.014 (3) 0.009 (3)
O4 0.100 (19) 0.068 (6) 0.035 (2) 0.004 (14) 0.015 (12) −0.010 (3)
O5 0.031 (6) 0.118 (10) 0.044 (3) 0.013 (5) 0.007 (4) 0.017 (5)
N2 0.037 (10) 0.044 (15) 0.025 (7) 0.008 (10) 0.003 (7) 0.018 (9)
O4A 0.100 (19) 0.068 (6) 0.035 (2) 0.004 (14) 0.015 (12) −0.010 (3)
O5A 0.031 (6) 0.118 (10) 0.044 (3) 0.013 (5) 0.007 (4) 0.017 (5)
N2A 0.037 (10) 0.044 (15) 0.025 (7) 0.008 (10) 0.003 (7) 0.018 (9)
O6 0.065 (3) 0.058 (2) 0.031 (2) −0.017 (2) 0.0094 (19) 0.0037 (16)
O7 0.047 (2) 0.052 (2) 0.0246 (17) 0.0098 (17) 0.0108 (15) 0.0032 (14)
O8 0.050 (2) 0.0442 (19) 0.0293 (18) −0.0018 (17) 0.0132 (16) −0.0044 (15)
N3 0.063 (3) 0.058 (3) 0.034 (2) −0.016 (2) 0.008 (2) −0.003 (2)
N4 0.052 (3) 0.050 (3) 0.032 (2) −0.015 (2) 0.003 (2) −0.006 (2)
C22 0.045 (3) 0.056 (3) 0.038 (3) 0.005 (3) 0.005 (2) 0.002 (3)
C23 0.055 (4) 0.053 (3) 0.057 (4) 0.017 (3) 0.010 (3) 0.003 (3)
C24 0.064 (4) 0.045 (3) 0.060 (4) 0.014 (3) 0.024 (3) −0.002 (3)
C25 0.061 (4) 0.039 (3) 0.045 (3) −0.005 (3) 0.015 (3) −0.008 (2)
C26 0.041 (3) 0.059 (3) 0.030 (3) 0.002 (3) 0.004 (2) 0.014 (2)
C27 0.047 (3) 0.085 (5) 0.058 (4) 0.024 (3) 0.016 (3) 0.016 (3)
C28 0.058 (4) 0.085 (5) 0.047 (3) 0.026 (3) 0.021 (3) 0.008 (3)
C29 0.044 (3) 0.067 (4) 0.032 (3) 0.007 (3) 0.014 (2) 0.007 (3)
C30 0.045 (3) 0.041 (3) 0.029 (3) −0.004 (2) 0.010 (2) 0.000 (2)
C31 0.042 (3) 0.037 (2) 0.023 (2) −0.008 (2) 0.007 (2) −0.0019 (19)
C32 0.042 (3) 0.033 (2) 0.034 (3) −0.005 (2) 0.012 (2) −0.001 (2)
C33 0.041 (3) 0.038 (3) 0.030 (3) −0.003 (2) 0.004 (2) −0.003 (2)
C34 0.035 (3) 0.037 (2) 0.027 (2) −0.006 (2) 0.007 (2) 0.0038 (19)
C35 0.035 (3) 0.040 (3) 0.028 (2) −0.009 (2) 0.005 (2) 0.005 (2)
C36 0.048 (3) 0.041 (3) 0.025 (2) 0.004 (2) 0.006 (2) 0.006 (2)
C37 0.039 (3) 0.039 (3) 0.023 (2) 0.005 (2) 0.003 (2) −0.0026 (19)
C38 0.043 (3) 0.043 (3) 0.032 (3) −0.002 (2) 0.006 (2) 0.002 (2)
C39 0.052 (3) 0.056 (3) 0.028 (3) −0.007 (3) 0.009 (2) −0.002 (2)
C40 0.038 (3) 0.035 (3) 0.034 (3) 0.010 (2) 0.012 (2) −0.002 (2)
C41 0.051 (3) 0.057 (3) 0.042 (3) −0.004 (3) 0.024 (3) −0.001 (2)
C42 0.050 (3) 0.066 (4) 0.054 (4) −0.002 (3) 0.023 (3) −0.010 (3)
O9 0.093 (9) 0.100 (9) 0.038 (4) −0.031 (8) 0.032 (5) −0.006 (4)
O10 0.065 (7) 0.104 (8) 0.044 (4) −0.036 (7) 0.008 (5) −0.009 (5)
O9A 0.100 (16) 0.045 (7) 0.032 (6) 0.009 (7) 0.023 (7) 0.007 (5)
O10A 0.048 (10) 0.047 (8) 0.048 (7) −0.023 (7) 0.003 (7) −0.014 (5)

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Geometric parameters (Å, º)

O1—N1 1.428 (5) O6—N3 1.418 (6)
O1—C17 1.338 (7) O6—C38 1.349 (7)
O2—C19 1.199 (6) O7—C40 1.219 (6)
O3—C19 1.324 (6) O8—C40 1.319 (6)
O3—C20 1.455 (7) O8—C41 1.470 (6)
N1—C15 1.318 (6) N3—C36 1.301 (7)
C1—H1 0.9500 N4—C31 1.474 (6)
C1—C2 1.365 (7) N4—O9 1.237 (9)
C1—C12 1.423 (7) N4—O10 1.203 (11)
C2—H2 0.9500 N4—O9A 1.281 (13)
C2—C3 1.401 (8) N4—O10A 1.206 (14)
C3—H3 0.9500 C22—H22 0.9500
C3—C4 1.366 (8) C22—C23 1.352 (8)
C4—H4 0.9500 C22—C33 1.420 (8)
C4—C11 1.416 (7) C23—H23 0.9500
C5—H5 0.86 (6) C23—C24 1.406 (9)
C5—C6 1.343 (7) C24—H24 0.9500
C5—C14 1.416 (7) C24—C25 1.366 (9)
C6—H6 0.85 (6) C25—H25 0.9500
C6—C7 1.415 (7) C25—C32 1.403 (8)
C7—H7 0.9500 C26—H26 0.9500
C7—C8 1.367 (7) C26—C27 1.346 (9)
C8—H8 0.9500 C26—C35 1.425 (7)
C8—C13 1.415 (6) C27—H27 0.9500
C9—C12 1.408 (7) C27—C28 1.399 (9)
C9—C13 1.399 (6) C28—H28 0.9500
C9—C15 1.493 (6) C28—C29 1.343 (8)
C10—C11 1.380 (7) C29—H29 0.9500
C10—C14 1.407 (7) C29—C34 1.406 (7)
C10—N2 1.43 (5) C30—C33 1.408 (8)
C10—N2A 1.55 (6) C30—C34 1.416 (7)
C11—C12 1.433 (6) C30—C36 1.498 (7)
C13—C14 1.436 (6) C31—C32 1.413 (7)
C15—C16 1.413 (7) C31—C35 1.388 (7)
C16—C17 1.373 (7) C32—C33 1.438 (7)
C16—C19 1.485 (7) C34—C35 1.433 (7)
C17—C18 1.485 (7) C36—C37 1.415 (7)
C18—H18A 0.9800 C37—C38 1.362 (7)
C18—H18B 0.9800 C37—C40 1.465 (7)
C18—H18C 0.9800 C38—C39 1.474 (7)
C20—H20A 0.9900 C39—H39A 0.9800
C20—H20B 0.9900 C39—H39B 0.9800
C20—C21 1.500 (8) C39—H39C 0.9800
C21—H21A 0.9800 C41—H41A 0.9900
C21—H21B 0.9800 C41—H41B 0.9900
C21—H21C 0.9800 C41—C42 1.488 (8)
O4—N2 1.22 (6) C42—H42A 0.9800
O5—N2 1.29 (4) C42—H42B 0.9800
O4A—N2A 1.27 (9) C42—H42C 0.9800
O5A—N2A 1.11 (4)
C17—O1—N1 109.5 (3) O5A—N2A—O4A 131 (6)
C19—O3—C20 114.9 (4) C38—O6—N3 109.0 (4)
C15—N1—O1 104.3 (4) C40—O8—C41 116.3 (4)
C2—C1—H1 119.9 C36—N3—O6 105.7 (4)
C2—C1—C12 120.2 (5) O9—N4—C31 116.7 (5)
C12—C1—H1 119.9 O10—N4—C31 118.0 (6)
C1—C2—H2 119.5 O10—N4—O9 125.2 (7)
C1—C2—C3 120.9 (5) O9A—N4—C31 118.6 (6)
C3—C2—H2 119.5 O10A—N4—C31 121.6 (8)
C2—C3—H3 119.7 O10A—N4—O9A 119.7 (9)
C4—C3—C2 120.6 (5) C23—C22—H22 119.6
C4—C3—H3 119.7 C23—C22—C33 120.9 (5)
C3—C4—H4 119.7 C33—C22—H22 119.6
C3—C4—C11 120.7 (5) C22—C23—H23 119.5
C11—C4—H4 119.7 C22—C23—C24 121.0 (5)
C6—C5—H5 115 (4) C24—C23—H23 119.5
C6—C5—C14 120.7 (5) C23—C24—H24 120.0
C14—C5—H5 124 (4) C25—C24—C23 120.0 (6)
C5—C6—H6 116 (4) C25—C24—H24 120.0
C5—C6—C7 121.2 (5) C24—C25—H25 119.4
C7—C6—H6 122 (4) C24—C25—C32 121.1 (5)
C6—C7—H7 120.2 C32—C25—H25 119.4
C8—C7—C6 119.6 (5) C27—C26—H26 119.9
C8—C7—H7 120.2 C27—C26—C35 120.2 (5)
C7—C8—H8 119.3 C35—C26—H26 119.9
C7—C8—C13 121.4 (4) C26—C27—H27 119.3
C13—C8—H8 119.3 C26—C27—C28 121.5 (5)
C12—C9—C15 118.5 (4) C28—C27—H27 119.3
C13—C9—C12 122.2 (4) C27—C28—H28 119.8
C13—C9—C15 119.3 (4) C29—C28—C27 120.4 (6)
C11—C10—C14 125.3 (4) C29—C28—H28 119.8
C11—C10—N2 121.3 (18) C28—C29—H29 119.6
C11—C10—N2A 115 (2) C28—C29—C34 120.9 (5)
C14—C10—N2 113.2 (17) C34—C29—H29 119.6
C14—C10—N2A 120 (2) C33—C30—C34 122.7 (4)
C4—C11—C12 118.7 (4) C33—C30—C36 119.0 (5)
C10—C11—C4 124.3 (4) C34—C30—C36 118.3 (5)
C10—C11—C12 117.0 (4) C32—C31—N4 116.4 (4)
C1—C12—C11 118.9 (4) C35—C31—N4 118.1 (4)
C9—C12—C1 121.6 (4) C35—C31—C32 125.5 (4)
C9—C12—C11 119.5 (4) C25—C32—C31 125.2 (5)
C8—C13—C14 117.8 (4) C25—C32—C33 118.9 (5)
C9—C13—C8 123.2 (4) C31—C32—C33 115.9 (5)
C9—C13—C14 119.0 (4) C22—C33—C32 118.1 (5)
C5—C14—C13 119.3 (4) C30—C33—C22 122.2 (5)
C10—C14—C5 123.7 (4) C30—C33—C32 119.7 (5)
C10—C14—C13 117.0 (4) C29—C34—C30 122.7 (4)
N1—C15—C9 119.8 (4) C29—C34—C35 119.1 (4)
N1—C15—C16 112.6 (4) C30—C34—C35 118.2 (5)
C16—C15—C9 127.6 (4) C26—C35—C34 117.8 (5)
C15—C16—C19 126.2 (4) C31—C35—C26 124.1 (4)
C17—C16—C15 104.2 (4) C31—C35—C34 118.0 (4)
C17—C16—C19 129.4 (4) N3—C36—C30 119.9 (5)
O1—C17—C16 109.5 (4) N3—C36—C37 111.5 (4)
O1—C17—C18 116.7 (4) C37—C36—C30 128.6 (5)
C16—C17—C18 133.8 (5) C36—C37—C40 125.7 (4)
C17—C18—H18A 109.5 C38—C37—C36 105.3 (5)
C17—C18—H18B 109.5 C38—C37—C40 129.0 (5)
C17—C18—H18C 109.5 O6—C38—C37 108.6 (4)
H18A—C18—H18B 109.5 O6—C38—C39 115.7 (4)
H18A—C18—H18C 109.5 C37—C38—C39 135.6 (5)
H18B—C18—H18C 109.5 C38—C39—H39A 109.5
O2—C19—O3 124.6 (5) C38—C39—H39B 109.5
O2—C19—C16 123.0 (5) C38—C39—H39C 109.5
O3—C19—C16 112.3 (4) H39A—C39—H39B 109.5
O3—C20—H20A 110.3 H39A—C39—H39C 109.5
O3—C20—H20B 110.3 H39B—C39—H39C 109.5
O3—C20—C21 107.3 (5) O7—C40—O8 124.2 (5)
H20A—C20—H20B 108.5 O7—C40—C37 123.0 (5)
C21—C20—H20A 110.3 O8—C40—C37 112.7 (4)
C21—C20—H20B 110.3 O8—C41—H41A 110.0
C20—C21—H21A 109.5 O8—C41—H41B 110.0
C20—C21—H21B 109.5 O8—C41—C42 108.4 (5)
C20—C21—H21C 109.5 H41A—C41—H41B 108.4
H21A—C21—H21B 109.5 C42—C41—H41A 110.0
H21A—C21—H21C 109.5 C42—C41—H41B 110.0
H21B—C21—H21C 109.5 C41—C42—H42A 109.5
O4—N2—C10 123 (3) C41—C42—H42B 109.5
O4—N2—O5 122 (4) C41—C42—H42C 109.5
O5—N2—C10 116 (3) H42A—C42—H42B 109.5
O4A—N2A—C10 108 (3) H42A—C42—H42C 109.5
O5A—N2A—C10 121 (5) H42B—C42—H42C 109.5
O1—N1—C15—C9 −179.2 (4) N2A—C10—C14—C5 9 (3)
O1—N1—C15—C16 0.1 (5) N2A—C10—C14—C13 −172 (2)
N1—O1—C17—C16 −0.1 (6) O6—N3—C36—C30 −179.1 (5)
N1—O1—C17—C18 −179.4 (5) O6—N3—C36—C37 1.3 (6)
N1—C15—C16—C17 −0.1 (6) N3—O6—C38—C37 −0.5 (6)
N1—C15—C16—C19 −176.0 (5) N3—O6—C38—C39 176.6 (5)
C1—C2—C3—C4 −0.7 (9) N3—C36—C37—C38 −1.6 (6)
C2—C1—C12—C9 179.1 (5) N3—C36—C37—C40 178.6 (5)
C2—C1—C12—C11 0.6 (7) N4—C31—C32—C25 0.1 (7)
C2—C3—C4—C11 0.0 (9) N4—C31—C32—C33 179.7 (4)
C3—C4—C11—C10 −176.7 (5) N4—C31—C35—C26 1.3 (7)
C3—C4—C11—C12 1.0 (8) N4—C31—C35—C34 179.0 (4)
C4—C11—C12—C1 −1.2 (7) C22—C23—C24—C25 0.4 (10)
C4—C11—C12—C9 −179.8 (5) C23—C22—C33—C30 177.8 (6)
C5—C6—C7—C8 −0.6 (8) C23—C22—C33—C32 −1.1 (8)
C6—C5—C14—C10 178.2 (5) C23—C24—C25—C32 −0.6 (9)
C6—C5—C14—C13 −1.0 (7) C24—C25—C32—C31 179.5 (5)
C6—C7—C8—C13 −0.2 (8) C24—C25—C32—C33 −0.1 (8)
C7—C8—C13—C9 −176.8 (5) C25—C32—C33—C22 0.9 (7)
C7—C8—C13—C14 0.3 (7) C25—C32—C33—C30 −178.0 (5)
C8—C13—C14—C5 0.2 (6) C26—C27—C28—C29 −0.1 (11)
C8—C13—C14—C10 −179.0 (4) C27—C26—C35—C31 179.3 (5)
C9—C13—C14—C5 177.5 (4) C27—C26—C35—C34 1.6 (8)
C9—C13—C14—C10 −1.7 (6) C27—C28—C29—C34 1.6 (10)
C9—C15—C16—C17 179.1 (5) C28—C29—C34—C30 −179.5 (5)
C9—C15—C16—C19 3.2 (8) C28—C29—C34—C35 −1.5 (8)
C10—C11—C12—C1 176.6 (5) C29—C34—C35—C26 −0.1 (7)
C10—C11—C12—C9 −2.0 (7) C29—C34—C35—C31 −177.9 (4)
C11—C10—C14—C5 −178.2 (5) C30—C34—C35—C26 178.0 (4)
C11—C10—C14—C13 1.0 (7) C30—C34—C35—C31 0.1 (6)
C11—C10—N2—O4 77 (4) C30—C36—C37—C38 178.9 (5)
C11—C10—N2—O5 −101 (3) C30—C36—C37—C40 −0.9 (9)
C11—C10—N2A—O4A 115 (4) C31—C32—C33—C22 −178.7 (5)
C11—C10—N2A—O5A −64 (6) C31—C32—C33—C30 2.3 (7)
C12—C1—C2—C3 0.4 (9) C32—C31—C35—C26 −176.7 (5)
C12—C9—C13—C8 177.7 (4) C32—C31—C35—C34 0.9 (7)
C12—C9—C13—C14 0.7 (7) C33—C22—C23—C24 0.5 (10)
C12—C9—C15—N1 91.6 (6) C33—C30—C34—C29 178.1 (5)
C12—C9—C15—C16 −87.6 (6) C33—C30—C34—C35 0.1 (7)
C13—C9—C12—C1 −177.3 (5) C33—C30—C36—N3 95.1 (7)
C13—C9—C12—C11 1.3 (7) C33—C30—C36—C37 −85.4 (7)
C13—C9—C15—N1 −88.6 (6) C34—C30—C33—C22 179.7 (5)
C13—C9—C15—C16 92.3 (6) C34—C30—C33—C32 −1.4 (8)
C14—C5—C6—C7 1.2 (8) C34—C30—C36—N3 −85.9 (6)
C14—C10—C11—C4 178.5 (5) C34—C30—C36—C37 93.6 (7)
C14—C10—C11—C12 0.8 (7) C35—C26—C27—C28 −1.5 (10)
C14—C10—N2—O4 −97 (4) C35—C31—C32—C25 178.2 (5)
C14—C10—N2—O5 85 (3) C35—C31—C32—C33 −2.2 (7)
C14—C10—N2A—O4A −71 (5) C36—C30—C33—C22 −1.4 (8)
C14—C10—N2A—O5A 110 (5) C36—C30—C33—C32 177.5 (4)
C15—C9—C12—C1 2.6 (7) C36—C30—C34—C29 −0.8 (7)
C15—C9—C12—C11 −178.9 (4) C36—C30—C34—C35 −178.8 (4)
C15—C9—C13—C8 −2.1 (7) C36—C37—C38—O6 1.2 (6)
C15—C9—C13—C14 −179.2 (4) C36—C37—C38—C39 −175.0 (6)
C15—C16—C17—O1 0.1 (5) C36—C37—C40—O7 −3.9 (8)
C15—C16—C17—C18 179.3 (6) C36—C37—C40—O8 175.1 (5)
C15—C16—C19—O2 −5.4 (8) C38—O6—N3—C36 −0.5 (6)
C15—C16—C19—O3 173.5 (4) C38—C37—C40—O7 176.3 (5)
C17—O1—N1—C15 0.0 (5) C38—C37—C40—O8 −4.6 (7)
C17—C16—C19—O2 179.8 (5) C40—O8—C41—C42 166.0 (4)
C17—C16—C19—O3 −1.2 (7) C40—C37—C38—O6 −179.0 (5)
C19—O3—C20—C21 −174.3 (5) C40—C37—C38—C39 4.7 (10)
C19—C16—C17—O1 175.8 (5) C41—O8—C40—O7 2.6 (7)
C19—C16—C17—C18 −5.1 (10) C41—O8—C40—C37 −176.5 (4)
C20—O3—C19—O2 0.5 (7) O9—N4—C31—C32 63.2 (11)
C20—O3—C19—C16 −178.4 (4) O9—N4—C31—C35 −115.0 (11)
N2—C10—C11—C4 4.9 (18) O10—N4—C31—C32 −113.3 (12)
N2—C10—C11—C12 −172.8 (17) O10—N4—C31—C35 68.5 (13)
N2—C10—C14—C5 −4.1 (18) O9A—N4—C31—C32 120.0 (14)
N2—C10—C14—C13 175.1 (17) O9A—N4—C31—C35 −58.2 (15)
N2A—C10—C11—C4 −8 (3) O10A—N4—C31—C32 −63.1 (16)
N2A—C10—C11—C12 174 (2) O10A—N4—C31—C35 118.7 (16)

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O5i 0.95 2.46 3.366 (12) 159
C3—H3···O7ii 0.95 2.44 3.339 (6) 158
C7—H7···O4iii 0.95 2.40 3.24 (4) 147
C7—H7···O4Aiii 0.95 2.46 3.34 (6) 154

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z−1/2; (iii) x, −y, z+1/2.

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Crystal data

C21H17NO5 F(000) = 760
Mr = 363.36 Dx = 1.445 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.2862 (4) Å Cell parameters from 9893 reflections
b = 23.5895 (11) Å θ = 2.5–28.3°
c = 8.6219 (4) Å µ = 0.10 mm1
β = 97.728 (2)° T = 100 K
V = 1669.99 (14) Å3 Prism, yellow
Z = 4 0.28 × 0.20 × 0.19 mm

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Data collection

Bruker SMART Breeze CCD diffractometer 3252 reflections with I > 2σ(I)
Radiation source: 2 kW sealed X-ray tube Rint = 0.051
φ and ω scans θmax = 28.3°, θmin = 1.7°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −10→11
Tmin = 0.945, Tmax = 1.000 k = −31→31
44252 measured reflections l = −11→11
4112 independent reflections

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.7289P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
4112 reflections Δρmax = 0.37 e Å3
250 parameters Δρmin = −0.21 e Å3
0 restraints

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65863 (16) 0.55415 (6) 0.82793 (16) 0.0252 (3)
O2 0.18140 (16) 0.55228 (6) 1.16490 (15) 0.0203 (3)
O3 0.44673 (16) 0.68686 (5) 0.90343 (16) 0.0217 (3)
O4 0.37570 (18) 0.77723 (6) 0.93929 (18) 0.0306 (3)
O5 0.03664 (16) 0.70944 (5) 1.19895 (16) 0.0226 (3)
N1 0.08101 (19) 0.65146 (6) 1.19429 (19) 0.0212 (3)
C1 0.0870 (2) 0.57205 (7) 0.8333 (2) 0.0203 (4)
H1 −0.001664 0.578626 0.890399 0.024*
C2 0.0569 (2) 0.55858 (8) 0.6759 (2) 0.0228 (4)
H2A −0.052182 0.555788 0.625751 0.027*
C3 0.1853 (2) 0.54909 (8) 0.5906 (2) 0.0240 (4)
H3 0.164699 0.541177 0.481704 0.029*
C4 0.3430 (2) 0.55131 (7) 0.6659 (2) 0.0218 (4)
H4 0.431105 0.543796 0.608819 0.026*
C5 0.7367 (2) 0.57793 (8) 1.1470 (2) 0.0220 (4)
H5 0.823547 0.568479 1.090262 0.026*
C6 0.7694 (2) 0.59175 (8) 1.3033 (2) 0.0247 (4)
H6 0.878586 0.592110 1.353877 0.030*
C7 0.6426 (2) 0.60514 (8) 1.3866 (2) 0.0243 (4)
H7 0.665219 0.614443 1.494505 0.029*
C8 0.4833 (2) 0.60507 (8) 1.3136 (2) 0.0205 (4)
H8 0.397213 0.614388 1.371534 0.025*
C9 0.2716 (2) 0.59122 (7) 1.0817 (2) 0.0165 (3)
C10 0.5456 (2) 0.56479 (7) 0.9026 (2) 0.0189 (4)
C11 0.5762 (2) 0.57770 (7) 1.0712 (2) 0.0183 (4)
C12 0.4490 (2) 0.59136 (7) 1.1556 (2) 0.0172 (4)
C13 0.2460 (2) 0.57606 (7) 0.9088 (2) 0.0172 (4)
C14 0.3747 (2) 0.56448 (7) 0.8250 (2) 0.0182 (4)
C15 0.1976 (2) 0.64929 (7) 1.1067 (2) 0.0170 (4)
C16 0.2349 (2) 0.70473 (7) 1.0516 (2) 0.0181 (4)
C17 0.1296 (2) 0.73971 (8) 1.1146 (2) 0.0199 (4)
C18 0.0996 (2) 0.80170 (8) 1.1084 (2) 0.0253 (4)
H18A 0.008645 0.810745 1.165995 0.038*
H18B 0.072691 0.813653 0.999147 0.038*
H18C 0.197593 0.821674 1.156078 0.038*
C19 0.3576 (2) 0.72714 (8) 0.9602 (2) 0.0194 (4)
C20 0.5726 (2) 0.70681 (9) 0.8136 (2) 0.0263 (4)
H20A 0.534468 0.741549 0.755484 0.032*
H20B 0.593554 0.677531 0.736546 0.032*
C21 0.7273 (3) 0.71933 (11) 0.9198 (3) 0.0365 (5)
H21A 0.812088 0.730603 0.856913 0.055*
H21B 0.762503 0.685366 0.980518 0.055*
H21C 0.708331 0.750213 0.991184 0.055*
H2 0.232 (3) 0.5184 (12) 1.162 (3) 0.043 (7)*

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0224 (7) 0.0278 (7) 0.0271 (7) 0.0023 (6) 0.0097 (6) 0.0023 (6)
O2 0.0205 (7) 0.0183 (6) 0.0235 (7) −0.0023 (5) 0.0081 (5) 0.0017 (5)
O3 0.0199 (7) 0.0209 (6) 0.0256 (7) −0.0025 (5) 0.0070 (5) 0.0004 (5)
O4 0.0339 (8) 0.0194 (7) 0.0397 (9) −0.0005 (6) 0.0090 (7) 0.0073 (6)
O5 0.0204 (7) 0.0214 (7) 0.0264 (7) 0.0033 (5) 0.0049 (5) −0.0018 (5)
N1 0.0187 (8) 0.0192 (8) 0.0262 (8) 0.0018 (6) 0.0047 (6) −0.0021 (6)
C1 0.0212 (9) 0.0180 (8) 0.0222 (9) −0.0024 (7) 0.0043 (7) 0.0000 (7)
C2 0.0231 (10) 0.0196 (9) 0.0242 (10) −0.0046 (7) −0.0021 (8) −0.0008 (7)
C3 0.0342 (11) 0.0183 (9) 0.0190 (9) −0.0041 (8) 0.0017 (8) −0.0016 (7)
C4 0.0285 (10) 0.0162 (9) 0.0216 (9) −0.0018 (7) 0.0073 (8) −0.0011 (7)
C5 0.0169 (9) 0.0218 (9) 0.0279 (10) 0.0000 (7) 0.0047 (7) 0.0079 (7)
C6 0.0172 (9) 0.0256 (10) 0.0300 (11) −0.0034 (7) −0.0021 (8) 0.0088 (8)
C7 0.0262 (10) 0.0244 (9) 0.0212 (9) −0.0020 (8) −0.0009 (8) 0.0029 (7)
C8 0.0206 (9) 0.0199 (9) 0.0215 (9) 0.0005 (7) 0.0045 (7) 0.0012 (7)
C9 0.0156 (8) 0.0162 (8) 0.0185 (9) −0.0022 (6) 0.0050 (7) 0.0007 (6)
C10 0.0200 (9) 0.0147 (8) 0.0229 (9) 0.0002 (7) 0.0057 (7) 0.0030 (7)
C11 0.0178 (9) 0.0158 (8) 0.0214 (9) −0.0011 (7) 0.0034 (7) 0.0037 (7)
C12 0.0168 (9) 0.0135 (8) 0.0210 (9) −0.0002 (6) 0.0020 (7) 0.0027 (6)
C13 0.0200 (9) 0.0130 (8) 0.0190 (9) −0.0020 (6) 0.0040 (7) 0.0002 (6)
C14 0.0213 (9) 0.0135 (8) 0.0202 (9) −0.0011 (7) 0.0047 (7) 0.0008 (6)
C15 0.0143 (8) 0.0196 (8) 0.0168 (8) −0.0013 (7) 0.0004 (7) −0.0002 (7)
C16 0.0161 (9) 0.0186 (8) 0.0187 (9) −0.0005 (7) −0.0012 (7) −0.0004 (7)
C17 0.0182 (9) 0.0216 (9) 0.0184 (9) 0.0000 (7) −0.0028 (7) −0.0008 (7)
C18 0.0282 (10) 0.0208 (9) 0.0259 (10) 0.0047 (8) 0.0002 (8) −0.0016 (8)
C19 0.0187 (9) 0.0205 (9) 0.0178 (9) −0.0010 (7) −0.0025 (7) 0.0014 (7)
C20 0.0250 (10) 0.0303 (10) 0.0253 (10) −0.0049 (8) 0.0094 (8) 0.0022 (8)
C21 0.0219 (11) 0.0466 (13) 0.0410 (13) −0.0056 (9) 0.0040 (9) 0.0122 (10)

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Geometric parameters (Å, º)

O1—C10 1.231 (2) C7—C8 1.383 (3)
O2—C9 1.436 (2) C8—H8 0.9500
O2—H2 0.91 (3) C8—C12 1.392 (3)
O3—C19 1.336 (2) C9—C12 1.521 (2)
O3—C20 1.458 (2) C9—C13 1.520 (2)
O4—C19 1.208 (2) C9—C15 1.528 (2)
O5—N1 1.418 (2) C10—C11 1.474 (3)
O5—C17 1.336 (2) C10—C14 1.483 (3)
N1—C15 1.304 (2) C11—C12 1.397 (3)
C1—H1 0.9500 C13—C14 1.393 (3)
C1—C2 1.384 (3) C15—C16 1.439 (2)
C1—C13 1.392 (3) C16—C17 1.365 (3)
C2—H2A 0.9500 C16—C19 1.466 (3)
C2—C3 1.391 (3) C17—C18 1.483 (3)
C3—H3 0.9500 C18—H18A 0.9800
C3—C4 1.380 (3) C18—H18B 0.9800
C4—H4 0.9500 C18—H18C 0.9800
C4—C14 1.397 (3) C20—H20A 0.9900
C5—H5 0.9500 C20—H20B 0.9900
C5—C6 1.377 (3) C20—C21 1.501 (3)
C5—C11 1.401 (3) C21—H21A 0.9800
C6—H6 0.9500 C21—H21B 0.9800
C6—C7 1.387 (3) C21—H21C 0.9800
C7—H7 0.9500
C9—O2—H2 106.1 (16) C8—C12—C9 118.00 (16)
C19—O3—C20 115.78 (15) C8—C12—C11 119.62 (17)
C17—O5—N1 109.24 (14) C11—C12—C9 122.37 (16)
C15—N1—O5 105.61 (14) C1—C13—C9 118.24 (16)
C2—C1—H1 119.7 C1—C13—C14 119.11 (17)
C2—C1—C13 120.57 (18) C14—C13—C9 122.62 (16)
C13—C1—H1 119.7 C4—C14—C10 119.05 (17)
C1—C2—H2A 119.8 C13—C14—C4 119.83 (17)
C1—C2—C3 120.38 (18) C13—C14—C10 121.11 (16)
C3—C2—H2A 119.8 N1—C15—C9 117.35 (15)
C2—C3—H3 120.4 N1—C15—C16 111.38 (16)
C4—C3—C2 119.28 (18) C16—C15—C9 131.27 (16)
C4—C3—H3 120.4 C15—C16—C19 134.48 (17)
C3—C4—H4 119.6 C17—C16—C15 103.91 (16)
C3—C4—C14 120.74 (18) C17—C16—C19 121.48 (16)
C14—C4—H4 119.6 O5—C17—C16 109.86 (16)
C6—C5—H5 119.8 O5—C17—C18 116.12 (17)
C6—C5—C11 120.49 (18) C16—C17—C18 134.02 (18)
C11—C5—H5 119.8 C17—C18—H18A 109.5
C5—C6—H6 120.1 C17—C18—H18B 109.5
C5—C6—C7 119.80 (18) C17—C18—H18C 109.5
C7—C6—H6 120.1 H18A—C18—H18B 109.5
C6—C7—H7 119.8 H18A—C18—H18C 109.5
C8—C7—C6 120.49 (18) H18B—C18—H18C 109.5
C8—C7—H7 119.8 O3—C19—C16 113.44 (15)
C7—C8—H8 119.9 O4—C19—O3 123.74 (18)
C7—C8—C12 120.15 (18) O4—C19—C16 122.82 (18)
C12—C8—H8 119.9 O3—C20—H20A 109.5
O2—C9—C12 109.31 (14) O3—C20—H20B 109.5
O2—C9—C13 109.03 (14) O3—C20—C21 110.68 (17)
O2—C9—C15 104.91 (14) H20A—C20—H20B 108.1
C12—C9—C15 108.81 (14) C21—C20—H20A 109.5
C13—C9—C12 114.27 (15) C21—C20—H20B 109.5
C13—C9—C15 110.09 (14) C20—C21—H21A 109.5
O1—C10—C11 121.06 (17) C20—C21—H21B 109.5
O1—C10—C14 120.73 (17) C20—C21—H21C 109.5
C11—C10—C14 118.21 (16) H21A—C21—H21B 109.5
C5—C11—C10 119.19 (17) H21A—C21—H21C 109.5
C12—C11—C5 119.44 (17) H21B—C21—H21C 109.5
C12—C11—C10 121.35 (16)
O1—C10—C11—C5 0.1 (3) C9—C15—C16—C17 −179.04 (17)
O1—C10—C11—C12 178.18 (16) C9—C15—C16—C19 −3.3 (3)
O1—C10—C14—C4 0.7 (3) C10—C11—C12—C8 −177.95 (16)
O1—C10—C14—C13 179.53 (16) C10—C11—C12—C9 2.8 (3)
O2—C9—C12—C8 −57.8 (2) C11—C5—C6—C7 0.5 (3)
O2—C9—C12—C11 121.43 (17) C11—C10—C14—C4 −178.84 (16)
O2—C9—C13—C1 54.2 (2) C11—C10—C14—C13 0.0 (2)
O2—C9—C13—C14 −123.89 (17) C12—C9—C13—C1 176.78 (15)
O2—C9—C15—N1 1.7 (2) C12—C9—C13—C14 −1.3 (2)
O2—C9—C15—C16 −179.40 (17) C12—C9—C15—N1 −115.21 (17)
O5—N1—C15—C9 179.43 (14) C12—C9—C15—C16 63.7 (2)
O5—N1—C15—C16 0.30 (19) C13—C1—C2—C3 −0.3 (3)
N1—O5—C17—C16 0.41 (19) C13—C9—C12—C8 179.71 (15)
N1—O5—C17—C18 −179.49 (15) C13—C9—C12—C11 −1.0 (2)
N1—C15—C16—C17 −0.1 (2) C13—C9—C15—N1 118.84 (17)
N1—C15—C16—C19 175.66 (19) C13—C9—C15—C16 −62.2 (2)
C1—C2—C3—C4 2.3 (3) C14—C10—C11—C5 179.66 (16)
C1—C13—C14—C4 2.6 (3) C14—C10—C11—C12 −2.3 (2)
C1—C13—C14—C10 −176.28 (16) C15—C9—C12—C8 56.2 (2)
C2—C1—C13—C9 179.77 (16) C15—C9—C12—C11 −124.52 (17)
C2—C1—C13—C14 −2.1 (3) C15—C9—C13—C1 −60.4 (2)
C2—C3—C4—C14 −1.8 (3) C15—C9—C13—C14 121.53 (17)
C3—C4—C14—C10 178.25 (17) C15—C16—C17—O5 −0.22 (19)
C3—C4—C14—C13 −0.6 (3) C15—C16—C17—C18 179.7 (2)
C5—C6—C7—C8 −0.4 (3) C15—C16—C19—O3 6.9 (3)
C5—C11—C12—C8 0.1 (3) C15—C16—C19—O4 −172.96 (19)
C5—C11—C12—C9 −179.15 (16) C17—O5—N1—C15 −0.44 (19)
C6—C5—C11—C10 177.76 (17) C17—C16—C19—O3 −178.00 (16)
C6—C5—C11—C12 −0.3 (3) C17—C16—C19—O4 2.2 (3)
C6—C7—C8—C12 0.2 (3) C19—O3—C20—C21 86.7 (2)
C7—C8—C12—C9 179.26 (16) C19—C16—C17—O5 −176.64 (15)
C7—C8—C12—C11 0.0 (3) C19—C16—C17—C18 3.2 (3)
C9—C13—C14—C4 −179.41 (16) C20—O3—C19—O4 0.8 (3)
C9—C13—C14—C10 1.7 (3) C20—O3—C19—C16 −179.03 (15)

Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.91 (3) 1.93 (3) 2.8359 (19) 176 (2)

Symmetry code: (i) −x+1, −y+1, −z+2.

Funding Statement

The authors thank the University of Montana for grant No. 325490.

References

  1. Bansal, R. C., Eisenbraun, E. J. & Ryba, R. J. (1987). Org. Prep. Proced. Int. 19, 258–260.
  2. Barker, N. M., Krause, J. A. & Zhang, P. (2019). CSD Communication (refcode COBWEY). CCDC, Cambridge, England.
  3. Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, Y.-J., Yang, S.-C., Tsai, C.-C., Chang, K.-C., Chuang, W.-H., Chu, W.-L., Kovalev, V. & Chung, W.-S. (2015). Chem. Asian J. 10, 1025–1034. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Duncan, N. S., Beall, H. D., Kearns, A. K., Li, C. & Natale, N. R. (2014). Acta Cryst. E70, o315–o316. [DOI] [PMC free article] [PubMed]
  8. Forensi, S., Stopin, A., de Leo, F., Wouters, J. & Bonifazi, D. (2020). Tetrahedron, 76, 131299.
  9. Glagovich, N. M., Foss, P. C. D., Michalewski, O., Reed, E. M., Strathearn, K. E., Weiner, Y. F., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o2125–o2126.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680. [DOI] [PMC free article] [PubMed]
  12. Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545.
  13. Hoffend, C., Schickedanz, K., Bolte, M., Lerner, H.-W. & Wagner, M. (2013). Tetrahedron, 69, 7073–7081.
  14. Klaper, M., Wessig, P. & Linker, T. (2016). Chem. Commun. 52, 1210–1213. [DOI] [PubMed]
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Li, C., Campbell, M. J., Weaver, M. J., Duncan, N. S., Hunting, J. L. & Natale, N. R. (2013). Acta Cryst. E69, o1804–o1805. [DOI] [PMC free article] [PubMed]
  17. Li, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854–o856.
  18. Mao, X., Zhang, J., Wang, X., Zhang, H., Wei, P., Sung, H. H. Y., Williams, I. D., Feng, X., Ni, X.-L., Redshaw, C., Elsegood, M. R. J., Lam, J. W. Y. & Tang, B. Z. (2021). J. Org. Chem. 86, 7359–7369. [DOI] [PubMed]
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513–2515.
  21. Natale, N. R., Rider, K. C., Burkhart, D. J., Li, C., McKenzie, A. R. & Nelson, J. K. (2010). ARKIVOC, part (viii), pp. 97–107.
  22. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  23. Pullella, G. A., Wdowiak, A. P., Sykes, M. L., Lucantoni, L., Sukhoverkov, K. V., Zulfiqar, B., Sobolev, A. N., West, N. P., Mylne, J. S., Avery, V. M. & Piggott, M. J. (2019). Org. Lett. 21, 5519–5523. [DOI] [PubMed]
  24. Roszak, A. & Engelen, B. (1990). Acta Cryst. C46, 240–243.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Silverman, R. B. (2002). Organic Chemistry of Enzyme-catalyzed Reactions, 2nd ed, pp. 227–239. San Diego: Academic Press.
  28. Silverman, R. B. & Holladay, M. W. (2014). Organic Chemistry of Drug Design and Drug Action, pp. 368–373. San Diego: Academic Press.
  29. Skrzat, Z. & Roszak, A. (1986). Acta Cryst. C42, 1194–1196.
  30. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  31. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  32. Stepovik, L. P., Malysheva, Y. B. & Fukin, G. K. (2015). Russ. J. Gen. Chem. 85, 1401–1411.
  33. Trotter, J. (1959). Acta Cryst. 12, 237–242.
  34. Weaver, M. J., Campbell, M. J., Li, C. & Natale, N. R. (2020). Acta Cryst. E76, 1818–1822. [DOI] [PMC free article] [PubMed]
  35. Weaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765–1770. [DOI] [PMC free article] [PubMed]
  36. Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, V, global. DOI: 10.1107/S2056989022005710/hb8020sup1.cif

e-78-00703-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005710/hb8020Isup2.hkl

e-78-00703-Isup2.hkl (604.9KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989022005710/hb8020Vsup3.hkl

e-78-00703-Vsup3.hkl (327.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005710/hb8020Isup4.cml

Supporting information file. DOI: 10.1107/S2056989022005710/hb8020Vsup5.cml

CCDC references: 2175007, 2175006

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES