Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 10;78(Pt 7):709–715. doi: 10.1107/S2056989022006004

Crystal-structure studies of 4-phenyl­piperazin-1-ium 4-eth­oxy­benzoate monohydrate, 4-phenyl­piperazin-1-ium 4-meth­oxy­benzoate monohydrate, 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12-hydrate

Ninganayaka Mahesha a, Haruvegowda Kiran Kumar a, Mehmet Akkurt b, Hemmige S Yathirajan a, Sabine Foro c, Mohammed S M Abdelbaky d, Santiago Garcia-Granda d,*
PMCID: PMC9260359  PMID: 35855367

Four novel piperazinium salts are reported, and based on 1-phenyl­piperazinium as a common cation in the asymmetric units that include additionally water mol­ecules, and different P-substituent benzoate anions or a tri­fluoro­acetate anion. They are hydrated and there are three crystallized as 1:1 salts while the fourth is a 2:2 salt. Their crystal packing depends on strong ribbons or sheets stabilized by hydrogen bonds of type N—H⋯O and O—H⋯O and other inter­actions as C—H⋯O, C—H⋯π and C—H⋯F in the tri­fluoro­acetate-based one.

Keywords: crystal structure, hydrogen bonding, piperazine, biological activity

Abstract

In this study, four new piperazinium salts, namely, 4-phenyl­piperazin-1-ium 4-eth­oxy­benzoate monohydrate, C9H9O3·C10H15N2·H2O (I); 4-phenyl­piperazin-1-ium 4-meth­oxy­benzoate monohydrate, C10H15N2·C8H7O3·H2O (II); 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate, C10H15N2·C8H7O2·H2O (III); and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12 hydrate, C10H15N2·C2F3O2·0.12H2O (IV), have been synthesized. The single-crystal structures of these compounds reveal that all of them crystallize in the triclinic P Inline graphic space group and the crystal packing of (I)–(III) is built up of ribbons formed by a combination of hydrogen bonds of type N—H⋯O, O—H⋯O and other weak inter­actions of type C—H⋯O and C—H⋯π, leading to a three-dimensional network. In the crystal of (IV), the cations and the anions are connected by C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds and by C—H⋯π inter­actions, forming sheets which in turn inter­act to maintain the crystal structure by linking through the oxygen atoms of water mol­ecules and van der Waals inter­actions, giving the whole structure.

1. Chemical context

Piperazines are among the most important building blocks in today’s drug discovery efforts and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). For a review on the current pharmacological and toxicological information for piperazine derivative, see Elliott (2011). Various pharmacological properties of phenyl­piperazines and their derivatives have been discussed by several authors (Cohen et al., 1982; Conrado et al., 2010; Neves et al., 2003; Hanano et al., 2000). The design and synthesis of phenyl­piperazine derivatives as potent anti­cancer agents for prostate cancer have been described (Demirci et al., 2019). Many pharmaceutical compounds are derived from 1-phenyl­piperazine, viz., oxypertine, trazodone, nefazodone, etc.

The crystal structures of 2-(4-methyl-2-phenyl­piperazin-4-ium-1-yl)pyridine-3-carboxyl­ate dehydrate (Li et al., 2008), 1-chloro-2-(4-phenyl­piperazin-1-yl)-ethanone (Xu & Jing, 2009), 4-phenyl­piperazin-1-ium di­hydrogen phosphate (Essid et al., 2010) and 1-phenyl­piperazine-1,4-diium bis­(hydrogen sulfate) (Marouani et al., 2010) have been reported, as have those of 4-phenyl­piperazin-1-ium 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide and 4-phenyl­piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide (Al-Alshaikh et al., 2015). We have reported the crystal structures of some salts of 4-meth­oxy­phenyl­piperazine (Kiran Kumar et al., 2019a ), six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (Kiran Kumar et al., 2019b ), 2-meth­oxy­phenyl­piperazine (Harish Chinthal et al., 2020) and the recreational drug N-(4-meth­oxy­phen­yl)piperazine (MeOPP) and three of its salts (Kiran Kumar et al., 2020a ). 1.

In view of the importance of piperazines in general and the use of 1-phenyl­piperazine in particular, the present paper reports the crystal structure studies of some salts of 1-phenyl­piperazine with organic acids viz., 4-phenyl­piperazin-1-ium 4-eth­oxy­benzoate monohydrate, C9H9O3·C10H15N2·H2O (I); 4-phenyl­piperazin-1-ium 4-meth­oxy­benzoate monohydrate, C10H15N2·C8H7O3·H2O (II); 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate, C10H15N2·C8H7O2·H2O (III); and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12 hydrate C10H15N2·C2F3O2·0.12H2O (IV).

2. Structural commentary

The asymmetric unit of the compound (I), (Fig. 1), consists of a 4-phenyl­piperazin-1-ium cation, a 4-eth­oxy­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar while the protonated piperazine ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q T = 0.553 (2) Å, θ = 175.0 (2)° and φ = 15 (3)°. In compound (II) the asymmetric unit (Fig. 2) comprises a 4-phenyl­piperazin-1-ium cation, a 4-meth­oxy­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar while the protonated piperazine ring adopts a chair conformation, with puckering parameters Q T = 0.5614 (18) Å, θ = 175.89 (17)° and φ = 346 (3)°. Compound (III) presents an asymmetric unit (Fig. 3) composed of a 4-phenyl­piperazin-1-ium cation, a 4-methyl­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar but the protonated piperazine ring adopts a distorted chair conformation, with puckering parameters Q T = 0.5486 (19) Å, θ = 9.38 (19)° and φ = 167.9 (13)°. On the other hand, the asymmetric unit of (IV) (Fig. 4) contains two 4-phenyl­piperazin-1-ium cations (A1 with N1, A2 with N3) and two tri­fluoro­acetate anions (B1 with F1, B2 with F4) and a 0.12 occupancy water molecule. The aromatic rings of the cations (A1, A2) are essentially planar while the protonated piperazine rings adopt a chair conformation for cation A1, with puckering parameters (Cremer & Pople, 1975) Q T = 0.552 (4) Å, θ = 0.0 (4)° and φ = 207 (14)°, and a distorted chair conformation for the cation A2, with puckering parameters Q T = 0.559 (5) Å, θ = 6.6 (4)° and φ = 168 (4)°.

Figure 1.

Figure 1

The independent components of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The independent components of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The independent components of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The independent components of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. (Atom splitting is omitted for clarity.)

3. Supra­molecular features

In the crystal structure of (I), the cation pairs are connected across two water mol­ecules by C—H⋯O and N—H⋯O hydrogen bonds, forming an Inline graphic (10) ring motif in which the anions and cations are linked through the water mol­ecules by O—H⋯O and N—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 1, Fig. 5 a). In addition, a set of C—H⋯π inter­actions, through the benzene rings of the anions and the cations, connect the mol­ecules together in ribbons along the a-axis direction (Table 1, Fig. 5 b). The C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and C—H⋯π inter­actions together form a three-dimensional network, contributing to the stabilization of the crystal structure.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg3 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN1⋯OW1i 0.89 (2) 1.94 (2) 2.817 (3) 167 (2)
N2—HN2⋯O1 0.93 (2) 1.80 (2) 2.724 (3) 174 (2)
OW1—HW1⋯O2 0.88 (3) 1.75 (3) 2.630 (3) 178 (4)
OW1—HW2⋯O1ii 0.91 (3) 1.89 (3) 2.789 (3) 167 (3)
C9—H9A⋯OW1 0.97 2.52 3.308 (3) 138
C1—H1⋯Cg1iii 0.93 2.91 3.607 (3) 133
C5—H5⋯Cg1iv 0.93 2.79 3.570 (3) 142
C18—H18BCg3v 0.97 2.88 3.737 (4) 148

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 5.

Figure 5

Parts of the crystal structure of compound (I) showing (a) the formation of a cyclic hydrogen-bonded Inline graphic (10) aggregate and (b) a general view of C—H⋯π inter­actions parallel to [100]. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

In the crystal structure of (II), the cations, the anions and the water mol­ecules are connected by C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 2, Fig. 6 a). Furthermore, the cations inter­act via C—-H⋯π inter­actions through the benzene ring of the anion, forming ribbons along the b-axis direction (Table 2, Fig. 6 b). The C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and C—H⋯π inter­actions together form a three-dimensional network, contributing to the stabilization of the crystal structure.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg3 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN1⋯OW1i 0.93 (2) 1.91 (2) 2.815 (2) 166 (2)
OW1—HW1⋯O1ii 0.84 (2) 1.80 (2) 2.633 (2) 175 (2)
N2—HN2⋯O2 0.93 (2) 1.81 (2) 2.7350 (19) 176 (2)
OW1—HW2⋯O2iii 0.85 (2) 1.96 (2) 2.7876 (19) 168 (2)
C8—H8B⋯OW1ii 0.97 2.53 3.331 (2) 140
C1—H1⋯Cg3ii 0.93 2.76 3.549 (2) 144
C5—H5⋯Cg3iv 0.93 2.86 3.625 (2) 140

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 6.

Figure 6

Parts of the crystal structure of compound (II) showing (a) the formation of hydrogen-bonded ribbons parallel to [010] and (b) a general view of the C—H⋯π inter­actions parallel to [010]. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

In the crystal structure of (III), the cations, the anions and the water mol­ecules are connected by C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 3, Fig. 7). There are no C—H⋯π inter­actions or π-π stacking inter­actions. The crystal structure is stabilized by C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and van der Waals inter­actions between the ribbons, which run along the a-axis direction.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1⋯O2i 0.89 (3) 1.90 (3) 2.782 (2) 171 (4)
OW1—HW2⋯O1 0.84 (2) 1.92 (3) 2.751 (2) 172 (3)
N2—HN1⋯O1ii 0.90 (2) 1.94 (2) 2.819 (2) 164 (2)
N2—HN2⋯O2 0.92 (2) 1.80 (2) 2.7207 (19) 176 (2)
C8—H8A⋯OW1 0.97 2.33 3.116 (3) 138

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 7.

Figure 7

Part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain of rings parallel to [001]. Hydrogen bonds are drawn as dashed lines.

In the crystal structure of (IV), the cations and the anions are connected by C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds (Table 4, Fig. 8 a) and C—H⋯π inter­actions, generating sheets parallel to the (100) plane (Table 4, Fig. 8). These sheets further inter­act to maintain the crystal structure by linking through the oxygen atoms of water mol­ecules and by van der Waals inter­actions. As shown in Table 4, the main interactions in the structure of (IV) involve the oxygen atoms of carboxylate groups, while the 0.12 fraction of the water molecule contributes with one interaction of the type C—H⋯O and it is weak in comparison to the other oxygen-based ones.

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.88 1.91 2.790 (4) 174
N2—H22⋯O3 0.87 2.04 2.860 (4) 157
N2—H22⋯O4 0.87 2.47 3.164 (5) 137
N4—H41⋯O4ii 0.86 1.95 2.759 (6) 156
N4—H42⋯O2iii 0.89 1.90 2.758 (4) 164
C18—H18A⋯F5′iii 0.97 2.53 3.273 (18) 134
C18—H18B⋯Ow1 0.97 2.08 2.929 (15) 145
C19—H19B⋯O3iv 0.97 2.59 3.420 (5) 144
C20—H20A⋯F5iv 0.97 2.64 3.468 (8) 144
C16—H16⋯Cg2v 0.93 2.99 3.745 (4) 140

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 8.

Figure 8

Parts of the crystal structure of compound (IV) showing (a) a general view of the C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π inter­actions and (b) the mol­ecular packing of (IV) down the a-axis. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 2020.3, last update February 2022; Groom et al., 2016) for an unsubstituted 4-phenyl­piperazin-1-ium cation and para-substituted benzoate anion involved in the reported salts (I)–(III) gave no hits. However, searching for a branched phenyl piperazinium cation and para-substituted benzoate anion gave comparable hits, namely; 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-fluoro­benzoate monohydrate, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-chloro­benzoate monohydrate, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-bromo­benzoate monohydrate (FOVPOY, FOVPUE, FOVQAL; Kiran Kumar et al., 2019a ), 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-iodo­benzoate monohydrate (KUJPUD; Kiran Kumar et al., 2020b ). They exhibit a meth­oxy group as a substituent in the 4-phenyl­piperazin-1-ium cation while the reported compounds (I)–(IV) have no substituent. They also crystallize as monohydrates, and their crystal structures are based on differently sized chains of rings formed via a combination of hydrogen bonds of the type N–H⋯O and O–H⋯O and other weak inter­actions of types C—H⋯O and C—H⋯π to form sheets. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-amino­benzoate monohydrate (IHIMEU; Kiran Kumar et al., 2020a ) the presence of the amino substituent in the anion, which acts as both a donor and as an acceptor of hydrogen bonds, makes the supra­molecular assembly of this compound more complex than those reported here. A search for 4-phenyl­piperazin-1-ium and acetate derivatives involved in the reported compound (IV) gave no hits.

5. Synthesis and crystallization

For the synthesis of salts (I)–(IV), a solution of commercially available (from Sigma–Aldrich) 1-phenyl­piperazine (100 mg, 0.62 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate organic acids in methanol (10 ml) viz., 4-eth­oxy­benzoic acid (103 mg, 0.62 mol) for (I), 4-meth­oxy­benzoic acid (94 mg, 0.62 mol) for (II), 4-methyl­benzoic acid (84 mg, 0.62 mol) for (III) and tri­fluoro­acetic acid (71 mg, 0.62 mol) for (IV). The corresponding solutions were stirred for 15 min at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation in a week for all compounds, where ethanol:ethyl­acetate (1:1) was used for crystallization. The corresponding melting points were 353–355 K for (I), 368–370 K for (II), 338–340 K for (III) and 385–387 K for (IV).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms bonded to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (meth­yl) or 0.97 Å (methyl­ene), with U iso(H) = 1.2U eq(C) or 1.5U eq(C). For the H atoms bonded to the N and O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) and 1.5U eq(O), [for (I), N2—HN2 = 0.931 (19), N2—HN1 = 0.888 (17) Å and OW1—HW2 = 0.91 (3), OW1—HW1 = 0.88 (3) Å; for (II), N2—HN1 = 0.927 (16), N2—HN2 = 0.931 (18) Å and OW—HW1 = 0.840 (19), OW1—HW2 = 0.85 (2) Å; for (III), N2—HN1 = 0.900 (16), N2—HN2 = 0.918 (17) Å and OW1—HW1 = 0.89 (3), OW1—HW2 = 0.84 (2) Å and for (IV), N2—H22 = 0.87 (2) and N2—H21 = 0.88 (3) Å]. In (IV), the atoms of the CF3 groups of two tri­fluoro­acetate anions (B1, B2) are disordered over two sets of sites with site occupancies of 0.737 (3) and 0.263 (3). The corresponding bond distances in the disordered groups were restrained to be equal. The U ij components of these atoms were restrained to be equal and were restrained to approximate isotropic behaviour. The OW1 water molecule was refined with a resulting occupation factor of 0.245 (10) and the H atoms of the water molecule were placed geometrically.

Table 5. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C10H15N2 +·C9H9O3 ·H2O C10H15N2 +·C8H7O3 ·H2O C10H15N2 +·C8H7O2 ·H2O C10H15N2 +·C2F3O2 ·0.123H2O
M r 346.42 332.39 316.39 278.47
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 293 293 293 293
a, b, c (Å) 6.1635 (5), 7.5946 (6), 20.458 (2) 6.2039 (4), 7.5565 (7), 18.614 (1) 6.1175 (5), 7.6225 (7), 18.452 (1) 9.6544 (6), 9.9029 (6), 15.2090 (9)
α, β, γ (°) 79.545 (7), 86.521 (7), 83.791 (7) 81.799 (7), 87.020 (7), 84.852 (7) 97.421 (9), 90.403 (8), 92.405 (8) 79.621 (6), 86.579 (6), 70.603 (6)
V3) 935.38 (14) 859.53 (11) 852.40 (12) 1349.10 (15)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.08 0.12
Crystal size (mm) 0.48 × 0.42 × 0.1 0.48 × 0.48 × 0.32 0.5 × 0.4 × 0.08 0.48 × 0.48 × 0.36
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.623, 1.000 0.520, 1.000 0.837, 1.000 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5989, 3429, 2159 5360, 3142, 2322 5354, 3126, 2248 9220, 4940, 2777
R int 0.022 0.016 0.013 0.014
(sin θ/λ)max−1) 0.602 0.602 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.124, 1.08 0.045, 0.125, 1.06 0.046, 0.128, 1.03 0.070, 0.235, 1.07
No. of reflections 3424 3139 3118 4927
No. of parameters 244 230 226 375
No. of restraints 2 4 4 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.15 0.2, −0.17 0.16, −0.16 0.42, −0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989022006004/dj2048sup1.cif

e-78-00709-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006004/dj2048Isup2.hkl

e-78-00709-Isup2.hkl (273.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048Isup6.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022006004/dj2048IIsup3.hkl

e-78-00709-IIsup3.hkl (250.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IIsup7.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022006004/dj2048IIIsup4.hkl

e-78-00709-IIIsup4.hkl (249KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IIIsup8.cml

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989022006004/dj2048IVsup5.hkl

e-78-00709-IVsup5.hkl (392.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IVsup9.cml

CCDC references: 2177037, 2177036, 2177035, 2177034

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

NM is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (AYUD/2021/50997).

supplementary crystallographic information

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Crystal data

C10H15N2+·C9H9O3·H2O Z = 2
Mr = 346.42 F(000) = 372
Triclinic, P1 Dx = 1.23 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1635 (5) Å Cell parameters from 2352 reflections
b = 7.5946 (6) Å θ = 3.0–27.8°
c = 20.458 (2) Å µ = 0.09 mm1
α = 79.545 (7)° T = 293 K
β = 86.521 (7)° Plate, colourless
γ = 83.791 (7)° 0.48 × 0.42 × 0.1 mm
V = 935.38 (14) Å3

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Data collection

Oxford Diffraction Xcalibur diffractometer 2159 reflections with I > 2σ(I)
ω scans Rint = 0.022
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) θmax = 25.4°, θmin = 3.0°
Tmin = 0.623, Tmax = 1.000 h = −7→7
5989 measured reflections k = −9→9
3429 independent reflections l = −24→14

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.2859P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3424 reflections Δρmax = 0.15 e Å3
244 parameters Δρmin = −0.15 e Å3
2 restraints Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0058 (17)
Primary atom site location: structure-invariant direct methods

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1990 (4) 0.7508 (4) 0.79338 (12) 0.0626 (7)
H1 0.069252 0.809989 0.776125 0.075*
C2 0.2437 (5) 0.7539 (4) 0.85869 (13) 0.0782 (9)
H2 0.142853 0.814295 0.884641 0.094*
C3 0.4331 (5) 0.6699 (4) 0.88559 (14) 0.0759 (9)
H3 0.462163 0.672073 0.929504 0.091*
C4 0.5786 (5) 0.5827 (4) 0.84658 (14) 0.0753 (8)
H4 0.709095 0.525999 0.864083 0.09*
C5 0.5363 (4) 0.5771 (3) 0.78183 (12) 0.0579 (7)
H5 0.638106 0.515837 0.756445 0.069*
C6 0.3432 (3) 0.6615 (3) 0.75355 (10) 0.0407 (5)
C7 0.1046 (3) 0.7635 (3) 0.66062 (11) 0.0484 (6)
H7A 0.130663 0.888733 0.656771 0.058*
H7B −0.01969 0.742138 0.691398 0.058*
C8 0.0502 (3) 0.7292 (3) 0.59343 (11) 0.0496 (6)
H8A 0.005085 0.609001 0.59798 0.059*
H8B −0.07032 0.814458 0.576145 0.059*
C9 0.4290 (3) 0.6216 (3) 0.57366 (10) 0.0480 (6)
H9A 0.555062 0.634835 0.543053 0.058*
H9B 0.392361 0.498713 0.578625 0.058*
C10 0.4839 (3) 0.6594 (3) 0.64012 (10) 0.0447 (6)
H10A 0.602615 0.572985 0.657958 0.054*
H10B 0.5333 0.778458 0.634186 0.054*
C11 0.2356 (4) 0.7988 (3) 0.37750 (13) 0.0504 (6)
C12 0.1740 (3) 0.8093 (3) 0.30715 (11) 0.0409 (5)
C13 −0.0108 (3) 0.7381 (3) 0.29259 (11) 0.0462 (6)
H13 −0.09987 0.685018 0.327326 0.055*
C14 −0.0669 (4) 0.7436 (3) 0.22762 (11) 0.0496 (6)
H14 −0.191724 0.694349 0.218988 0.06*
C15 0.0633 (4) 0.8223 (3) 0.17610 (11) 0.0480 (6)
C16 0.2462 (4) 0.8988 (3) 0.18948 (12) 0.0547 (6)
H16 0.332264 0.955074 0.154649 0.066*
C17 0.3005 (4) 0.8916 (3) 0.25403 (12) 0.0521 (6)
H17 0.424178 0.942678 0.262421 0.063*
C18 −0.1614 (5) 0.7562 (5) 0.09410 (14) 0.0931 (10)
H18A −0.293805 0.818359 0.110377 0.112*
H18B −0.155291 0.63023 0.114607 0.112*
C19 −0.1605 (8) 0.7747 (7) 0.02032 (17) 0.178 (2)
H19A −0.195823 0.898767 0.00101 0.268*
H19B −0.266871 0.703796 0.008494 0.268*
H19C −0.018288 0.73364 0.003915 0.268*
N1 0.2969 (3) 0.6493 (2) 0.68767 (8) 0.0382 (4)
N2 0.2420 (3) 0.7474 (3) 0.54621 (10) 0.0452 (5)
O1 0.1211 (3) 0.7133 (2) 0.42359 (8) 0.0622 (5)
O2 0.3970 (3) 0.8727 (3) 0.38724 (10) 0.0885 (7)
O3 0.0253 (3) 0.8330 (2) 0.11014 (8) 0.0681 (5)
OW1 0.7230 (4) 0.8819 (2) 0.46338 (9) 0.0591 (5)
HN1 0.275 (4) 0.860 (2) 0.5421 (11) 0.056 (7)*
HN2 0.208 (4) 0.729 (3) 0.5044 (9) 0.067 (8)*
HW1 0.612 (5) 0.879 (4) 0.4385 (15) 0.102 (11)*
HW2 0.842 (5) 0.825 (4) 0.4445 (15) 0.102 (12)*

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0719 (17) 0.0673 (18) 0.0465 (15) 0.0151 (14) −0.0066 (13) −0.0156 (13)
C2 0.103 (2) 0.079 (2) 0.0522 (17) 0.0150 (18) −0.0020 (16) −0.0248 (15)
C3 0.106 (2) 0.076 (2) 0.0510 (17) −0.0055 (18) −0.0223 (17) −0.0207 (15)
C4 0.0735 (18) 0.090 (2) 0.0636 (18) 0.0027 (16) −0.0267 (15) −0.0145 (17)
C5 0.0561 (15) 0.0696 (18) 0.0486 (15) 0.0031 (13) −0.0116 (12) −0.0147 (13)
C6 0.0467 (12) 0.0353 (13) 0.0414 (13) −0.0092 (10) −0.0045 (10) −0.0067 (10)
C7 0.0399 (12) 0.0595 (16) 0.0441 (13) 0.0007 (11) −0.0025 (10) −0.0078 (11)
C8 0.0407 (12) 0.0622 (16) 0.0445 (14) −0.0045 (11) −0.0053 (10) −0.0053 (11)
C9 0.0480 (13) 0.0512 (15) 0.0423 (13) −0.0011 (11) 0.0026 (10) −0.0057 (11)
C10 0.0396 (12) 0.0496 (14) 0.0435 (13) −0.0024 (10) −0.0018 (10) −0.0062 (11)
C11 0.0524 (14) 0.0427 (14) 0.0593 (17) 0.0050 (12) −0.0162 (13) −0.0190 (12)
C12 0.0398 (12) 0.0373 (13) 0.0475 (13) −0.0007 (10) −0.0072 (10) −0.0121 (10)
C13 0.0494 (13) 0.0462 (14) 0.0432 (13) −0.0111 (11) −0.0024 (11) −0.0048 (11)
C14 0.0502 (13) 0.0519 (15) 0.0490 (14) −0.0163 (11) −0.0091 (11) −0.0063 (12)
C15 0.0556 (14) 0.0469 (15) 0.0412 (14) −0.0042 (11) −0.0052 (11) −0.0065 (11)
C16 0.0534 (14) 0.0566 (16) 0.0533 (16) −0.0136 (12) 0.0088 (12) −0.0063 (12)
C17 0.0409 (12) 0.0533 (16) 0.0659 (17) −0.0098 (11) −0.0026 (12) −0.0174 (13)
C18 0.111 (2) 0.121 (3) 0.0572 (18) −0.046 (2) −0.0218 (17) −0.0148 (18)
C19 0.242 (6) 0.251 (6) 0.063 (2) −0.137 (5) −0.039 (3) −0.007 (3)
N1 0.0374 (9) 0.0419 (11) 0.0350 (10) −0.0028 (8) −0.0021 (8) −0.0062 (8)
N2 0.0548 (12) 0.0428 (13) 0.0390 (11) −0.0088 (10) −0.0079 (9) −0.0058 (9)
O1 0.0706 (11) 0.0703 (12) 0.0465 (10) −0.0048 (10) −0.0127 (9) −0.0108 (9)
O2 0.0835 (13) 0.1109 (17) 0.0825 (14) −0.0368 (12) −0.0321 (11) −0.0215 (12)
O3 0.0816 (12) 0.0792 (13) 0.0450 (10) −0.0182 (10) −0.0052 (9) −0.0080 (9)
OW1 0.0593 (11) 0.0598 (12) 0.0604 (12) −0.0122 (10) −0.0135 (10) −0.0092 (9)

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Geometric parameters (Å, º)

C1—C6 1.377 (3) C11—O2 1.237 (3)
C1—C2 1.385 (3) C11—O1 1.267 (3)
C1—H1 0.93 C11—C12 1.497 (3)
C2—C3 1.365 (4) C12—C13 1.383 (3)
C2—H2 0.93 C12—C17 1.391 (3)
C3—C4 1.362 (4) C13—C14 1.386 (3)
C3—H3 0.93 C13—H13 0.93
C4—C5 1.375 (3) C14—C15 1.373 (3)
C4—H4 0.93 C14—H14 0.93
C5—C6 1.395 (3) C15—O3 1.370 (3)
C5—H5 0.93 C15—C16 1.386 (3)
C6—N1 1.416 (3) C16—C17 1.372 (3)
C7—N1 1.465 (2) C16—H16 0.93
C7—C8 1.508 (3) C17—H17 0.93
C7—H7A 0.97 C18—O3 1.425 (3)
C7—H7B 0.97 C18—C19 1.490 (4)
C8—N2 1.482 (3) C18—H18A 0.97
C8—H8A 0.97 C18—H18B 0.97
C8—H8B 0.97 C19—H19A 0.96
C9—N2 1.484 (3) C19—H19B 0.96
C9—C10 1.504 (3) C19—H19C 0.96
C9—H9A 0.97 N2—HN1 0.887 (16)
C9—H9B 0.97 N2—HN2 0.930 (16)
C10—N1 1.462 (3) OW1—HW1 0.88 (3)
C10—H10A 0.97 OW1—HW2 0.91 (3)
C10—H10B 0.97
C6—C1—C2 121.2 (2) O2—C11—C12 118.0 (2)
C6—C1—H1 119.4 O1—C11—C12 118.2 (2)
C2—C1—H1 119.4 C13—C12—C17 117.6 (2)
C3—C2—C1 121.1 (3) C13—C12—C11 121.3 (2)
C3—C2—H2 119.4 C17—C12—C11 121.1 (2)
C1—C2—H2 119.4 C12—C13—C14 121.8 (2)
C4—C3—C2 118.4 (3) C12—C13—H13 119.1
C4—C3—H3 120.8 C14—C13—H13 119.1
C2—C3—H3 120.8 C15—C14—C13 119.4 (2)
C3—C4—C5 121.3 (3) C15—C14—H14 120.3
C3—C4—H4 119.4 C13—C14—H14 120.3
C5—C4—H4 119.4 O3—C15—C14 124.4 (2)
C4—C5—C6 121.1 (2) O3—C15—C16 115.8 (2)
C4—C5—H5 119.4 C14—C15—C16 119.8 (2)
C6—C5—H5 119.4 C17—C16—C15 120.1 (2)
C1—C6—C5 116.9 (2) C17—C16—H16 119.9
C1—C6—N1 122.23 (19) C15—C16—H16 119.9
C5—C6—N1 120.8 (2) C16—C17—C12 121.2 (2)
N1—C7—C8 112.74 (18) C16—C17—H17 119.4
N1—C7—H7A 109 C12—C17—H17 119.4
C8—C7—H7A 109 O3—C18—C19 107.7 (3)
N1—C7—H7B 109 O3—C18—H18A 110.2
C8—C7—H7B 109 C19—C18—H18A 110.2
H7A—C7—H7B 107.8 O3—C18—H18B 110.2
N2—C8—C7 110.70 (17) C19—C18—H18B 110.2
N2—C8—H8A 109.5 H18A—C18—H18B 108.5
C7—C8—H8A 109.5 C18—C19—H19A 109.5
N2—C8—H8B 109.5 C18—C19—H19B 109.5
C7—C8—H8B 109.5 H19A—C19—H19B 109.5
H8A—C8—H8B 108.1 C18—C19—H19C 109.5
N2—C9—C10 110.47 (18) H19A—C19—H19C 109.5
N2—C9—H9A 109.6 H19B—C19—H19C 109.5
C10—C9—H9A 109.6 C6—N1—C10 115.21 (16)
N2—C9—H9B 109.6 C6—N1—C7 115.50 (17)
C10—C9—H9B 109.6 C10—N1—C7 111.72 (16)
H9A—C9—H9B 108.1 C8—N2—C9 109.60 (17)
N1—C10—C9 112.16 (17) C8—N2—HN1 106.9 (15)
N1—C10—H10A 109.2 C9—N2—HN1 109.4 (15)
C9—C10—H10A 109.2 C8—N2—HN2 110.8 (15)
N1—C10—H10B 109.2 C9—N2—HN2 112.2 (15)
C9—C10—H10B 109.2 HN1—N2—HN2 108 (2)
H10A—C10—H10B 107.9 C15—O3—C18 117.7 (2)
O2—C11—O1 123.7 (2) HW1—OW1—HW2 107 (3)
C6—C1—C2—C3 0.6 (4) O3—C15—C16—C17 −178.7 (2)
C1—C2—C3—C4 0.2 (5) C14—C15—C16—C17 1.8 (4)
C2—C3—C4—C5 −0.7 (5) C15—C16—C17—C12 −0.4 (4)
C3—C4—C5—C6 0.5 (4) C13—C12—C17—C16 −1.2 (3)
C2—C1—C6—C5 −0.8 (4) C11—C12—C17—C16 178.9 (2)
C2—C1—C6—N1 177.0 (2) C1—C6—N1—C10 143.0 (2)
C4—C5—C6—C1 0.3 (4) C5—C6—N1—C10 −39.3 (3)
C4—C5—C6—N1 −177.6 (2) C1—C6—N1—C7 10.3 (3)
N1—C7—C8—N2 −54.6 (3) C5—C6—N1—C7 −171.9 (2)
N2—C9—C10—N1 56.7 (2) C9—C10—N1—C6 172.59 (17)
O2—C11—C12—C13 −176.6 (2) C9—C10—N1—C7 −53.0 (2)
O1—C11—C12—C13 4.1 (3) C8—C7—N1—C6 −173.71 (18)
O2—C11—C12—C17 3.3 (3) C8—C7—N1—C10 52.0 (2)
O1—C11—C12—C17 −176.0 (2) C7—C8—N2—C9 57.2 (2)
C17—C12—C13—C14 1.6 (3) C10—C9—N2—C8 −58.4 (2)
C11—C12—C13—C14 −178.6 (2) C14—C15—O3—C18 −0.4 (4)
C12—C13—C14—C15 −0.3 (3) C16—C15—O3—C18 −179.9 (2)
C13—C14—C15—O3 179.1 (2) C19—C18—O3—C15 −176.7 (3)
C13—C14—C15—C16 −1.4 (3)

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I). Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—HN1···OW1i 0.89 (2) 1.94 (2) 2.817 (3) 167 (2)
N2—HN2···O1 0.93 (2) 1.80 (2) 2.724 (3) 174 (2)
OW1—HW1···O2 0.88 (3) 1.75 (3) 2.630 (3) 178 (4)
OW1—HW2···O1ii 0.91 (3) 1.89 (3) 2.789 (3) 167 (3)
C9—H9A···OW1 0.97 2.52 3.308 (3) 138
C1—H1···Cg1iii 0.93 2.91 3.607 (3) 133
C5—H5···Cg1iv 0.93 2.79 3.570 (3) 142
C18—H18B···Cg3v 0.97 2.88 3.737 (4) 148

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1.

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Crystal data

C10H15N2+·C8H7O3·H2O Z = 2
Mr = 332.39 F(000) = 356
Triclinic, P1 Dx = 1.284 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2039 (4) Å Cell parameters from 2855 reflections
b = 7.5565 (7) Å θ = 3.1–27.8°
c = 18.614 (1) Å µ = 0.09 mm1
α = 81.799 (7)° T = 293 K
β = 87.020 (7)° Prism, colourless
γ = 84.852 (7)° 0.48 × 0.48 × 0.32 mm
V = 859.53 (11) Å3

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Data collection

Oxford Diffraction Xcalibur diffractometer 2322 reflections with I > 2σ(I)
ω scans Rint = 0.016
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) θmax = 25.3°, θmin = 3.1°
Tmin = 0.520, Tmax = 1.000 h = −7→5
5360 measured reflections k = −9→9
3142 independent reflections l = −22→22

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1503P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3139 reflections Δρmax = 0.2 e Å3
230 parameters Δρmin = −0.16 e Å3
4 restraints Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.032 (4)
Primary atom site location: structure-invariant direct methods

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0254 (3) 0.4086 (3) 0.19209 (10) 0.0516 (5)
H1 −0.120858 0.476382 0.219629 0.062*
C2 −0.0695 (3) 0.3996 (3) 0.12102 (11) 0.0625 (6)
H2 −0.194898 0.46027 0.101533 0.075*
C3 0.0686 (3) 0.3024 (3) 0.07854 (10) 0.0597 (6)
H3 0.039957 0.298402 0.030279 0.072*
C4 0.2497 (3) 0.2117 (3) 0.10901 (10) 0.0593 (6)
H4 0.343702 0.143909 0.08102 0.071*
C5 0.2964 (3) 0.2181 (3) 0.18024 (9) 0.0512 (5)
H5 0.420732 0.154912 0.199433 0.061*
C6 0.1594 (2) 0.3180 (2) 0.22353 (8) 0.0361 (4)
C7 0.0222 (3) 0.3258 (2) 0.34797 (8) 0.0419 (4)
H7A −0.026461 0.205915 0.354319 0.05*
H7B −0.096084 0.40906 0.32889 0.05*
C8 0.0795 (3) 0.3708 (2) 0.42029 (9) 0.0456 (4)
H8A 0.116889 0.494094 0.414858 0.055*
H8B −0.044531 0.359357 0.454053 0.055*
C9 0.4547 (3) 0.2652 (3) 0.39777 (9) 0.0485 (5)
H9A 0.574598 0.182967 0.416336 0.058*
H9B 0.499661 0.386146 0.392734 0.058*
C10 0.3979 (3) 0.2229 (3) 0.32457 (9) 0.0445 (4)
H10A 0.520581 0.241283 0.29068 0.053*
H10B 0.36928 0.097655 0.328948 0.053*
C11 0.2655 (3) 0.2146 (2) 0.63263 (10) 0.0474 (5)
C12 0.3208 (3) 0.2073 (2) 0.71052 (9) 0.0389 (4)
C13 0.1897 (3) 0.1251 (2) 0.76647 (10) 0.0479 (5)
H13 0.067829 0.072733 0.755273 0.057*
C14 0.2386 (3) 0.1207 (3) 0.83782 (10) 0.0496 (5)
H14 0.149875 0.065178 0.874461 0.06*
C15 0.4186 (3) 0.1982 (2) 0.85567 (9) 0.0442 (4)
C16 0.5528 (3) 0.2784 (2) 0.80102 (9) 0.0453 (4)
H16 0.675183 0.329713 0.812349 0.054*
C17 0.5021 (3) 0.2808 (2) 0.72949 (9) 0.0424 (4)
H17 0.592994 0.333766 0.6929 0.051*
C18 0.6395 (4) 0.2628 (4) 0.94845 (12) 0.0858 (8)
H13A 0.643815 0.248303 1.000449 0.129*
H13B 0.76663 0.201465 0.928951 0.129*
H13C 0.63455 0.388125 0.929616 0.129*
N1 0.2079 (2) 0.33487 (18) 0.29565 (7) 0.0359 (3)
N2 0.2652 (2) 0.2489 (2) 0.44963 (8) 0.0434 (4)
O1 0.1058 (3) 0.1395 (3) 0.61995 (9) 0.0873 (6)
O2 0.3847 (2) 0.29717 (19) 0.58441 (7) 0.0598 (4)
O3 0.4517 (2) 0.1895 (2) 0.92816 (7) 0.0620 (4)
OW1 0.2271 (2) 0.8777 (2) 0.46022 (8) 0.0579 (4)
HN1 0.230 (3) 0.131 (2) 0.4565 (11) 0.07*
HW1 0.120 (3) 0.865 (3) 0.4356 (11) 0.07*
HN2 0.303 (3) 0.270 (3) 0.4956 (9) 0.07*
HW2 0.336 (3) 0.822 (3) 0.4413 (12) 0.07*

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0534 (11) 0.0579 (12) 0.0441 (10) 0.0127 (9) −0.0106 (8) −0.0169 (9)
C2 0.0654 (13) 0.0739 (14) 0.0491 (11) 0.0143 (11) −0.0228 (10) −0.0166 (10)
C3 0.0820 (14) 0.0654 (13) 0.0347 (10) −0.0036 (11) −0.0147 (10) −0.0145 (9)
C4 0.0717 (13) 0.0660 (13) 0.0411 (10) 0.0070 (11) 0.0022 (9) −0.0202 (9)
C5 0.0535 (11) 0.0597 (12) 0.0399 (10) 0.0105 (9) −0.0032 (8) −0.0137 (8)
C6 0.0405 (9) 0.0344 (9) 0.0346 (8) −0.0042 (7) −0.0035 (7) −0.0071 (7)
C7 0.0388 (9) 0.0515 (11) 0.0352 (9) 0.0009 (8) −0.0006 (7) −0.0083 (7)
C8 0.0518 (10) 0.0495 (11) 0.0354 (9) 0.0016 (8) 0.0004 (8) −0.0104 (8)
C9 0.0425 (10) 0.0619 (12) 0.0419 (10) −0.0015 (8) −0.0105 (8) −0.0090 (8)
C10 0.0385 (9) 0.0569 (11) 0.0381 (9) 0.0049 (8) −0.0053 (7) −0.0113 (8)
C11 0.0484 (11) 0.0464 (11) 0.0508 (11) 0.0051 (8) −0.0161 (9) −0.0190 (9)
C12 0.0387 (9) 0.0356 (9) 0.0443 (9) 0.0023 (7) −0.0086 (7) −0.0131 (7)
C13 0.0366 (9) 0.0485 (11) 0.0617 (12) −0.0058 (8) −0.0057 (8) −0.0157 (9)
C14 0.0437 (10) 0.0551 (12) 0.0500 (11) −0.0060 (8) 0.0047 (8) −0.0079 (9)
C15 0.0450 (10) 0.0485 (10) 0.0398 (9) 0.0020 (8) −0.0042 (8) −0.0110 (8)
C16 0.0461 (10) 0.0501 (11) 0.0430 (10) −0.0103 (8) −0.0101 (8) −0.0112 (8)
C17 0.0447 (10) 0.0437 (10) 0.0400 (9) −0.0072 (8) −0.0036 (7) −0.0075 (7)
C18 0.0785 (16) 0.136 (2) 0.0509 (13) −0.0228 (16) −0.0171 (11) −0.0274 (14)
N1 0.0347 (7) 0.0416 (8) 0.0320 (7) 0.0006 (6) −0.0034 (5) −0.0091 (6)
N2 0.0553 (9) 0.0450 (8) 0.0319 (7) −0.0061 (7) −0.0089 (6) −0.0082 (6)
O1 0.0815 (11) 0.1184 (15) 0.0727 (11) −0.0352 (10) −0.0327 (9) −0.0230 (10)
O2 0.0721 (9) 0.0700 (10) 0.0402 (7) −0.0038 (7) −0.0139 (7) −0.0144 (7)
O3 0.0641 (9) 0.0866 (11) 0.0365 (7) −0.0067 (8) −0.0047 (6) −0.0117 (7)
OW1 0.0595 (9) 0.0631 (9) 0.0544 (8) −0.0097 (7) −0.0177 (7) −0.0108 (7)

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Geometric parameters (Å, º)

C1—C2 1.377 (3) C10—H10A 0.97
C1—C6 1.393 (2) C10—H10B 0.97
C1—H1 0.93 C11—O1 1.234 (2)
C2—C3 1.371 (3) C11—O2 1.263 (2)
C2—H2 0.93 C11—C12 1.499 (2)
C3—C4 1.368 (3) C12—C17 1.381 (2)
C3—H3 0.93 C12—C13 1.396 (3)
C4—C5 1.380 (3) C13—C14 1.373 (3)
C4—H4 0.93 C13—H13 0.93
C5—C6 1.388 (2) C14—C15 1.383 (3)
C5—H5 0.93 C14—H14 0.93
C6—N1 1.4165 (19) C15—O3 1.367 (2)
C7—N1 1.469 (2) C15—C16 1.386 (2)
C7—C8 1.502 (2) C16—C17 1.381 (2)
C7—H7A 0.97 C16—H16 0.93
C7—H7B 0.97 C17—H17 0.93
C8—N2 1.485 (2) C18—O3 1.424 (3)
C8—H8A 0.97 C18—H13A 0.96
C8—H8B 0.97 C18—H13B 0.96
C9—N2 1.484 (2) C18—H13C 0.96
C9—C10 1.509 (2) N2—HN1 0.924 (15)
C9—H9A 0.97 N2—HN2 0.938 (16)
C9—H9B 0.97 OW1—HW1 0.847 (16)
C10—N1 1.467 (2) OW1—HW2 0.850 (16)
C2—C1—C6 121.26 (16) C9—C10—H10B 109.1
C2—C1—H1 119.4 H10A—C10—H10B 107.9
C6—C1—H1 119.4 O1—C11—O2 124.33 (18)
C3—C2—C1 121.01 (18) O1—C11—C12 117.62 (19)
C3—C2—H2 119.5 O2—C11—C12 118.06 (16)
C1—C2—H2 119.5 C17—C12—C13 117.75 (16)
C4—C3—C2 118.25 (17) C17—C12—C11 121.49 (16)
C4—C3—H3 120.9 C13—C12—C11 120.77 (16)
C2—C3—H3 120.9 C14—C13—C12 120.75 (16)
C3—C4—C5 121.67 (17) C14—C13—H13 119.6
C3—C4—H4 119.2 C12—C13—H13 119.6
C5—C4—H4 119.2 C13—C14—C15 120.56 (17)
C4—C5—C6 120.65 (17) C13—C14—H14 119.7
C4—C5—H5 119.7 C15—C14—H14 119.7
C6—C5—H5 119.7 O3—C15—C14 116.20 (16)
C5—C6—C1 117.15 (15) O3—C15—C16 124.10 (16)
C5—C6—N1 122.11 (14) C14—C15—C16 119.69 (16)
C1—C6—N1 120.68 (14) C17—C16—C15 119.06 (16)
N1—C7—C8 111.59 (14) C17—C16—H16 120.5
N1—C7—H7A 109.3 C15—C16—H16 120.5
C8—C7—H7A 109.3 C16—C17—C12 122.16 (16)
N1—C7—H7B 109.3 C16—C17—H17 118.9
C8—C7—H7B 109.3 C12—C17—H17 118.9
H7A—C7—H7B 108 O3—C18—H13A 109.5
N2—C8—C7 110.40 (13) O3—C18—H13B 109.5
N2—C8—H8A 109.6 H13A—C18—H13B 109.5
C7—C8—H8A 109.6 O3—C18—H13C 109.5
N2—C8—H8B 109.6 H13A—C18—H13C 109.5
C7—C8—H8B 109.6 H13B—C18—H13C 109.5
H8A—C8—H8B 108.1 C6—N1—C10 115.62 (12)
N2—C9—C10 110.34 (14) C6—N1—C7 114.90 (12)
N2—C9—H9A 109.6 C10—N1—C7 111.53 (12)
C10—C9—H9A 109.6 C9—N2—C8 109.67 (13)
N2—C9—H9B 109.6 C9—N2—HN1 108.7 (13)
C10—C9—H9B 109.6 C8—N2—HN1 110.6 (13)
H9A—C9—H9B 108.1 C9—N2—HN2 110.0 (13)
N1—C10—C9 112.30 (13) C8—N2—HN2 113.2 (13)
N1—C10—H10A 109.1 HN1—N2—HN2 104.5 (18)
C9—C10—H10A 109.1 C15—O3—C18 117.68 (16)
N1—C10—H10B 109.1 HW1—OW1—HW2 106 (2)
C6—C1—C2—C3 −0.7 (3) C13—C14—C15—C16 −1.1 (3)
C1—C2—C3—C4 1.2 (3) O3—C15—C16—C17 −179.35 (16)
C2—C3—C4—C5 −0.9 (3) C14—C15—C16—C17 0.7 (3)
C3—C4—C5—C6 0.0 (3) C15—C16—C17—C12 0.5 (3)
C4—C5—C6—C1 0.6 (3) C13—C12—C17—C16 −1.4 (2)
C4—C5—C6—N1 −176.76 (18) C11—C12—C17—C16 178.68 (15)
C2—C1—C6—C5 −0.2 (3) C5—C6—N1—C10 −7.1 (2)
C2—C1—C6—N1 177.14 (18) C1—C6—N1—C10 175.65 (16)
N1—C7—C8—N2 −57.13 (19) C5—C6—N1—C7 −139.28 (17)
N2—C9—C10—N1 55.4 (2) C1—C6—N1—C7 43.5 (2)
O1—C11—C12—C17 177.14 (17) C9—C10—N1—C6 172.93 (14)
O2—C11—C12—C17 −3.0 (2) C9—C10—N1—C7 −53.34 (19)
O1—C11—C12—C13 −2.8 (2) C8—C7—N1—C6 −171.86 (13)
O2—C11—C12—C13 177.07 (16) C8—C7—N1—C10 54.06 (18)
C17—C12—C13—C14 1.0 (2) C10—C9—N2—C8 −57.61 (19)
C11—C12—C13—C14 −179.05 (15) C7—C8—N2—C9 58.76 (19)
C12—C13—C14—C15 0.2 (3) C14—C15—O3—C18 178.00 (19)
C13—C14—C15—O3 178.99 (15) C16—C15—O3—C18 −1.9 (3)

4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II). Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C12–C17 benzene ring.

D—H···A D—H H···A D···A D—H···A
N2—HN1···OW1i 0.93 (2) 1.91 (2) 2.815 (2) 166 (2)
OW1—HW1···O1ii 0.84 (2) 1.80 (2) 2.633 (2) 175 (2)
N2—HN2···O2 0.93 (2) 1.81 (2) 2.7350 (19) 176 (2)
OW1—HW2···O2iii 0.85 (2) 1.96 (2) 2.7876 (19) 168 (2)
C8—H8B···OW1ii 0.97 2.53 3.331 (2) 140
C1—H1···Cg3ii 0.93 2.76 3.549 (2) 144
C5—H5···Cg3iv 0.93 2.86 3.625 (2) 140

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1.

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Crystal data

C10H15N2+·C8H7O2·H2O Z = 2
Mr = 316.39 F(000) = 340
Triclinic, P1 Dx = 1.233 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1175 (5) Å Cell parameters from 2877 reflections
b = 7.6225 (7) Å θ = 3.0–27.8°
c = 18.452 (1) Å µ = 0.08 mm1
α = 97.421 (9)° T = 293 K
β = 90.403 (8)° Plate, colourless
γ = 92.405 (8)° 0.5 × 0.4 × 0.08 mm
V = 852.40 (12) Å3

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Data collection

Oxford Diffraction Xcalibur diffractometer 2248 reflections with I > 2σ(I)
ω scans Rint = 0.013
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) θmax = 25.4°, θmin = 3.1°
Tmin = 0.837, Tmax = 1.000 h = −7→7
5354 measured reflections k = −7→9
3126 independent reflections l = −22→22

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2086P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3118 reflections Δρmax = 0.16 e Å3
226 parameters Δρmin = −0.16 e Å3
4 restraints Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.011 (3)
Primary atom site location: structure-invariant direct methods

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5691 (4) 0.8192 (4) 0.17484 (12) 0.0759 (7)
H1 0.680156 0.871649 0.206032 0.091*
C2 0.5967 (5) 0.8079 (4) 0.10029 (13) 0.0979 (9)
H2 0.725499 0.854112 0.082348 0.117*
C3 0.4416 (5) 0.7314 (4) 0.05273 (13) 0.0932 (8)
H3 0.462879 0.722711 0.002561 0.112*
C4 0.2536 (5) 0.6676 (4) 0.08016 (13) 0.0966 (9)
H4 0.144014 0.6157 0.048248 0.116*
C5 0.2219 (4) 0.6782 (3) 0.15497 (11) 0.0776 (7)
H5 0.091389 0.633226 0.172178 0.093*
C6 0.3793 (3) 0.7539 (2) 0.20421 (9) 0.0472 (4)
C7 0.5393 (3) 0.8071 (3) 0.32686 (9) 0.0497 (4)
H7A 0.626347 0.904686 0.31147 0.06*
H7B 0.626834 0.703106 0.320724 0.06*
C8 0.4853 (3) 0.8506 (3) 0.40599 (10) 0.0534 (5)
H8A 0.619196 0.865746 0.435007 0.064*
H8B 0.410139 0.960943 0.413335 0.064*
C9 0.1390 (3) 0.6889 (3) 0.38632 (10) 0.0554 (5)
H9A 0.062182 0.798326 0.394853 0.067*
H9B 0.04531 0.594989 0.401599 0.067*
C10 0.1858 (3) 0.6476 (3) 0.30616 (9) 0.0502 (5)
H10A 0.241603 0.529612 0.296889 0.06*
H10B 0.050244 0.647749 0.278608 0.06*
C11 0.3129 (3) 0.7088 (2) 0.62385 (9) 0.0445 (4)
C12 0.2060 (3) 0.7367 (2) 0.69737 (9) 0.0413 (4)
C13 0.2989 (3) 0.6749 (3) 0.75734 (10) 0.0535 (5)
H13 0.428845 0.615675 0.752062 0.064*
C14 0.2008 (4) 0.7003 (3) 0.82503 (11) 0.0656 (6)
H14 0.265661 0.657329 0.864556 0.079*
C15 0.0081 (4) 0.7885 (3) 0.83492 (11) 0.0611 (5)
C16 −0.0837 (3) 0.8490 (3) 0.77515 (11) 0.0583 (5)
H16 −0.214079 0.907628 0.780509 0.07*
C17 0.0129 (3) 0.8250 (2) 0.70719 (10) 0.0484 (4)
H17 −0.052163 0.868519 0.667839 0.058*
C18 −0.0996 (5) 0.8177 (4) 0.90877 (13) 0.0968 (9)
H18A −0.171921 0.927853 0.913714 0.145*
H18B 0.009588 0.821099 0.946613 0.145*
H18C −0.204829 0.722525 0.912877 0.145*
N1 0.3441 (2) 0.77371 (19) 0.28025 (7) 0.0434 (4)
N2 0.3444 (2) 0.7069 (2) 0.43010 (8) 0.0487 (4)
O1 0.4844 (2) 0.62506 (19) 0.61816 (7) 0.0632 (4)
O2 0.2244 (2) 0.77468 (19) 0.57233 (7) 0.0601 (4)
OW1 0.7937 (3) 0.7241 (4) 0.52207 (11) 0.1232 (9)
HW1 0.926 (4) 0.748 (5) 0.542 (2) 0.177 (17)*
HW2 0.702 (4) 0.704 (4) 0.5539 (13) 0.119 (11)*
HN1 0.415 (3) 0.605 (2) 0.4225 (11) 0.061 (6)*
HN2 0.310 (3) 0.731 (3) 0.4786 (9) 0.065 (6)*

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0620 (13) 0.114 (2) 0.0494 (12) −0.0113 (13) 0.0106 (10) 0.0080 (12)
C2 0.0883 (18) 0.148 (3) 0.0556 (15) −0.0138 (18) 0.0233 (13) 0.0120 (15)
C3 0.123 (2) 0.109 (2) 0.0456 (13) −0.0055 (18) 0.0201 (15) 0.0043 (13)
C4 0.130 (2) 0.106 (2) 0.0480 (13) −0.0340 (18) −0.0161 (14) 0.0036 (13)
C5 0.0895 (16) 0.0936 (17) 0.0466 (12) −0.0337 (13) −0.0042 (11) 0.0105 (11)
C6 0.0561 (11) 0.0456 (10) 0.0397 (9) 0.0045 (8) 0.0038 (8) 0.0042 (7)
C7 0.0473 (10) 0.0550 (11) 0.0456 (10) −0.0123 (8) 0.0008 (8) 0.0070 (8)
C8 0.0581 (11) 0.0569 (12) 0.0440 (10) −0.0065 (9) −0.0031 (8) 0.0045 (8)
C9 0.0439 (10) 0.0734 (13) 0.0494 (11) −0.0025 (9) 0.0087 (8) 0.0105 (9)
C10 0.0383 (9) 0.0668 (12) 0.0446 (10) −0.0056 (8) 0.0005 (7) 0.0064 (8)
C11 0.0429 (10) 0.0454 (10) 0.0432 (10) −0.0062 (8) 0.0042 (7) 0.0012 (7)
C12 0.0413 (9) 0.0376 (9) 0.0439 (9) −0.0047 (7) 0.0046 (7) 0.0025 (7)
C13 0.0525 (11) 0.0601 (12) 0.0479 (11) 0.0081 (9) 0.0012 (8) 0.0054 (9)
C14 0.0798 (15) 0.0739 (14) 0.0439 (11) 0.0046 (11) −0.0013 (10) 0.0111 (9)
C15 0.0742 (14) 0.0597 (12) 0.0479 (11) −0.0009 (10) 0.0167 (10) 0.0012 (9)
C16 0.0577 (12) 0.0554 (12) 0.0614 (12) 0.0098 (9) 0.0173 (9) 0.0025 (9)
C17 0.0525 (10) 0.0458 (10) 0.0476 (10) 0.0047 (8) 0.0056 (8) 0.0072 (8)
C18 0.125 (2) 0.108 (2) 0.0567 (14) 0.0110 (17) 0.0378 (15) 0.0048 (13)
N1 0.0436 (8) 0.0487 (8) 0.0379 (8) −0.0025 (6) 0.0016 (6) 0.0068 (6)
N2 0.0519 (9) 0.0577 (10) 0.0371 (8) 0.0057 (8) 0.0054 (7) 0.0068 (7)
O1 0.0546 (8) 0.0720 (9) 0.0633 (9) 0.0149 (7) 0.0170 (6) 0.0047 (7)
O2 0.0557 (8) 0.0833 (10) 0.0426 (7) 0.0032 (7) 0.0096 (6) 0.0120 (7)
OW1 0.0607 (12) 0.250 (3) 0.0691 (12) 0.0102 (15) 0.0088 (10) 0.0577 (15)

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Geometric parameters (Å, º)

C1—C2 1.379 (3) C10—H10A 0.97
C1—C6 1.385 (3) C10—H10B 0.97
C1—H1 0.93 C11—O1 1.249 (2)
C2—C3 1.349 (4) C11—O2 1.260 (2)
C2—H2 0.93 C11—C12 1.504 (2)
C3—C4 1.356 (4) C12—C13 1.385 (2)
C3—H3 0.93 C12—C17 1.386 (2)
C4—C5 1.388 (3) C13—C14 1.384 (3)
C4—H4 0.93 C13—H13 0.93
C5—C6 1.375 (3) C14—C15 1.383 (3)
C5—H5 0.93 C14—H14 0.93
C6—N1 1.411 (2) C15—C16 1.374 (3)
C7—N1 1.461 (2) C15—C18 1.512 (3)
C7—C8 1.497 (2) C16—C17 1.384 (2)
C7—H7A 0.97 C16—H16 0.93
C7—H7B 0.97 C17—H17 0.93
C8—N2 1.481 (2) C18—H18A 0.96
C8—H8A 0.97 C18—H18B 0.96
C8—H8B 0.97 C18—H18C 0.96
C9—N2 1.481 (2) N2—HN1 0.900 (15)
C9—C10 1.504 (2) N2—HN2 0.918 (15)
C9—H9A 0.97 OW1—HW1 0.886 (19)
C9—H9B 0.97 OW1—HW2 0.839 (18)
C10—N1 1.462 (2)
C2—C1—C6 121.3 (2) C9—C10—H10B 109
C2—C1—H1 119.3 H10A—C10—H10B 107.8
C6—C1—H1 119.3 O1—C11—O2 124.44 (16)
C3—C2—C1 121.6 (2) O1—C11—C12 118.17 (16)
C3—C2—H2 119.2 O2—C11—C12 117.37 (15)
C1—C2—H2 119.2 C13—C12—C17 118.11 (16)
C2—C3—C4 118.1 (2) C13—C12—C11 120.69 (15)
C2—C3—H3 120.9 C17—C12—C11 121.19 (15)
C4—C3—H3 120.9 C14—C13—C12 120.81 (17)
C3—C4—C5 121.2 (2) C14—C13—H13 119.6
C3—C4—H4 119.4 C12—C13—H13 119.6
C5—C4—H4 119.4 C15—C14—C13 121.14 (19)
C6—C5—C4 121.4 (2) C15—C14—H14 119.4
C6—C5—H5 119.3 C13—C14—H14 119.4
C4—C5—H5 119.3 C16—C15—C14 117.78 (17)
C5—C6—C1 116.25 (18) C16—C15—C18 120.7 (2)
C5—C6—N1 121.84 (18) C14—C15—C18 121.5 (2)
C1—C6—N1 121.81 (17) C15—C16—C17 121.68 (18)
N1—C7—C8 112.51 (14) C15—C16—H16 119.2
N1—C7—H7A 109.1 C17—C16—H16 119.2
C8—C7—H7A 109.1 C16—C17—C12 120.47 (17)
N1—C7—H7B 109.1 C16—C17—H17 119.8
C8—C7—H7B 109.1 C12—C17—H17 119.8
H7A—C7—H7B 107.8 C15—C18—H18A 109.5
N2—C8—C7 110.19 (15) C15—C18—H18B 109.5
N2—C8—H8A 109.6 H18A—C18—H18B 109.5
C7—C8—H8A 109.6 C15—C18—H18C 109.5
N2—C8—H8B 109.6 H18A—C18—H18C 109.5
C7—C8—H8B 109.6 H18B—C18—H18C 109.5
H8A—C8—H8B 108.1 C6—N1—C7 116.19 (14)
N2—C9—C10 110.84 (14) C6—N1—C10 116.09 (14)
N2—C9—H9A 109.5 C7—N1—C10 113.11 (13)
C10—C9—H9A 109.5 C8—N2—C9 108.70 (15)
N2—C9—H9B 109.5 C8—N2—HN1 108.9 (13)
C10—C9—H9B 109.5 C9—N2—HN1 109.5 (13)
H9A—C9—H9B 108.1 C8—N2—HN2 111.2 (13)
N1—C10—C9 112.96 (15) C9—N2—HN2 108.7 (13)
N1—C10—H10A 109 HN1—N2—HN2 109.8 (18)
C9—C10—H10A 109 HW1—OW1—HW2 111 (3)
N1—C10—H10B 109
C6—C1—C2—C3 −0.7 (5) C13—C14—C15—C16 0.4 (3)
C1—C2—C3—C4 1.1 (5) C13—C14—C15—C18 −179.7 (2)
C2—C3—C4—C5 −0.8 (5) C14—C15—C16—C17 −0.6 (3)
C3—C4—C5—C6 0.1 (4) C18—C15—C16—C17 179.5 (2)
C4—C5—C6—C1 0.4 (4) C15—C16—C17—C12 0.7 (3)
C4—C5—C6—N1 176.6 (2) C13—C12—C17—C16 −0.5 (3)
C2—C1—C6—C5 −0.1 (4) C11—C12—C17—C16 179.76 (17)
C2—C1—C6—N1 −176.3 (2) C5—C6—N1—C7 162.90 (19)
N1—C7—C8—N2 56.4 (2) C1—C6—N1—C7 −21.0 (3)
N2—C9—C10—N1 −53.3 (2) C5—C6—N1—C10 26.2 (3)
O1—C11—C12—C13 1.6 (2) C1—C6—N1—C10 −157.72 (19)
O2—C11—C12—C13 −177.16 (17) C8—C7—N1—C6 172.21 (15)
O1—C11—C12—C17 −178.61 (16) C8—C7—N1—C10 −49.8 (2)
O2—C11—C12—C17 2.6 (2) C9—C10—N1—C6 −173.76 (14)
C17—C12—C13—C14 0.3 (3) C9—C10—N1—C7 48.2 (2)
C11—C12—C13—C14 −179.94 (18) C7—C8—N2—C9 −60.59 (19)
C12—C13—C14—C15 −0.3 (3) C10—C9—N2—C8 59.1 (2)

4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW1—HW1···O2i 0.89 (3) 1.90 (3) 2.782 (2) 171 (4)
OW1—HW2···O1 0.84 (2) 1.92 (3) 2.751 (2) 172 (3)
N2—HN1···O1ii 0.90 (2) 1.94 (2) 2.819 (2) 164 (2)
N2—HN2···O2 0.92 (2) 1.80 (2) 2.7207 (19) 176 (2)
C8—H8A···OW1 0.97 2.33 3.116 (3) 138

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Crystal data

C10H15N2+·C2F3O2·0.123H2O Z = 4
Mr = 278.47 F(000) = 580.9
Triclinic, P1 Dx = 1.371 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6544 (6) Å Cell parameters from 3827 reflections
b = 9.9029 (6) Å θ = 2.6–27.7°
c = 15.2090 (9) Å µ = 0.12 mm1
α = 79.621 (6)° T = 293 K
β = 86.579 (6)° Prism, colourless
γ = 70.603 (6)° 0.48 × 0.48 × 0.36 mm
V = 1349.10 (15) Å3

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Data collection

Oxford Diffraction Xcalibur diffractometer 2777 reflections with I > 2σ(I)
ω scans Rint = 0.014
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) θmax = 25.3°, θmin = 2.6°
Tmin = 0.724, Tmax = 1.000 h = −11→11
9220 measured reflections k = −11→11
4940 independent reflections l = −18→18

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: mixed
wR(F2) = 0.235 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1128P)2 + 0.3819P] where P = (Fo2 + 2Fc2)/3
4927 reflections (Δ/σ)max < 0.001
375 parameters Δρmax = 0.42 e Å3
4 restraints Δρmin = −0.28 e Å3
0 constraints

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2559 (3) 0.7294 (3) 0.51366 (18) 0.0565 (7)
C2 0.1392 (4) 0.7473 (3) 0.5737 (2) 0.0733 (9)
H2 0.043765 0.775704 0.552306 0.088*
C3 0.1634 (5) 0.7235 (4) 0.6648 (3) 0.0913 (12)
H3 0.083976 0.737161 0.703837 0.11*
C4 0.3019 (6) 0.6803 (4) 0.6979 (2) 0.0945 (12)
H4 0.317436 0.664341 0.759246 0.113*
C5 0.4172 (5) 0.6606 (4) 0.6405 (3) 0.0939 (11)
H5 0.512209 0.630205 0.66299 0.113*
C6 0.3958 (4) 0.6850 (4) 0.5497 (2) 0.0746 (9)
H6 0.476639 0.671553 0.511724 0.089*
C7 0.3582 (4) 0.7522 (4) 0.3646 (2) 0.0748 (9)
H7A 0.439678 0.665346 0.385364 0.09*
H7B 0.386552 0.835603 0.369838 0.09*
C8 0.3289 (5) 0.7565 (4) 0.2686 (2) 0.0924 (11)
H8A 0.41407 0.762586 0.232966 0.111*
H8B 0.311597 0.667892 0.261853 0.111*
C9 0.0709 (5) 0.8815 (5) 0.2926 (3) 0.1078 (14)
H9A 0.044836 0.796648 0.287542 0.129*
H9B −0.01211 0.967225 0.272441 0.129*
C10 0.1038 (4) 0.8774 (5) 0.3876 (2) 0.0933 (12)
H10A 0.121556 0.966325 0.393067 0.112*
H10B 0.019188 0.872467 0.424128 0.112*
C11 0.7162 (3) 0.7837 (3) 0.34093 (18) 0.0568 (7)
C12 0.6756 (3) 0.9091 (3) 0.3787 (2) 0.0682 (8)
H12 0.637995 0.999179 0.342289 0.082*
C13 0.6902 (4) 0.9023 (4) 0.4692 (2) 0.0777 (9)
H13 0.660653 0.987687 0.492938 0.093*
C14 0.7475 (4) 0.7719 (5) 0.5247 (2) 0.0786 (10)
H14 0.758672 0.767891 0.585529 0.094*
C15 0.7878 (4) 0.6476 (4) 0.4884 (2) 0.0856 (10)
H15 0.826468 0.558096 0.525259 0.103*
C16 0.7723 (4) 0.6527 (4) 0.3984 (2) 0.0760 (9)
H16 0.799969 0.566471 0.375625 0.091*
C17 0.8021 (5) 0.6701 (4) 0.2099 (2) 0.0988 (13)
H17A 0.807268 0.577457 0.246337 0.119*
H17B 0.898326 0.680875 0.21027 0.119*
C18 0.7624 (6) 0.6706 (5) 0.1152 (3) 0.1280 (18)
H18A 0.837937 0.594874 0.090434 0.154*
H18B 0.670336 0.65126 0.114843 0.154*
C19 0.6330 (5) 0.9270 (5) 0.0978 (2) 0.0940 (11)
H19A 0.540215 0.909315 0.096567 0.113*
H19B 0.622668 1.021169 0.061705 0.113*
C20 0.6691 (4) 0.9279 (4) 0.1919 (2) 0.0773 (9)
H20A 0.756179 0.95605 0.191813 0.093*
H20B 0.58882 0.999996 0.216184 0.093*
C21 0.2670 (4) 0.2041 (4) 0.1833 (2) 0.0776 (9)
C22 0.2420 (8) 0.3636 (6) 0.1772 (3) 0.1240 (19) 0.736 (3)
C22' 0.2420 (8) 0.3636 (6) 0.1772 (3) 0.1240 (19) 0.264 (3)
C23 0.1345 (7) 0.8145 (4) 0.0390 (2) 0.0940 (13)
C24 0.1356 (7) 0.7597 (5) −0.0474 (3) 0.1064 (14) 0.736 (3)
C24' 0.1356 (7) 0.7597 (5) −0.0474 (3) 0.1064 (14) 0.264 (3)
N1 0.2321 (3) 0.7528 (2) 0.42089 (15) 0.0596 (6)
N2 0.1985 (4) 0.8842 (3) 0.23622 (18) 0.0888 (9)
N3 0.6944 (3) 0.7878 (3) 0.24907 (15) 0.0687 (7)
N4 0.7485 (4) 0.8143 (4) 0.05995 (19) 0.1087 (12)
O1 0.2367 (4) 0.1448 (3) 0.25394 (17) 0.1168 (10)
O2 0.3178 (4) 0.1492 (4) 0.11854 (18) 0.1323 (12)
O3 0.2462 (4) 0.8383 (4) 0.05509 (19) 0.1252 (11)
O4 0.0222 (4) 0.8316 (3) 0.08423 (17) 0.1113 (10)
F1 0.3669 (7) 0.3949 (7) 0.1721 (5) 0.202 (3) 0.736 (3)
F2 0.1775 (9) 0.4242 (5) 0.2477 (4) 0.184 (3) 0.736 (3)
F3 0.1706 (8) 0.4421 (5) 0.1039 (4) 0.179 (3) 0.736 (3)
F1' 0.302 (2) 0.407 (2) 0.0998 (15) 0.202 (3) 0.264 (3)
F2' 0.282 (3) 0.3950 (17) 0.2311 (15) 0.184 (3) 0.264 (3)
F3' 0.102 (2) 0.4303 (16) 0.1642 (11) 0.179 (3) 0.264 (3)
F4 0.2609 (7) 0.6549 (8) −0.0615 (4) 0.175 (2) 0.736 (3)
F5 0.1187 (10) 0.8524 (4) −0.1159 (2) 0.181 (3) 0.736 (3)
F6 0.0480 (7) 0.6817 (8) −0.0460 (4) 0.153 (2) 0.736 (3)
F4' 0.238 (2) 0.789 (2) −0.1015 (13) 0.175 (2) 0.264 (3)
F5' 0.157 (4) 0.6370 (19) −0.0412 (9) 0.181 (3) 0.264 (3)
F6' −0.0072 (19) 0.8256 (19) −0.0913 (10) 0.153 (2) 0.264 (3)
OW1 0.5122 (12) 0.6320 (14) 0.0361 (10) 0.150 (8) 0.245 (10)
H21 0.207318 0.969376 0.238227 0.18*
H22 0.187596 0.886717 0.179696 0.18*
H41 0.826598 0.838953 0.053835 0.18*
H42 0.722096 0.810784 0.005806 0.18*
HW1A 0.572085 0.618747 −0.007306 0.225* 0.245 (10)
HW1B 0.441675 0.707638 0.015874 0.225* 0.245 (10)

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.065 (2) 0.0490 (15) 0.0531 (16) −0.0184 (13) 0.0022 (14) −0.0040 (12)
C2 0.075 (2) 0.069 (2) 0.068 (2) −0.0195 (16) 0.0111 (17) −0.0051 (15)
C3 0.116 (3) 0.074 (2) 0.075 (2) −0.025 (2) 0.033 (2) −0.0120 (18)
C4 0.141 (4) 0.079 (2) 0.056 (2) −0.028 (2) −0.001 (2) −0.0089 (17)
C5 0.107 (3) 0.098 (3) 0.072 (2) −0.025 (2) −0.026 (2) −0.0087 (19)
C6 0.064 (2) 0.089 (2) 0.066 (2) −0.0204 (17) −0.0069 (16) −0.0074 (16)
C7 0.073 (2) 0.086 (2) 0.0618 (18) −0.0228 (17) 0.0105 (16) −0.0132 (16)
C8 0.122 (3) 0.098 (3) 0.062 (2) −0.039 (2) 0.010 (2) −0.0215 (19)
C9 0.099 (3) 0.139 (4) 0.079 (3) −0.044 (3) −0.030 (2) 0.017 (2)
C10 0.065 (2) 0.128 (3) 0.063 (2) −0.010 (2) −0.0084 (17) 0.0067 (19)
C11 0.0597 (18) 0.0649 (18) 0.0512 (15) −0.0254 (14) 0.0087 (13) −0.0168 (13)
C12 0.086 (2) 0.0636 (18) 0.0605 (17) −0.0280 (16) 0.0031 (15) −0.0183 (14)
C13 0.089 (2) 0.093 (2) 0.066 (2) −0.0390 (19) 0.0122 (18) −0.0374 (19)
C14 0.076 (2) 0.119 (3) 0.0513 (17) −0.044 (2) 0.0031 (16) −0.019 (2)
C15 0.092 (3) 0.093 (3) 0.063 (2) −0.024 (2) −0.0075 (18) −0.0006 (18)
C16 0.091 (2) 0.065 (2) 0.066 (2) −0.0172 (16) 0.0037 (17) −0.0140 (15)
C17 0.167 (4) 0.071 (2) 0.064 (2) −0.042 (2) 0.028 (2) −0.0283 (17)
C18 0.221 (6) 0.115 (4) 0.074 (3) −0.078 (4) 0.039 (3) −0.050 (2)
C19 0.118 (3) 0.118 (3) 0.0538 (19) −0.051 (2) 0.0026 (19) −0.0131 (19)
C20 0.094 (3) 0.076 (2) 0.0602 (18) −0.0257 (18) −0.0026 (17) −0.0121 (16)
C21 0.102 (3) 0.086 (2) 0.0458 (17) −0.0309 (19) −0.0063 (17) −0.0135 (16)
C22 0.194 (6) 0.122 (4) 0.068 (3) −0.074 (4) −0.044 (3) 0.011 (3)
C22' 0.194 (6) 0.122 (4) 0.068 (3) −0.074 (4) −0.044 (3) 0.011 (3)
C23 0.159 (4) 0.066 (2) 0.052 (2) −0.032 (2) 0.011 (3) −0.0113 (16)
C24 0.172 (5) 0.084 (3) 0.070 (2) −0.047 (3) 0.028 (3) −0.028 (2)
C24' 0.172 (5) 0.084 (3) 0.070 (2) −0.047 (3) 0.028 (3) −0.028 (2)
N1 0.0591 (15) 0.0674 (15) 0.0519 (13) −0.0234 (12) −0.0030 (11) −0.0028 (11)
N2 0.136 (3) 0.082 (2) 0.0530 (15) −0.0447 (19) −0.0139 (17) −0.0015 (13)
N3 0.094 (2) 0.0709 (16) 0.0501 (13) −0.0357 (14) 0.0087 (12) −0.0184 (12)
N4 0.162 (3) 0.127 (3) 0.0538 (16) −0.066 (2) 0.0207 (19) −0.0303 (18)
O1 0.205 (3) 0.0908 (18) 0.0635 (16) −0.0618 (19) 0.0128 (17) −0.0133 (13)
O2 0.163 (3) 0.164 (3) 0.0675 (16) −0.038 (2) 0.0098 (17) −0.0474 (18)
O3 0.161 (3) 0.157 (3) 0.0719 (18) −0.062 (3) 0.0133 (19) −0.0395 (18)
O4 0.154 (3) 0.121 (2) 0.0633 (15) −0.0477 (19) 0.0290 (17) −0.0313 (14)
F1 0.249 (6) 0.248 (6) 0.198 (6) −0.196 (5) −0.015 (4) −0.040 (4)
F2 0.289 (8) 0.078 (3) 0.159 (4) −0.016 (4) 0.037 (5) −0.053 (2)
F3 0.278 (7) 0.117 (3) 0.142 (4) −0.095 (3) −0.104 (5) 0.068 (3)
F1' 0.249 (6) 0.248 (6) 0.198 (6) −0.196 (5) −0.015 (4) −0.040 (4)
F2' 0.289 (8) 0.078 (3) 0.159 (4) −0.016 (4) 0.037 (5) −0.053 (2)
F3' 0.278 (7) 0.117 (3) 0.142 (4) −0.095 (3) −0.104 (5) 0.068 (3)
F4 0.227 (5) 0.149 (4) 0.137 (4) −0.024 (4) 0.046 (3) −0.082 (4)
F5 0.411 (11) 0.084 (2) 0.0504 (17) −0.087 (4) −0.014 (3) 0.0007 (16)
F6 0.226 (5) 0.152 (4) 0.118 (3) −0.092 (4) 0.009 (3) −0.061 (3)
F4' 0.227 (5) 0.149 (4) 0.137 (4) −0.024 (4) 0.046 (3) −0.082 (4)
F5' 0.411 (11) 0.084 (2) 0.0504 (17) −0.087 (4) −0.014 (3) 0.0007 (16)
F6' 0.226 (5) 0.152 (4) 0.118 (3) −0.092 (4) 0.009 (3) −0.061 (3)
OW1 0.082 (10) 0.146 (13) 0.219 (18) −0.019 (8) −0.031 (9) −0.048 (11)

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Geometric parameters (Å, º)

C1—C6 1.388 (4) C17—C18 1.512 (5)
C1—C2 1.392 (4) C17—H17A 0.97
C1—N1 1.408 (3) C17—H17B 0.97
C2—C3 1.384 (5) C18—N4 1.485 (6)
C2—H2 0.93 C18—H18A 0.97
C3—C4 1.359 (6) C18—H18B 0.97
C3—H3 0.93 C19—N4 1.465 (5)
C4—C5 1.357 (5) C19—C20 1.495 (4)
C4—H4 0.93 C19—H19A 0.97
C5—C6 1.375 (5) C19—H19B 0.97
C5—H5 0.93 C20—N3 1.451 (4)
C6—H6 0.93 C20—H20A 0.97
C7—N1 1.445 (4) C20—H20B 0.97
C7—C8 1.494 (5) C21—O1 1.197 (4)
C7—H7A 0.97 C21—O2 1.211 (4)
C7—H7B 0.97 C21—C22' 1.502 (7)
C8—N2 1.489 (5) C21—C22 1.502 (7)
C8—H8A 0.97 C22—F3 1.321 (6)
C8—H8B 0.97 C22—F1 1.337 (7)
C9—N2 1.464 (5) C22—F2 1.343 (7)
C9—C10 1.488 (5) C22'—F2' 1.06 (2)
C9—H9A 0.97 C22'—F3' 1.306 (19)
C9—H9B 0.97 C22'—F1' 1.346 (19)
C10—N1 1.466 (4) C23—O3 1.224 (5)
C10—H10A 0.97 C23—O4 1.228 (5)
C10—H10B 0.97 C23—C24' 1.506 (6)
C11—C16 1.386 (4) C23—C24 1.506 (6)
C11—C12 1.390 (4) C24—F5 1.238 (5)
C11—N3 1.417 (3) C24—F6 1.319 (7)
C12—C13 1.379 (4) C24—F4 1.342 (7)
C12—H12 0.93 C24'—F5' 1.151 (17)
C13—C14 1.369 (5) C24'—F4' 1.32 (2)
C13—H13 0.93 C24'—F6' 1.459 (17)
C14—C15 1.368 (5) N2—H21 0.8818
C14—H14 0.93 N2—H22 0.8672
C15—C16 1.377 (5) N4—H41 0.8621
C15—H15 0.93 N4—H42 0.8861
C16—H16 0.93 OW1—HW1A 0.8501
C17—N3 1.471 (4) OW1—HW1B 0.8501
C6—C1—C2 116.9 (3) N4—C18—H18B 109.8
C6—C1—N1 122.0 (3) C17—C18—H18B 109.8
C2—C1—N1 121.1 (3) H18A—C18—H18B 108.2
C3—C2—C1 120.8 (3) N4—C19—C20 110.7 (3)
C3—C2—H2 119.6 N4—C19—H19A 109.5
C1—C2—H2 119.6 C20—C19—H19A 109.5
C4—C3—C2 120.8 (3) N4—C19—H19B 109.5
C4—C3—H3 119.6 C20—C19—H19B 109.5
C2—C3—H3 119.6 H19A—C19—H19B 108.1
C5—C4—C3 119.2 (4) N3—C20—C19 112.8 (3)
C5—C4—H4 120.4 N3—C20—H20A 109
C3—C4—H4 120.4 C19—C20—H20A 109
C4—C5—C6 121.0 (4) N3—C20—H20B 109
C4—C5—H5 119.5 C19—C20—H20B 109
C6—C5—H5 119.5 H20A—C20—H20B 107.8
C5—C6—C1 121.2 (3) O1—C21—O2 127.2 (4)
C5—C6—H6 119.4 O1—C21—C22' 115.1 (4)
C1—C6—H6 119.4 O2—C21—C22' 117.7 (4)
N1—C7—C8 112.5 (3) O1—C21—C22 115.1 (4)
N1—C7—H7A 109.1 O2—C21—C22 117.7 (4)
C8—C7—H7A 109.1 F3—C22—F1 103.5 (5)
N1—C7—H7B 109.1 F3—C22—F2 108.8 (6)
C8—C7—H7B 109.1 F1—C22—F2 100.9 (6)
H7A—C7—H7B 107.8 F3—C22—C21 112.7 (4)
N2—C8—C7 110.4 (3) F1—C22—C21 112.9 (6)
N2—C8—H8A 109.6 F2—C22—C21 116.7 (4)
C7—C8—H8A 109.6 F2'—C22'—F3' 112.1 (15)
N2—C8—H8B 109.6 F2'—C22'—F1' 110.0 (16)
C7—C8—H8B 109.6 F3'—C22'—F1' 103.4 (13)
H8A—C8—H8B 108.1 F2'—C22'—C21 116.5 (11)
N2—C9—C10 110.4 (3) F3'—C22'—C21 106.9 (7)
N2—C9—H9A 109.6 F1'—C22'—C21 107.0 (10)
C10—C9—H9A 109.6 O3—C23—O4 127.7 (4)
N2—C9—H9B 109.6 O3—C23—C24' 115.5 (5)
C10—C9—H9B 109.6 O4—C23—C24' 116.8 (5)
H9A—C9—H9B 108.1 O3—C23—C24 115.5 (5)
N1—C10—C9 112.1 (3) O4—C23—C24 116.8 (5)
N1—C10—H10A 109.2 F5—C24—F6 111.9 (6)
C9—C10—H10A 109.2 F5—C24—F4 104.5 (6)
N1—C10—H10B 109.2 F6—C24—F4 96.7 (5)
C9—C10—H10B 109.2 F5—C24—C23 115.4 (4)
H10A—C10—H10B 107.9 F6—C24—C23 113.1 (4)
C16—C11—C12 116.8 (3) F4—C24—C23 113.6 (5)
C16—C11—N3 121.0 (2) F5'—C24'—F4' 106.2 (16)
C12—C11—N3 122.0 (3) F5'—C24'—F6' 103.6 (18)
C13—C12—C11 121.1 (3) F4'—C24'—F6' 109.6 (11)
C13—C12—H12 119.4 F5'—C24'—C23 116.0 (8)
C11—C12—H12 119.4 F4'—C24'—C23 110.3 (9)
C14—C13—C12 121.1 (3) F6'—C24'—C23 110.7 (6)
C14—C13—H13 119.4 C1—N1—C7 116.1 (2)
C12—C13—H13 119.4 C1—N1—C10 115.0 (2)
C15—C14—C13 118.3 (3) C7—N1—C10 110.5 (2)
C15—C14—H14 120.8 C9—N2—C8 110.4 (3)
C13—C14—H14 120.8 C9—N2—H21 104.1
C14—C15—C16 121.2 (3) C8—N2—H21 115
C14—C15—H15 119.4 C9—N2—H22 115.8
C16—C15—H15 119.4 C8—N2—H22 108.2
C15—C16—C11 121.4 (3) H21—N2—H22 103.4
C15—C16—H16 119.3 C11—N3—C20 115.9 (2)
C11—C16—H16 119.3 C11—N3—C17 114.7 (3)
N3—C17—C18 111.9 (4) C20—N3—C17 111.7 (2)
N3—C17—H17A 109.2 C19—N4—C18 109.0 (3)
C18—C17—H17A 109.2 C19—N4—H41 108.2
N3—C17—H17B 109.2 C18—N4—H41 116.5
C18—C17—H17B 109.2 C19—N4—H42 109.5
H17A—C17—H17B 107.9 C18—N4—H42 106.4
N4—C18—C17 109.5 (3) H41—N4—H42 107.1
N4—C18—H18A 109.8 HW1A—OW1—HW1B 104.5
C17—C18—H18A 109.8
C6—C1—C2—C3 0.8 (4) O3—C23—C24—F5 −75.6 (8)
N1—C1—C2—C3 179.7 (3) O4—C23—C24—F5 103.6 (7)
C1—C2—C3—C4 −0.8 (5) O3—C23—C24—F6 153.8 (6)
C2—C3—C4—C5 0.1 (6) O4—C23—C24—F6 −26.9 (7)
C3—C4—C5—C6 0.6 (6) O3—C23—C24—F4 44.9 (7)
C4—C5—C6—C1 −0.5 (6) O4—C23—C24—F4 −135.8 (6)
C2—C1—C6—C5 −0.2 (5) O3—C23—C24'—F5' 102 (2)
N1—C1—C6—C5 −179.0 (3) O4—C23—C24'—F5' −79 (2)
N1—C7—C8—N2 55.4 (4) O3—C23—C24'—F4' −18.9 (12)
N2—C9—C10—N1 −57.1 (5) O4—C23—C24'—F4' 160.3 (11)
C16—C11—C12—C13 −0.3 (5) O3—C23—C24'—F6' −140.4 (8)
N3—C11—C12—C13 176.4 (3) O4—C23—C24'—F6' 38.8 (9)
C11—C12—C13—C14 1.1 (5) C6—C1—N1—C7 −10.1 (4)
C12—C13—C14—C15 −1.1 (5) C2—C1—N1—C7 171.1 (3)
C13—C14—C15—C16 0.3 (5) C6—C1—N1—C10 −141.4 (3)
C14—C15—C16—C11 0.5 (6) C2—C1—N1—C10 39.8 (4)
C12—C11—C16—C15 −0.5 (5) C8—C7—N1—C1 171.8 (3)
N3—C11—C16—C15 −177.2 (3) C8—C7—N1—C10 −54.8 (4)
N3—C17—C18—N4 56.6 (5) C9—C10—N1—C1 −170.6 (3)
N4—C19—C20—N3 −55.9 (4) C9—C10—N1—C7 55.5 (4)
O1—C21—C22—F3 −132.4 (6) C10—C9—N2—C8 56.8 (4)
O2—C21—C22—F3 49.2 (8) C7—C8—N2—C9 −55.8 (4)
O1—C21—C22—F1 110.7 (6) C16—C11—N3—C20 −165.9 (3)
O2—C21—C22—F1 −67.7 (6) C12—C11—N3—C20 17.6 (4)
O1—C21—C22—F2 −5.5 (8) C16—C11—N3—C17 −33.3 (4)
O2—C21—C22—F2 176.1 (6) C12—C11—N3—C17 150.2 (3)
O1—C21—C22'—F2' 47.1 (18) C19—C20—N3—C11 −174.6 (3)
O2—C21—C22'—F2' −131.3 (17) C19—C20—N3—C17 51.5 (4)
O1—C21—C22'—F3' −79.2 (9) C18—C17—N3—C11 173.3 (3)
O2—C21—C22'—F3' 102.4 (10) C18—C17—N3—C20 −52.1 (4)
O1—C21—C22'—F1' 170.6 (10) C20—C19—N4—C18 59.6 (4)
O2—C21—C22'—F1' −7.8 (12) C17—C18—N4—C19 −60.0 (5)

4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV). Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H···A D—H H···A D···A D—H···A
N2—H21···O1i 0.88 1.91 2.790 (4) 174
N2—H22···O3 0.87 2.04 2.860 (4) 157
N2—H22···O4 0.87 2.47 3.164 (5) 137
N4—H41···O4ii 0.86 1.95 2.759 (6) 156
N4—H42···O2iii 0.89 1.90 2.758 (4) 164
C18—H18A···F5′iii 0.97 2.53 3.273 (18) 134
C18—H18B···Ow1 0.97 2.08 2.929 (15) 145
C19—H19B···O3iv 0.97 2.59 3.420 (5) 144
C20—H20A···F5iv 0.97 2.64 3.468 (8) 144
C16—H16···Cg2v 0.93 2.99 3.745 (4) 140

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z; (v) −x+1, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: Ministerio de Ciencia e Innovación (grant No. PID2020-113558RB-C41 to S. Garcia-Granda, M. S. M. Abdelbaky); Gobierno del Principado de Asturias (grant No. AYUD/2021/50997 to S. Garcia-Granda, M. S. M. Abdelbaky).

References

  1. Al-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956–959. [DOI] [PMC free article] [PubMed]
  2. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  3. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  4. Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119. [PubMed]
  5. Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2010). J. Pharm. Pharmacol. 60, 699–707. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595. [DOI] [PubMed]
  8. Elliott, S. (2011). Drug Test Anal. 3, 430–438. [DOI] [PubMed]
  9. Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245. [DOI] [PMC free article] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879. [DOI] [PubMed]
  12. Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793. [DOI] [PMC free article] [PubMed]
  13. Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494–1506. [DOI] [PMC free article] [PubMed]
  14. Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488–495. [DOI] [PMC free article] [PubMed]
  15. Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.
  16. Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253–1260. [DOI] [PMC free article] [PubMed]
  17. Li, A.-J., Zhang, X.-H., Sun, W.-Q., Zhou, X.-Q. & Liu, D.-Z. (2008). Acta Cryst. E64, o1234. [DOI] [PMC free article] [PubMed]
  18. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  19. Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613. [DOI] [PMC free article] [PubMed]
  20. Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629. [DOI] [PubMed]
  21. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Xu, Y.-J. & Jing, F. (2009). Acta Cryst. E65, o1211. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III, IV. DOI: 10.1107/S2056989022006004/dj2048sup1.cif

e-78-00709-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006004/dj2048Isup2.hkl

e-78-00709-Isup2.hkl (273.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048Isup6.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022006004/dj2048IIsup3.hkl

e-78-00709-IIsup3.hkl (250.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IIsup7.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989022006004/dj2048IIIsup4.hkl

e-78-00709-IIIsup4.hkl (249KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IIIsup8.cml

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989022006004/dj2048IVsup5.hkl

e-78-00709-IVsup5.hkl (392.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006004/dj2048IVsup9.cml

CCDC references: 2177037, 2177036, 2177035, 2177034

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES