Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 10;78(Pt 7):695–698. doi: 10.1107/S2056989022005928

Crystal structure and Hirshfeld surface analysis of 4-bromo-2-[3-methyl-5-(2,4,6-tri­methyl­benz­yl)oxazolidin-2-yl]phenol

Ali N Khalilov a,b, Victor N Khrustalev c,d, Elena A Fortalnova c, Mehmet Akkurt e, Sema Öztürk Yıldırım f,g, Ajaya Bhattarai h,*, İbrahim G Mamedov b
PMCID: PMC9260360  PMID: 35855370

In the crystal, neighboring mol­ecules are linked into layers parallel to the (200) plane via C—H⋯O hydrogen bonds and C—H⋯π inter­actions. van der Waals inter­actions between parallel mol­ecular layers help to strengthen the packing.

Keywords: crystal structure; 1,3-oxazolidine; hydrogen bond; van der Waals inter­actions; Hirshfeld surface analysis

Abstract

The title compound, C20H24BrNO2, is chiral at the carbon atoms on either side of the oxygen atom of the oxazolidine ring and crystallizes as a racemate. The 1,3-oxazolidine ring adopts an envelope conformation with the N atom in an endo position. The mean plane of the oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromo­phenol and 1,3,5-tri­methyl­benzene rings. In the crystal, adjacent mol­ecules are connected via C—H⋯O hydrogen bonds and C—H⋯π inter­actions into layers parallel to the (200) plane. The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers. A Hirshfeld surface analysis shows that H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) inter­actions are the most abundant in the crystal packing.

1. Chemical context

Functionalization of amine and carbonyl compounds represents a cornerstone of organic synthesis, material science and medicinal chemistry (Zubkov et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). In particular, the reaction of 1,2-amino alcohols with oxo compounds is an effective tool in the construction of a broad class of organic compounds such as amides, esters, enamino­nes, ureas, carbamates, aziridines, oxazolidines, oxazolines, oxazolidinones, oxazines, pyrroles, pyridones, morpholines, acridinones etc (Juhász et al., 2011; Tamura et al., 2014; Sepideh et al., 2018; Khalilov, 2021). 1.

In the context of our recent studies, herein we report the structural analysis of a 1,3-oxazolidine, synthesized on the base of racemic 1,2-amino alcohol. Theoretically, in the solid state, this 1,3-oxazolidine can exist as eight optical isomers due to two CH and one N-chiral center. However, NMR analysis of the obtained product indicated the formation of a pair of diastereoisomers in a 1:1 ratio (Khalilov, 2021) and single-crystal X-ray analysis of the racemic mixture confirmed the 2R,3S,5R- and 2S,3R,5S-configuration of these isomers (Fig. 1).

Figure 1.

Figure 1

Synthesis of the racemic mixture of 2R,3S,5R- and 2S,3R,5S-oxazolidines.

Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022; Khalilov et al., 2022), we report the crystal structure and Hirshfeld surface analysis of the racemic title compound, 4-bromo-2-[3-methyl-5-(2,4,6-tri­methyl­benz­yl)oxazolidin-2-yl]phenol.

2. Structural commentary

In the title compound, (Fig. 2), the 1,3-oxazolidine ring (O1/N3/C2/C4/C5) adopts an envelope conformation with the N atom in an endo position [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.413 (2) Å, φ(2) = 256.7 (3)°]. The mean plane of th oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromo­phenol (C6–C11) and the 1,3,5-tri­methyl­benzene (C14–C19) rings. The mol­ecular conformation is stabilized by intra­molecular O11—H11⋯N3 and C20—H20C⋯O1 hydrogen bonds (Table 1). There are two stereogenic centers in the racaemic title compound and the chirality about the C2 and C5 atoms is R in the chosen asymmetric unit. The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey section.

Figure 2.

Figure 2

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the 4-bromo­phenol (C6–C11) and 1,3,5-tri­methyl­benzene (C14–C19) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯N3 0.81 (4) 1.89 (4) 2.644 (2) 155 (3)
C4—H4A⋯O1i 0.99 2.58 3.564 (2) 171
C20—H20B⋯O11ii 0.98 2.57 3.548 (3) 173
C20—H20C⋯O1 0.98 2.55 3.332 (3) 136
C2—H2⋯Cg2i 1.00 2.91 3.908 (2) 176
C4—H4BCg3i 0.99 2.88 3.622 (2) 132
C21—H21CCg3iii 0.98 2.93 3.723 (4) 138

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, adjacent mol­ecules are connected via C—H⋯O hydrogen bonds and C—H⋯π inter­actions into layers parallel to the (200) plane (Table 1; Figs. 3 and 4). The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers.

Figure 3.

Figure 3

A general view of the C—H⋯O hydrogen bonding and C—H⋯π inter­actions of the title compound. Symmetry codes: (i) x, −y +  Inline graphic , z +  Inline graphic ; (ii) x, y + 1, z; (iii) x, −y −  Inline graphic , z −  Inline graphic ; (iv) x, −y +  Inline graphic , z −  Inline graphic .

Figure 4.

Figure 4

Packing view of the title compound along the b axis with the inter­actions depicted as in Fig. 3.

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were obtained with CrystalExplorer17.5 (Turner et al., 2017). The overall two-dimensional fingerprint plot for the title compound is given in Fig. 5 a, and those delineated into H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) contacts are shown in Fig. 5 bd, while numerical details of the different contacts are given in Table 2. The O⋯H/H⋯O (8.3%), C⋯C (1.4%), Br⋯C/C⋯Br (1.0%), Br⋯O/O⋯Br (0.5%) and Br⋯Br (0.3%) contacts have little directional influence on the mol­ecular packing. A a result, in the crystal packing, C—H⋯π (ring) and van der Waals inter­actions are dominant.

Figure 5.

Figure 5

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Br⋯H/H⋯Br inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Br1⋯H10 2.96 1 − x, Inline graphic  + y, Inline graphic  − z
Br1⋯C12 3.598 1 − x, Inline graphic  + y, Inline graphic  − z
C9⋯C8 3.409 1 − x, −y, 1 − z
H9⋯H7 2.45 x, Inline graphic  − y, − Inline graphic  + z
H11⋯H20B 2.35 x, −1 + y, z
C15⋯H21C 2.80 x, Inline graphic  − y, Inline graphic  + z
H22B⋯C18 3.07 x, 1 − y, 1 − z
H21B⋯H22B 2.51 x, Inline graphic  + y, Inline graphic  − z

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with a 1,3-oxazolidine ring showed that the five most closely related to the title compound are (S)-5-chloro-N-({2-oxo-3-[4-(3-oxomorpholin-4-yl)phen­yl]oxa­zolidin-5-yl}meth­yl)-thio­phene-2-carboxamide [(I): Shen et al., 2018], 2,2-di­chloro-1-(2-phenyl-1,3-oxazolidin-3-yl)ethan­one [(II): Ye et al., 2010], (4-benzyl-2-oxo-1,3-oxazolidin-5-yl)- methyl methane­sulfonate [(III): Cunico et al., 2010], 2-bromo-4-(3,4-dimethyl-5-phenyl-1,3-oxazolidin-2-yl)-6-meth­oxy­phenol [(IV): Hariono et al., 2012] and (R)-2-phen­oxy-1-(4-phenyl-2-sulfanyl­idene-1,3-oxazolidin-3-yl)ethanone [(V): Caracelli et al., 2011].

In the crystal of (I), classical N—H⋯O hydrogen bonds and weak C— H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular architecture. In (II), mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming one-dimensional chains. In the crystal of (III), N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supra­molecular chains along the b-axis direction. These chains are reinforced by C—H⋯O contacts, with the carbonyl O atom accepting three such inter­actions. In (IV), adjacent mol­ecules are connected via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions into a zigzag chain along the b-axis direction. In (V), mol­ecules are linked into supra­molecular arrays two mol­ecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π inter­actions.

5. Synthesis and crystallization

The title compound was synthesized using our recently reported procedure (Khalilov, 2021), and colorless needle-like crystals were obtained upon recrystallization from an ethanol/water solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 to 1.00 Å, and with U iso(H) = 1.2 or 1.5U eq(C). The hydroxyl H atom was found in a difference-Fourier map and was refined freely.

Table 3. Experimental details.

Crystal data
Chemical formula C20H24BrNO2
M r 390.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 21.1019 (3), 9.01359 (11), 10.03985 (11)
β (°) 96.1425 (11)
V3) 1898.66 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.03
Crystal size (mm) 0.32 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.424, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 21431, 4096, 3783
R int 0.043
(sin θ/λ)max−1) 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.096, 1.07
No. of reflections 4096
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.60

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051sup1.cif

e-78-00695-sup1.cif (663.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051Isup2.hkl

e-78-00695-Isup2.hkl (326.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005928/tx2051Isup3.cml

CCDC reference: 2176709

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, SÖY, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EAF; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

C20H24BrNO2 F(000) = 808
Mr = 390.30 Dx = 1.365 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 21.1019 (3) Å Cell parameters from 13703 reflections
b = 9.01359 (11) Å θ = 2.1–78.6°
c = 10.03985 (11) Å µ = 3.03 mm1
β = 96.1425 (11)° T = 100 K
V = 1898.66 (4) Å3 Needle, colourless
Z = 4 0.32 × 0.04 × 0.03 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3783 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.043
φ and ω scans θmax = 79.6°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −25→26
Tmin = 0.424, Tmax = 0.882 k = −11→11
21431 measured reflections l = −12→10
4096 independent reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 1.11P] where P = (Fo2 + 2Fc2)/3
4096 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.54220 (2) 0.31515 (2) 0.43375 (2) 0.02813 (9)
O1 0.27633 (7) 0.25150 (17) 0.58702 (14) 0.0298 (3)
C2 0.32957 (9) 0.1726 (2) 0.65118 (19) 0.0232 (4)
H2 0.3517 0.2334 0.7256 0.028*
N3 0.30119 (8) 0.03941 (18) 0.70533 (15) 0.0240 (3)
C4 0.24396 (10) 0.0998 (2) 0.7578 (2) 0.0286 (4)
H4A 0.2548 0.1518 0.8441 0.034*
H4B 0.2124 0.0210 0.7696 0.034*
C5 0.21970 (10) 0.2075 (2) 0.6467 (2) 0.0275 (4)
H5 0.1901 0.1541 0.5785 0.033*
C6 0.37483 (9) 0.1367 (2) 0.54907 (18) 0.0226 (4)
C7 0.42805 (9) 0.2251 (2) 0.53991 (18) 0.0235 (4)
H7 0.4364 0.3066 0.5991 0.028*
C8 0.46904 (9) 0.1942 (2) 0.44404 (19) 0.0229 (4)
C9 0.45780 (9) 0.0753 (2) 0.35676 (18) 0.0238 (4)
H9 0.4865 0.0541 0.2925 0.029*
C10 0.40439 (10) −0.0118 (2) 0.36452 (18) 0.0255 (4)
H10 0.3961 −0.0925 0.3043 0.031*
C11 0.36252 (9) 0.0175 (2) 0.45995 (18) 0.0237 (4)
O11 0.31123 (7) −0.07205 (17) 0.46493 (15) 0.0287 (3)
H11 0.2980 (17) −0.053 (4) 0.536 (4) 0.050 (9)*
C12 0.34457 (10) −0.0365 (2) 0.8069 (2) 0.0295 (4)
H12A 0.3823 −0.0707 0.7665 0.044*
H12B 0.3228 −0.1218 0.8418 0.044*
H12C 0.3577 0.0323 0.8803 0.044*
C13 0.18595 (10) 0.3429 (2) 0.6965 (2) 0.0293 (4)
H13A 0.1502 0.3093 0.7453 0.035*
H13B 0.2162 0.3982 0.7606 0.035*
C14 0.16029 (10) 0.4466 (2) 0.5851 (2) 0.0288 (4)
C15 0.19383 (11) 0.5761 (2) 0.5574 (2) 0.0301 (4)
C16 0.16792 (12) 0.6723 (3) 0.4563 (2) 0.0361 (5)
H16 0.1904 0.7603 0.4389 0.043*
C17 0.11055 (12) 0.6426 (3) 0.3812 (3) 0.0430 (6)
C18 0.07858 (11) 0.5135 (4) 0.4079 (3) 0.0452 (6)
H18 0.0393 0.4915 0.3564 0.054*
C19 0.10236 (10) 0.4145 (3) 0.5084 (2) 0.0365 (5)
C20 0.25709 (13) 0.6141 (3) 0.6335 (2) 0.0393 (5)
H20A 0.2512 0.6344 0.7273 0.059*
H20B 0.2748 0.7021 0.5938 0.059*
H20C 0.2865 0.5304 0.6291 0.059*
C21 0.08362 (15) 0.7492 (5) 0.2732 (3) 0.0650 (10)
H21A 0.0776 0.8468 0.3131 0.097*
H21B 0.0425 0.7119 0.2318 0.097*
H21C 0.1133 0.7581 0.2050 0.097*
C22 0.06445 (12) 0.2765 (4) 0.5315 (3) 0.0523 (7)
H22A 0.0859 0.1897 0.4985 0.079*
H22B 0.0217 0.2853 0.4835 0.079*
H22C 0.0611 0.2651 0.6276 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02612 (13) 0.02966 (14) 0.02922 (14) −0.00322 (7) 0.00584 (9) 0.00477 (7)
O1 0.0269 (7) 0.0344 (8) 0.0296 (7) 0.0054 (6) 0.0103 (6) 0.0108 (6)
C2 0.0242 (9) 0.0241 (9) 0.0216 (8) −0.0010 (7) 0.0035 (7) 0.0011 (7)
N3 0.0258 (8) 0.0261 (8) 0.0201 (7) −0.0015 (6) 0.0024 (6) 0.0029 (6)
C4 0.0291 (9) 0.0332 (10) 0.0245 (9) −0.0019 (8) 0.0076 (7) 0.0037 (8)
C5 0.0270 (10) 0.0315 (10) 0.0249 (9) −0.0003 (8) 0.0068 (7) 0.0021 (8)
C6 0.0254 (9) 0.0250 (9) 0.0173 (8) 0.0018 (7) 0.0018 (6) 0.0021 (7)
C7 0.0269 (9) 0.0231 (8) 0.0201 (8) 0.0005 (7) 0.0007 (7) 0.0015 (7)
C8 0.0223 (9) 0.0250 (9) 0.0212 (9) −0.0002 (7) 0.0014 (7) 0.0040 (7)
C9 0.0257 (9) 0.0273 (9) 0.0183 (8) 0.0048 (7) 0.0018 (6) 0.0014 (7)
C10 0.0296 (9) 0.0266 (9) 0.0197 (8) 0.0039 (8) 0.0005 (7) −0.0025 (7)
C11 0.0260 (9) 0.0238 (9) 0.0209 (8) −0.0015 (7) 0.0002 (7) 0.0039 (7)
O11 0.0297 (7) 0.0317 (8) 0.0249 (7) −0.0075 (6) 0.0040 (6) −0.0043 (6)
C12 0.0347 (10) 0.0290 (10) 0.0239 (9) 0.0027 (8) −0.0009 (8) 0.0043 (8)
C13 0.0312 (10) 0.0322 (10) 0.0260 (10) 0.0005 (8) 0.0093 (8) 0.0018 (8)
C14 0.0282 (9) 0.0335 (10) 0.0264 (9) 0.0076 (8) 0.0109 (7) 0.0004 (8)
C15 0.0369 (11) 0.0319 (10) 0.0231 (9) 0.0056 (8) 0.0102 (8) −0.0007 (8)
C16 0.0421 (13) 0.0376 (12) 0.0314 (11) 0.0092 (9) 0.0167 (10) 0.0062 (9)
C17 0.0364 (12) 0.0587 (15) 0.0361 (12) 0.0159 (11) 0.0142 (10) 0.0169 (11)
C18 0.0252 (10) 0.0668 (17) 0.0435 (13) 0.0095 (11) 0.0032 (9) 0.0111 (12)
C19 0.0240 (9) 0.0471 (13) 0.0392 (11) 0.0059 (9) 0.0072 (8) 0.0041 (10)
C20 0.0515 (14) 0.0358 (12) 0.0306 (11) −0.0086 (10) 0.0039 (10) −0.0001 (9)
C21 0.0446 (15) 0.094 (3) 0.0574 (17) 0.0211 (17) 0.0119 (13) 0.0422 (19)
C22 0.0265 (11) 0.0609 (17) 0.0689 (18) −0.0046 (12) 0.0016 (11) 0.0095 (15)

Geometric parameters (Å, º)

Br1—C8 1.9019 (19) C12—H12B 0.9800
O1—C2 1.424 (2) C12—H12C 0.9800
O1—C5 1.448 (2) C13—C14 1.513 (3)
C2—N3 1.472 (2) C13—H13A 0.9900
C2—C6 1.509 (3) C13—H13B 0.9900
C2—H2 1.0000 C14—C19 1.404 (3)
N3—C12 1.465 (2) C14—C15 1.407 (3)
N3—C4 1.472 (3) C15—C16 1.401 (3)
C4—C5 1.525 (3) C15—C20 1.505 (3)
C4—H4A 0.9900 C16—C17 1.382 (4)
C4—H4B 0.9900 C16—H16 0.9500
C5—C13 1.524 (3) C17—C18 1.385 (4)
C5—H5 1.0000 C17—C21 1.513 (4)
C6—C7 1.388 (3) C18—C19 1.399 (4)
C6—C11 1.404 (3) C18—H18 0.9500
C7—C8 1.389 (3) C19—C22 1.510 (4)
C7—H7 0.9500 C20—H20A 0.9800
C8—C9 1.388 (3) C20—H20B 0.9800
C9—C10 1.383 (3) C20—H20C 0.9800
C9—H9 0.9500 C21—H21A 0.9800
C10—C11 1.396 (3) C21—H21B 0.9800
C10—H10 0.9500 C21—H21C 0.9800
C11—O11 1.356 (2) C22—H22A 0.9800
O11—H11 0.81 (4) C22—H22B 0.9800
C12—H12A 0.9800 C22—H22C 0.9800
C2—O1—C5 108.79 (14) H12A—C12—H12C 109.5
O1—C2—N3 104.01 (15) H12B—C12—H12C 109.5
O1—C2—C6 109.02 (15) C14—C13—C5 113.25 (17)
N3—C2—C6 112.83 (16) C14—C13—H13A 108.9
O1—C2—H2 110.3 C5—C13—H13A 108.9
N3—C2—H2 110.3 C14—C13—H13B 108.9
C6—C2—H2 110.3 C5—C13—H13B 108.9
C12—N3—C2 112.92 (16) H13A—C13—H13B 107.7
C12—N3—C4 113.51 (15) C19—C14—C15 119.3 (2)
C2—N3—C4 102.26 (15) C19—C14—C13 120.0 (2)
N3—C4—C5 101.41 (15) C15—C14—C13 120.7 (2)
N3—C4—H4A 111.5 C16—C15—C14 119.4 (2)
C5—C4—H4A 111.5 C16—C15—C20 118.9 (2)
N3—C4—H4B 111.5 C14—C15—C20 121.7 (2)
C5—C4—H4B 111.5 C17—C16—C15 121.8 (2)
H4A—C4—H4B 109.3 C17—C16—H16 119.1
O1—C5—C13 110.61 (17) C15—C16—H16 119.1
O1—C5—C4 104.45 (16) C16—C17—C18 118.2 (2)
C13—C5—C4 113.71 (17) C16—C17—C21 120.5 (3)
O1—C5—H5 109.3 C18—C17—C21 121.3 (3)
C13—C5—H5 109.3 C17—C18—C19 122.1 (2)
C4—C5—H5 109.3 C17—C18—H18 119.0
C7—C6—C11 119.50 (17) C19—C18—H18 119.0
C7—C6—C2 119.82 (17) C18—C19—C14 119.2 (2)
C11—C6—C2 120.64 (17) C18—C19—C22 118.8 (2)
C6—C7—C8 119.94 (18) C14—C19—C22 122.0 (2)
C6—C7—H7 120.0 C15—C20—H20A 109.5
C8—C7—H7 120.0 C15—C20—H20B 109.5
C9—C8—C7 121.00 (18) H20A—C20—H20B 109.5
C9—C8—Br1 119.54 (14) C15—C20—H20C 109.5
C7—C8—Br1 119.46 (15) H20A—C20—H20C 109.5
C10—C9—C8 119.20 (17) H20B—C20—H20C 109.5
C10—C9—H9 120.4 C17—C21—H21A 109.5
C8—C9—H9 120.4 C17—C21—H21B 109.5
C9—C10—C11 120.70 (18) H21A—C21—H21B 109.5
C9—C10—H10 119.7 C17—C21—H21C 109.5
C11—C10—H10 119.7 H21A—C21—H21C 109.5
O11—C11—C10 118.61 (18) H21B—C21—H21C 109.5
O11—C11—C6 121.74 (17) C19—C22—H22A 109.5
C10—C11—C6 119.65 (18) C19—C22—H22B 109.5
C11—O11—H11 105 (2) H22A—C22—H22B 109.5
N3—C12—H12A 109.5 C19—C22—H22C 109.5
N3—C12—H12B 109.5 H22A—C22—H22C 109.5
H12A—C12—H12B 109.5 H22B—C22—H22C 109.5
N3—C12—H12C 109.5
C5—O1—C2—N3 23.8 (2) C7—C6—C11—O11 179.93 (17)
C5—O1—C2—C6 144.39 (16) C2—C6—C11—O11 −2.2 (3)
O1—C2—N3—C12 −163.70 (15) C7—C6—C11—C10 0.9 (3)
C6—C2—N3—C12 78.3 (2) C2—C6—C11—C10 178.71 (17)
O1—C2—N3—C4 −41.36 (18) O1—C5—C13—C14 64.6 (2)
C6—C2—N3—C4 −159.35 (16) C4—C5—C13—C14 −178.21 (18)
C12—N3—C4—C5 163.78 (17) C5—C13—C14—C19 80.4 (2)
C2—N3—C4—C5 41.84 (18) C5—C13—C14—C15 −99.8 (2)
C2—O1—C5—C13 125.28 (18) C19—C14—C15—C16 1.7 (3)
C2—O1—C5—C4 2.6 (2) C13—C14—C15—C16 −178.05 (18)
N3—C4—C5—O1 −27.6 (2) C19—C14—C15—C20 −178.2 (2)
N3—C4—C5—C13 −148.32 (17) C13—C14—C15—C20 2.1 (3)
O1—C2—C6—C7 98.9 (2) C14—C15—C16—C17 −1.0 (3)
N3—C2—C6—C7 −146.13 (17) C20—C15—C16—C17 178.9 (2)
O1—C2—C6—C11 −79.0 (2) C15—C16—C17—C18 −0.1 (4)
N3—C2—C6—C11 36.0 (2) C15—C16—C17—C21 179.6 (2)
C11—C6—C7—C8 −0.7 (3) C16—C17—C18—C19 0.5 (4)
C2—C6—C7—C8 −178.59 (17) C21—C17—C18—C19 −179.2 (3)
C6—C7—C8—C9 −0.2 (3) C17—C18—C19—C14 0.2 (4)
C6—C7—C8—Br1 −179.44 (14) C17—C18—C19—C22 179.8 (3)
C7—C8—C9—C10 1.0 (3) C15—C14—C19—C18 −1.3 (3)
Br1—C8—C9—C10 −179.76 (14) C13—C14—C19—C18 178.4 (2)
C8—C9—C10—C11 −0.9 (3) C15—C14—C19—C22 179.1 (2)
C9—C10—C11—O11 −179.15 (17) C13—C14—C19—C22 −1.1 (3)
C9—C10—C11—C6 −0.1 (3)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the 4-bromophenol (C6–C11) and 1,3,5-trimethylbenzene (C14–C19) rings, respectively.

D—H···A D—H H···A D···A D—H···A
O11—H11···N3 0.81 (4) 1.89 (4) 2.644 (2) 155 (3)
C4—H4A···O1i 0.99 2.58 3.564 (2) 171
C20—H20B···O11ii 0.98 2.57 3.548 (3) 173
C20—H20C···O1 0.98 2.55 3.332 (3) 136
C2—H2···Cg2i 1.00 2.91 3.908 (2) 176
C4—H4B···Cg3i 0.99 2.88 3.622 (2) 132
C21—H21C···Cg3iii 0.98 2.93 3.723 (4) 138

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, −y+3/2, z−1/2.

Funding Statement

This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

  1. Caracelli, I., Coelho, D. C. S., Olivato, P. R., Correra, T. C., Rodrigues, A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2755–o2756. [DOI] [PMC free article] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Cunico, W., Gomes, C. R. B., Tiekink, E. R. T., Vellasco Junior, W. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o267–o268. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.
  7. Hariono, M., Ngah, N., Wahab, H. A. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o35–o36. [DOI] [PMC free article] [PubMed]
  8. Juhász, M., Lázár, L. & Fülöp, F. (2011). Tetrahedron Asymmetry, 22, 2012–2017.
  9. Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.
  10. Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. [DOI] [PMC free article] [PubMed]
  11. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  12. Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. [DOI] [PMC free article] [PubMed]
  13. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. [DOI] [PMC free article] [PubMed]
  14. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  15. Sepideh, F., Zare, F. L., Mohammad, N., Robab, M. & Esmail, V. (2018). J. CO2 Util., 25, 194-204.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Shen, J., Tang, G.-P. & Hu, X.-R. (2018). Acta Cryst. E74, 51–54. [DOI] [PMC free article] [PubMed]
  19. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Tamura, M., Honda, M., Nakagawa, Y. & Tomishige, K. (2014). J. Chem. Technol. Biotechnol. 89, 19–33.
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.
  23. Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
  24. Ye, F., Fu, Y. & Zhao, S. (2010). Acta Cryst. E66, o445. [DOI] [PMC free article] [PubMed]
  25. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051sup1.cif

e-78-00695-sup1.cif (663.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005928/tx2051Isup2.hkl

e-78-00695-Isup2.hkl (326.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005928/tx2051Isup3.cml

CCDC reference: 2176709

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES