In the crystal, neighboring molecules are linked into layers parallel to the (200) plane via C—H⋯O hydrogen bonds and C—H⋯π interactions. van der Waals interactions between parallel molecular layers help to strengthen the packing.
Keywords: crystal structure; 1,3-oxazolidine; hydrogen bond; van der Waals interactions; Hirshfeld surface analysis
Abstract
The title compound, C20H24BrNO2, is chiral at the carbon atoms on either side of the oxygen atom of the oxazolidine ring and crystallizes as a racemate. The 1,3-oxazolidine ring adopts an envelope conformation with the N atom in an endo position. The mean plane of the oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromophenol and 1,3,5-trimethylbenzene rings. In the crystal, adjacent molecules are connected via C—H⋯O hydrogen bonds and C—H⋯π interactions into layers parallel to the (200) plane. The packing is strengthened by van der Waals interactions between parallel molecular layers. A Hirshfeld surface analysis shows that H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) interactions are the most abundant in the crystal packing.
1. Chemical context
Functionalization of amine and carbonyl compounds represents a cornerstone of organic synthesis, material science and medicinal chemistry (Zubkov et al., 2018 ▸; Shikhaliyev et al., 2019 ▸; Viswanathan et al., 2019 ▸; Gurbanov et al., 2020 ▸). In particular, the reaction of 1,2-amino alcohols with oxo compounds is an effective tool in the construction of a broad class of organic compounds such as amides, esters, enaminones, ureas, carbamates, aziridines, oxazolidines, oxazolines, oxazolidinones, oxazines, pyrroles, pyridones, morpholines, acridinones etc (Juhász et al., 2011 ▸; Tamura et al., 2014 ▸; Sepideh et al., 2018 ▸; Khalilov, 2021 ▸).
In the context of our recent studies, herein we report the structural analysis of a 1,3-oxazolidine, synthesized on the base of racemic 1,2-amino alcohol. Theoretically, in the solid state, this 1,3-oxazolidine can exist as eight optical isomers due to two CH and one N-chiral center. However, NMR analysis of the obtained product indicated the formation of a pair of diastereoisomers in a 1:1 ratio (Khalilov, 2021 ▸) and single-crystal X-ray analysis of the racemic mixture confirmed the 2R,3S,5R- and 2S,3R,5S-configuration of these isomers (Fig. 1 ▸).
Figure 1.
Synthesis of the racemic mixture of 2R,3S,5R- and 2S,3R,5S-oxazolidines.
Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020 ▸, 2021 ▸, 2022 ▸; Khalilov et al., 2022 ▸), we report the crystal structure and Hirshfeld surface analysis of the racemic title compound, 4-bromo-2-[3-methyl-5-(2,4,6-trimethylbenzyl)oxazolidin-2-yl]phenol.
2. Structural commentary
In the title compound, (Fig. 2 ▸), the 1,3-oxazolidine ring (O1/N3/C2/C4/C5) adopts an envelope conformation with the N atom in an endo position [the puckering parameters (Cremer & Pople, 1975 ▸) are Q(2) = 0.413 (2) Å, φ(2) = 256.7 (3)°]. The mean plane of th oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromophenol (C6–C11) and the 1,3,5-trimethylbenzene (C14–C19) rings. The molecular conformation is stabilized by intramolecular O11—H11⋯N3 and C20—H20C⋯O1 hydrogen bonds (Table 1 ▸). There are two stereogenic centers in the racaemic title compound and the chirality about the C2 and C5 atoms is R in the chosen asymmetric unit. The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey section.
Figure 2.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 and Cg3 are the centroids of the 4-bromophenol (C6–C11) and 1,3,5-trimethylbenzene (C14–C19) rings, respectively.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O11—H11⋯N3 | 0.81 (4) | 1.89 (4) | 2.644 (2) | 155 (3) |
C4—H4A⋯O1i | 0.99 | 2.58 | 3.564 (2) | 171 |
C20—H20B⋯O11ii | 0.98 | 2.57 | 3.548 (3) | 173 |
C20—H20C⋯O1 | 0.98 | 2.55 | 3.332 (3) | 136 |
C2—H2⋯Cg2i | 1.00 | 2.91 | 3.908 (2) | 176 |
C4—H4B⋯Cg3i | 0.99 | 2.88 | 3.622 (2) | 132 |
C21—H21C⋯Cg3iii | 0.98 | 2.93 | 3.723 (4) | 138 |
Symmetry codes: (i)
; (ii)
; (iii)
.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, adjacent molecules are connected via C—H⋯O hydrogen bonds and C—H⋯π interactions into layers parallel to the (200) plane (Table 1 ▸; Figs. 3 ▸ and 4 ▸). The packing is strengthened by van der Waals interactions between parallel molecular layers.
Figure 3.
A general view of the C—H⋯O hydrogen bonding and C—H⋯π interactions of the title compound. Symmetry codes: (i) x, −y +
, z +
; (ii) x, y + 1, z; (iii) x, −y −
, z −
; (iv) x, −y +
, z −
.
Figure 4.
Packing view of the title compound along the b axis with the interactions depicted as in Fig. 3 ▸.
A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were obtained with CrystalExplorer17.5 (Turner et al., 2017 ▸). The overall two-dimensional fingerprint plot for the title compound is given in Fig. 5 ▸ a, and those delineated into H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) contacts are shown in Fig. 5 ▸ b–d, while numerical details of the different contacts are given in Table 2 ▸. The O⋯H/H⋯O (8.3%), C⋯C (1.4%), Br⋯C/C⋯Br (1.0%), Br⋯O/O⋯Br (0.5%) and Br⋯Br (0.3%) contacts have little directional influence on the molecular packing. A a result, in the crystal packing, C—H⋯π (ring) and van der Waals interactions are dominant.
Figure 5.
The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Br⋯H/H⋯Br interactions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively.]
Table 2. Summary of short interatomic contacts (Å) in the title compound.
Contact | Distance | Symmetry operation |
---|---|---|
Br1⋯H10 | 2.96 | 1 − x,
![]() ![]() |
Br1⋯C12 | 3.598 | 1 − x,
![]() ![]() |
C9⋯C8 | 3.409 | 1 − x, −y, 1 − z |
H9⋯H7 | 2.45 |
x,
![]() ![]() |
H11⋯H20B | 2.35 | x, −1 + y, z |
C15⋯H21C | 2.80 |
x,
![]() ![]() |
H22B⋯C18 | 3.07 | −x, 1 − y, 1 − z |
H21B⋯H22B | 2.51 | −x,
![]() ![]() |
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016 ▸) for similar structures with a 1,3-oxazolidine ring showed that the five most closely related to the title compound are (S)-5-chloro-N-({2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]oxazolidin-5-yl}methyl)-thiophene-2-carboxamide [(I): Shen et al., 2018 ▸], 2,2-dichloro-1-(2-phenyl-1,3-oxazolidin-3-yl)ethanone [(II): Ye et al., 2010 ▸], (4-benzyl-2-oxo-1,3-oxazolidin-5-yl)- methyl methanesulfonate [(III): Cunico et al., 2010 ▸], 2-bromo-4-(3,4-dimethyl-5-phenyl-1,3-oxazolidin-2-yl)-6-methoxyphenol [(IV): Hariono et al., 2012 ▸] and (R)-2-phenoxy-1-(4-phenyl-2-sulfanylidene-1,3-oxazolidin-3-yl)ethanone [(V): Caracelli et al., 2011 ▸].
In the crystal of (I), classical N—H⋯O hydrogen bonds and weak C— H⋯O hydrogen bonds link the molecules into a three-dimensional supramolecular architecture. In (II), molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, forming one-dimensional chains. In the crystal of (III), N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supramolecular chains along the b-axis direction. These chains are reinforced by C—H⋯O contacts, with the carbonyl O atom accepting three such interactions. In (IV), adjacent molecules are connected via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π interactions into a zigzag chain along the b-axis direction. In (V), molecules are linked into supramolecular arrays two molecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π interactions.
5. Synthesis and crystallization
The title compound was synthesized using our recently reported procedure (Khalilov, 2021 ▸), and colorless needle-like crystals were obtained upon recrystallization from an ethanol/water solution.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 to 1.00 Å, and with U iso(H) = 1.2 or 1.5U eq(C). The hydroxyl H atom was found in a difference-Fourier map and was refined freely.
Table 3. Experimental details.
Crystal data | |
Chemical formula | C20H24BrNO2 |
M r | 390.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 21.1019 (3), 9.01359 (11), 10.03985 (11) |
β (°) | 96.1425 (11) |
V (Å3) | 1898.66 (4) |
Z | 4 |
Radiation type | Cu Kα |
μ (mm−1) | 3.03 |
Crystal size (mm) | 0.32 × 0.04 × 0.03 |
Data collection | |
Diffractometer | XtaLAB Synergy, Dualflex, HyPix |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2021 ▸) |
T min, T max | 0.424, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21431, 4096, 3783 |
R int | 0.043 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.033, 0.096, 1.07 |
No. of reflections | 4096 |
No. of parameters | 225 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.58, −0.60 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022005928/tx2051Isup3.cml
CCDC reference: 2176709
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, SÖY, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EAF; supervision, ANK and MA.
supplementary crystallographic information
Crystal data
C20H24BrNO2 | F(000) = 808 |
Mr = 390.30 | Dx = 1.365 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 21.1019 (3) Å | Cell parameters from 13703 reflections |
b = 9.01359 (11) Å | θ = 2.1–78.6° |
c = 10.03985 (11) Å | µ = 3.03 mm−1 |
β = 96.1425 (11)° | T = 100 K |
V = 1898.66 (4) Å3 | Needle, colourless |
Z = 4 | 0.32 × 0.04 × 0.03 mm |
Data collection
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3783 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.043 |
φ and ω scans | θmax = 79.6°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −25→26 |
Tmin = 0.424, Tmax = 0.882 | k = −11→11 |
21431 measured reflections | l = −12→10 |
4096 independent reflections |
Refinement
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.055P)2 + 1.11P] where P = (Fo2 + 2Fc2)/3 |
4096 reflections | (Δ/σ)max = 0.001 |
225 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
Special details
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Br1 | 0.54220 (2) | 0.31515 (2) | 0.43375 (2) | 0.02813 (9) | |
O1 | 0.27633 (7) | 0.25150 (17) | 0.58702 (14) | 0.0298 (3) | |
C2 | 0.32957 (9) | 0.1726 (2) | 0.65118 (19) | 0.0232 (4) | |
H2 | 0.3517 | 0.2334 | 0.7256 | 0.028* | |
N3 | 0.30119 (8) | 0.03941 (18) | 0.70533 (15) | 0.0240 (3) | |
C4 | 0.24396 (10) | 0.0998 (2) | 0.7578 (2) | 0.0286 (4) | |
H4A | 0.2548 | 0.1518 | 0.8441 | 0.034* | |
H4B | 0.2124 | 0.0210 | 0.7696 | 0.034* | |
C5 | 0.21970 (10) | 0.2075 (2) | 0.6467 (2) | 0.0275 (4) | |
H5 | 0.1901 | 0.1541 | 0.5785 | 0.033* | |
C6 | 0.37483 (9) | 0.1367 (2) | 0.54907 (18) | 0.0226 (4) | |
C7 | 0.42805 (9) | 0.2251 (2) | 0.53991 (18) | 0.0235 (4) | |
H7 | 0.4364 | 0.3066 | 0.5991 | 0.028* | |
C8 | 0.46904 (9) | 0.1942 (2) | 0.44404 (19) | 0.0229 (4) | |
C9 | 0.45780 (9) | 0.0753 (2) | 0.35676 (18) | 0.0238 (4) | |
H9 | 0.4865 | 0.0541 | 0.2925 | 0.029* | |
C10 | 0.40439 (10) | −0.0118 (2) | 0.36452 (18) | 0.0255 (4) | |
H10 | 0.3961 | −0.0925 | 0.3043 | 0.031* | |
C11 | 0.36252 (9) | 0.0175 (2) | 0.45995 (18) | 0.0237 (4) | |
O11 | 0.31123 (7) | −0.07205 (17) | 0.46493 (15) | 0.0287 (3) | |
H11 | 0.2980 (17) | −0.053 (4) | 0.536 (4) | 0.050 (9)* | |
C12 | 0.34457 (10) | −0.0365 (2) | 0.8069 (2) | 0.0295 (4) | |
H12A | 0.3823 | −0.0707 | 0.7665 | 0.044* | |
H12B | 0.3228 | −0.1218 | 0.8418 | 0.044* | |
H12C | 0.3577 | 0.0323 | 0.8803 | 0.044* | |
C13 | 0.18595 (10) | 0.3429 (2) | 0.6965 (2) | 0.0293 (4) | |
H13A | 0.1502 | 0.3093 | 0.7453 | 0.035* | |
H13B | 0.2162 | 0.3982 | 0.7606 | 0.035* | |
C14 | 0.16029 (10) | 0.4466 (2) | 0.5851 (2) | 0.0288 (4) | |
C15 | 0.19383 (11) | 0.5761 (2) | 0.5574 (2) | 0.0301 (4) | |
C16 | 0.16792 (12) | 0.6723 (3) | 0.4563 (2) | 0.0361 (5) | |
H16 | 0.1904 | 0.7603 | 0.4389 | 0.043* | |
C17 | 0.11055 (12) | 0.6426 (3) | 0.3812 (3) | 0.0430 (6) | |
C18 | 0.07858 (11) | 0.5135 (4) | 0.4079 (3) | 0.0452 (6) | |
H18 | 0.0393 | 0.4915 | 0.3564 | 0.054* | |
C19 | 0.10236 (10) | 0.4145 (3) | 0.5084 (2) | 0.0365 (5) | |
C20 | 0.25709 (13) | 0.6141 (3) | 0.6335 (2) | 0.0393 (5) | |
H20A | 0.2512 | 0.6344 | 0.7273 | 0.059* | |
H20B | 0.2748 | 0.7021 | 0.5938 | 0.059* | |
H20C | 0.2865 | 0.5304 | 0.6291 | 0.059* | |
C21 | 0.08362 (15) | 0.7492 (5) | 0.2732 (3) | 0.0650 (10) | |
H21A | 0.0776 | 0.8468 | 0.3131 | 0.097* | |
H21B | 0.0425 | 0.7119 | 0.2318 | 0.097* | |
H21C | 0.1133 | 0.7581 | 0.2050 | 0.097* | |
C22 | 0.06445 (12) | 0.2765 (4) | 0.5315 (3) | 0.0523 (7) | |
H22A | 0.0859 | 0.1897 | 0.4985 | 0.079* | |
H22B | 0.0217 | 0.2853 | 0.4835 | 0.079* | |
H22C | 0.0611 | 0.2651 | 0.6276 | 0.079* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02612 (13) | 0.02966 (14) | 0.02922 (14) | −0.00322 (7) | 0.00584 (9) | 0.00477 (7) |
O1 | 0.0269 (7) | 0.0344 (8) | 0.0296 (7) | 0.0054 (6) | 0.0103 (6) | 0.0108 (6) |
C2 | 0.0242 (9) | 0.0241 (9) | 0.0216 (8) | −0.0010 (7) | 0.0035 (7) | 0.0011 (7) |
N3 | 0.0258 (8) | 0.0261 (8) | 0.0201 (7) | −0.0015 (6) | 0.0024 (6) | 0.0029 (6) |
C4 | 0.0291 (9) | 0.0332 (10) | 0.0245 (9) | −0.0019 (8) | 0.0076 (7) | 0.0037 (8) |
C5 | 0.0270 (10) | 0.0315 (10) | 0.0249 (9) | −0.0003 (8) | 0.0068 (7) | 0.0021 (8) |
C6 | 0.0254 (9) | 0.0250 (9) | 0.0173 (8) | 0.0018 (7) | 0.0018 (6) | 0.0021 (7) |
C7 | 0.0269 (9) | 0.0231 (8) | 0.0201 (8) | 0.0005 (7) | 0.0007 (7) | 0.0015 (7) |
C8 | 0.0223 (9) | 0.0250 (9) | 0.0212 (9) | −0.0002 (7) | 0.0014 (7) | 0.0040 (7) |
C9 | 0.0257 (9) | 0.0273 (9) | 0.0183 (8) | 0.0048 (7) | 0.0018 (6) | 0.0014 (7) |
C10 | 0.0296 (9) | 0.0266 (9) | 0.0197 (8) | 0.0039 (8) | 0.0005 (7) | −0.0025 (7) |
C11 | 0.0260 (9) | 0.0238 (9) | 0.0209 (8) | −0.0015 (7) | 0.0002 (7) | 0.0039 (7) |
O11 | 0.0297 (7) | 0.0317 (8) | 0.0249 (7) | −0.0075 (6) | 0.0040 (6) | −0.0043 (6) |
C12 | 0.0347 (10) | 0.0290 (10) | 0.0239 (9) | 0.0027 (8) | −0.0009 (8) | 0.0043 (8) |
C13 | 0.0312 (10) | 0.0322 (10) | 0.0260 (10) | 0.0005 (8) | 0.0093 (8) | 0.0018 (8) |
C14 | 0.0282 (9) | 0.0335 (10) | 0.0264 (9) | 0.0076 (8) | 0.0109 (7) | 0.0004 (8) |
C15 | 0.0369 (11) | 0.0319 (10) | 0.0231 (9) | 0.0056 (8) | 0.0102 (8) | −0.0007 (8) |
C16 | 0.0421 (13) | 0.0376 (12) | 0.0314 (11) | 0.0092 (9) | 0.0167 (10) | 0.0062 (9) |
C17 | 0.0364 (12) | 0.0587 (15) | 0.0361 (12) | 0.0159 (11) | 0.0142 (10) | 0.0169 (11) |
C18 | 0.0252 (10) | 0.0668 (17) | 0.0435 (13) | 0.0095 (11) | 0.0032 (9) | 0.0111 (12) |
C19 | 0.0240 (9) | 0.0471 (13) | 0.0392 (11) | 0.0059 (9) | 0.0072 (8) | 0.0041 (10) |
C20 | 0.0515 (14) | 0.0358 (12) | 0.0306 (11) | −0.0086 (10) | 0.0039 (10) | −0.0001 (9) |
C21 | 0.0446 (15) | 0.094 (3) | 0.0574 (17) | 0.0211 (17) | 0.0119 (13) | 0.0422 (19) |
C22 | 0.0265 (11) | 0.0609 (17) | 0.0689 (18) | −0.0046 (12) | 0.0016 (11) | 0.0095 (15) |
Geometric parameters (Å, º)
Br1—C8 | 1.9019 (19) | C12—H12B | 0.9800 |
O1—C2 | 1.424 (2) | C12—H12C | 0.9800 |
O1—C5 | 1.448 (2) | C13—C14 | 1.513 (3) |
C2—N3 | 1.472 (2) | C13—H13A | 0.9900 |
C2—C6 | 1.509 (3) | C13—H13B | 0.9900 |
C2—H2 | 1.0000 | C14—C19 | 1.404 (3) |
N3—C12 | 1.465 (2) | C14—C15 | 1.407 (3) |
N3—C4 | 1.472 (3) | C15—C16 | 1.401 (3) |
C4—C5 | 1.525 (3) | C15—C20 | 1.505 (3) |
C4—H4A | 0.9900 | C16—C17 | 1.382 (4) |
C4—H4B | 0.9900 | C16—H16 | 0.9500 |
C5—C13 | 1.524 (3) | C17—C18 | 1.385 (4) |
C5—H5 | 1.0000 | C17—C21 | 1.513 (4) |
C6—C7 | 1.388 (3) | C18—C19 | 1.399 (4) |
C6—C11 | 1.404 (3) | C18—H18 | 0.9500 |
C7—C8 | 1.389 (3) | C19—C22 | 1.510 (4) |
C7—H7 | 0.9500 | C20—H20A | 0.9800 |
C8—C9 | 1.388 (3) | C20—H20B | 0.9800 |
C9—C10 | 1.383 (3) | C20—H20C | 0.9800 |
C9—H9 | 0.9500 | C21—H21A | 0.9800 |
C10—C11 | 1.396 (3) | C21—H21B | 0.9800 |
C10—H10 | 0.9500 | C21—H21C | 0.9800 |
C11—O11 | 1.356 (2) | C22—H22A | 0.9800 |
O11—H11 | 0.81 (4) | C22—H22B | 0.9800 |
C12—H12A | 0.9800 | C22—H22C | 0.9800 |
C2—O1—C5 | 108.79 (14) | H12A—C12—H12C | 109.5 |
O1—C2—N3 | 104.01 (15) | H12B—C12—H12C | 109.5 |
O1—C2—C6 | 109.02 (15) | C14—C13—C5 | 113.25 (17) |
N3—C2—C6 | 112.83 (16) | C14—C13—H13A | 108.9 |
O1—C2—H2 | 110.3 | C5—C13—H13A | 108.9 |
N3—C2—H2 | 110.3 | C14—C13—H13B | 108.9 |
C6—C2—H2 | 110.3 | C5—C13—H13B | 108.9 |
C12—N3—C2 | 112.92 (16) | H13A—C13—H13B | 107.7 |
C12—N3—C4 | 113.51 (15) | C19—C14—C15 | 119.3 (2) |
C2—N3—C4 | 102.26 (15) | C19—C14—C13 | 120.0 (2) |
N3—C4—C5 | 101.41 (15) | C15—C14—C13 | 120.7 (2) |
N3—C4—H4A | 111.5 | C16—C15—C14 | 119.4 (2) |
C5—C4—H4A | 111.5 | C16—C15—C20 | 118.9 (2) |
N3—C4—H4B | 111.5 | C14—C15—C20 | 121.7 (2) |
C5—C4—H4B | 111.5 | C17—C16—C15 | 121.8 (2) |
H4A—C4—H4B | 109.3 | C17—C16—H16 | 119.1 |
O1—C5—C13 | 110.61 (17) | C15—C16—H16 | 119.1 |
O1—C5—C4 | 104.45 (16) | C16—C17—C18 | 118.2 (2) |
C13—C5—C4 | 113.71 (17) | C16—C17—C21 | 120.5 (3) |
O1—C5—H5 | 109.3 | C18—C17—C21 | 121.3 (3) |
C13—C5—H5 | 109.3 | C17—C18—C19 | 122.1 (2) |
C4—C5—H5 | 109.3 | C17—C18—H18 | 119.0 |
C7—C6—C11 | 119.50 (17) | C19—C18—H18 | 119.0 |
C7—C6—C2 | 119.82 (17) | C18—C19—C14 | 119.2 (2) |
C11—C6—C2 | 120.64 (17) | C18—C19—C22 | 118.8 (2) |
C6—C7—C8 | 119.94 (18) | C14—C19—C22 | 122.0 (2) |
C6—C7—H7 | 120.0 | C15—C20—H20A | 109.5 |
C8—C7—H7 | 120.0 | C15—C20—H20B | 109.5 |
C9—C8—C7 | 121.00 (18) | H20A—C20—H20B | 109.5 |
C9—C8—Br1 | 119.54 (14) | C15—C20—H20C | 109.5 |
C7—C8—Br1 | 119.46 (15) | H20A—C20—H20C | 109.5 |
C10—C9—C8 | 119.20 (17) | H20B—C20—H20C | 109.5 |
C10—C9—H9 | 120.4 | C17—C21—H21A | 109.5 |
C8—C9—H9 | 120.4 | C17—C21—H21B | 109.5 |
C9—C10—C11 | 120.70 (18) | H21A—C21—H21B | 109.5 |
C9—C10—H10 | 119.7 | C17—C21—H21C | 109.5 |
C11—C10—H10 | 119.7 | H21A—C21—H21C | 109.5 |
O11—C11—C10 | 118.61 (18) | H21B—C21—H21C | 109.5 |
O11—C11—C6 | 121.74 (17) | C19—C22—H22A | 109.5 |
C10—C11—C6 | 119.65 (18) | C19—C22—H22B | 109.5 |
C11—O11—H11 | 105 (2) | H22A—C22—H22B | 109.5 |
N3—C12—H12A | 109.5 | C19—C22—H22C | 109.5 |
N3—C12—H12B | 109.5 | H22A—C22—H22C | 109.5 |
H12A—C12—H12B | 109.5 | H22B—C22—H22C | 109.5 |
N3—C12—H12C | 109.5 | ||
C5—O1—C2—N3 | 23.8 (2) | C7—C6—C11—O11 | 179.93 (17) |
C5—O1—C2—C6 | 144.39 (16) | C2—C6—C11—O11 | −2.2 (3) |
O1—C2—N3—C12 | −163.70 (15) | C7—C6—C11—C10 | 0.9 (3) |
C6—C2—N3—C12 | 78.3 (2) | C2—C6—C11—C10 | 178.71 (17) |
O1—C2—N3—C4 | −41.36 (18) | O1—C5—C13—C14 | 64.6 (2) |
C6—C2—N3—C4 | −159.35 (16) | C4—C5—C13—C14 | −178.21 (18) |
C12—N3—C4—C5 | 163.78 (17) | C5—C13—C14—C19 | 80.4 (2) |
C2—N3—C4—C5 | 41.84 (18) | C5—C13—C14—C15 | −99.8 (2) |
C2—O1—C5—C13 | 125.28 (18) | C19—C14—C15—C16 | 1.7 (3) |
C2—O1—C5—C4 | 2.6 (2) | C13—C14—C15—C16 | −178.05 (18) |
N3—C4—C5—O1 | −27.6 (2) | C19—C14—C15—C20 | −178.2 (2) |
N3—C4—C5—C13 | −148.32 (17) | C13—C14—C15—C20 | 2.1 (3) |
O1—C2—C6—C7 | 98.9 (2) | C14—C15—C16—C17 | −1.0 (3) |
N3—C2—C6—C7 | −146.13 (17) | C20—C15—C16—C17 | 178.9 (2) |
O1—C2—C6—C11 | −79.0 (2) | C15—C16—C17—C18 | −0.1 (4) |
N3—C2—C6—C11 | 36.0 (2) | C15—C16—C17—C21 | 179.6 (2) |
C11—C6—C7—C8 | −0.7 (3) | C16—C17—C18—C19 | 0.5 (4) |
C2—C6—C7—C8 | −178.59 (17) | C21—C17—C18—C19 | −179.2 (3) |
C6—C7—C8—C9 | −0.2 (3) | C17—C18—C19—C14 | 0.2 (4) |
C6—C7—C8—Br1 | −179.44 (14) | C17—C18—C19—C22 | 179.8 (3) |
C7—C8—C9—C10 | 1.0 (3) | C15—C14—C19—C18 | −1.3 (3) |
Br1—C8—C9—C10 | −179.76 (14) | C13—C14—C19—C18 | 178.4 (2) |
C8—C9—C10—C11 | −0.9 (3) | C15—C14—C19—C22 | 179.1 (2) |
C9—C10—C11—O11 | −179.15 (17) | C13—C14—C19—C22 | −1.1 (3) |
C9—C10—C11—C6 | −0.1 (3) |
Hydrogen-bond geometry (Å, º)
Cg2 and Cg3 are the centroids of the 4-bromophenol (C6–C11) and 1,3,5-trimethylbenzene (C14–C19) rings, respectively.
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···N3 | 0.81 (4) | 1.89 (4) | 2.644 (2) | 155 (3) |
C4—H4A···O1i | 0.99 | 2.58 | 3.564 (2) | 171 |
C20—H20B···O11ii | 0.98 | 2.57 | 3.548 (3) | 173 |
C20—H20C···O1 | 0.98 | 2.55 | 3.332 (3) | 136 |
C2—H2···Cg2i | 1.00 | 2.91 | 3.908 (2) | 176 |
C4—H4B···Cg3i | 0.99 | 2.88 | 3.622 (2) | 132 |
C21—H21C···Cg3iii | 0.98 | 2.93 | 3.723 (4) | 138 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, −y+3/2, z−1/2.
Funding Statement
This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
- Caracelli, I., Coelho, D. C. S., Olivato, P. R., Correra, T. C., Rodrigues, A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2755–o2756. [DOI] [PMC free article] [PubMed]
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Cunico, W., Gomes, C. R. B., Tiekink, E. R. T., Vellasco Junior, W. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o267–o268. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.
- Hariono, M., Ngah, N., Wahab, H. A. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o35–o36. [DOI] [PMC free article] [PubMed]
- Juhász, M., Lázár, L. & Fülöp, F. (2011). Tetrahedron Asymmetry, 22, 2012–2017.
- Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.
- Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. [DOI] [PMC free article] [PubMed]
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sepideh, F., Zare, F. L., Mohammad, N., Robab, M. & Esmail, V. (2018). J. CO2 Util., 25, 194-204.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shen, J., Tang, G.-P. & Hu, X.-R. (2018). Acta Cryst. E74, 51–54. [DOI] [PMC free article] [PubMed]
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Tamura, M., Honda, M., Nakagawa, Y. & Tomishige, K. (2014). J. Chem. Technol. Biotechnol. 89, 19–33.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
- Ye, F., Fu, Y. & Zhao, S. (2010). Acta Cryst. E66, o445. [DOI] [PMC free article] [PubMed]
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022005928/tx2051Isup3.cml
CCDC reference: 2176709
Additional supporting information: crystallographic information; 3D view; checkCIF report