Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 7;78(Pt 7):682–686. doi: 10.1107/S2056989022005643

Crystal structures of methyl 3,5-di­methyl­benzoate, 3,5-bis­(bromo­meth­yl)phenyl acetate and 5-hy­droxy­benzene-1,3-dicarbaldehyde

Ben Ebersbach a, Wilhelm Seichter a, Monika Mazik a,*
PMCID: PMC9260362  PMID: 35855362

The crystals of methyl 3,5-di­methyl­benzoate are composed of strands of C—H⋯O=C bonded mol­ecules, which are further arranged into layers. As a result of the presence of two bromo­methyl substituents in 3,5-bis­(bromo­meth­yl)phenyl acetate, mol­ecular dimers formed by crystallographically non-equivalent mol­ecules are connected to structurally different two-dimensional aggregates in which the bromine atoms participate in Br⋯Br bonds of type I and type II. In the case of 5-hy­droxy­benzene-1,3-dicarbaldehyde,which possesses three donor/acceptor substituents, the mol­ecular association in the crystal creates a close three-dimensional network comprising Car­yl—H⋯Ohy­droxy, Cform­yl—H⋯Oform­yl and O—H⋯Oform­yl bonds.

Keywords: crystal structures; 1,3,5-tris­ubstituted benzene derivatives; hydrogen bonding; C–H⋯π and π–π inter­actions

Abstract

The crystal structures of the title compounds, methyl 3,5-di­methyl­benzoate (C10H12O2; 1), 3,5-bis­(bromo­meth­yl)phenyl acetate (C10H10Br2O2; 2) and 5-hy­droxy­benzene-1,3-dicarbaldehyde (C8H6O3; 3) were determined by single-crystal X-ray analysis. The crystals of 1 are composed of strands of C—H⋯O=C bonded mol­ecules, which are further arranged into layers. As a result of the presence of two bromo­methyl substituents in compound 2, mol­ecular dimers formed by crystallographically non-equivalent mol­ecules are connected to structurally different two-dimensional aggregates in which the bromine atoms participate in Br⋯Br bonds of type I and type II. In the case of compound 3, which possesses three donor/acceptor substituents, the mol­ecular association in the crystal creates a close three-dimensional network comprising Car­yl—H⋯Ohy­droxy, Cform­yl—H⋯Oform­yl and O—H⋯Oform­yl bonds.

1. Chemical context

Studies on mol­ecular recognition of carbohydrates by artificial receptors revealed that macrocyclic compounds bearing two flexible side-arms represent effective and selective receptors for complexation of gluco­pyran­osides. The binding properties of these compounds depend on the nature of their building blocks, among others, the type of bridging units that connect two aromatic platforms (Lippe & Mazik, 2013, 2015; Amrhein et al., 2016, 2021; Amrhein & Mazik, 2021). The design of such receptor architectures was inspired by the results of our crystallographic studies on receptor–carbohydrate complexes (Mazik et al., 2005; for recent examples, see Köhler et al., 2020, 2021). For the syntheses of macrocycles consisting of benzene-based bridges, various 2- or 5-substituted benzene-1,3-di­carb­aldehydes have proven to be useful starting materials. Benzene derivatives with methyl or bromo­methyl groups in positions 1 and 3 are used to prepare the latter compounds. The crystal structures of three 1,3,5-substituted benzenes, serving as precursors for the syntheses of the macrocyclic compounds mentioned above, are described in this work. 1.

2. Structural commentary

The title compounds 1 and 3 crystallize in the monoclinic system (space group P21/c, Z = 4), whereas compound 2 crystallizes in the triclinic space group P Inline graphic with two independent but conformationally similar mol­ecules (A and B) in the asymmetric unit of the cell. In compound 1 (Fig. 1), the plane through the methyl­oxycarbonyl unit is tilted at an angle of 8.70 (8) ° with respect to the benzene ring. In the independent mol­ecules of 2 (Fig. 2), the planes passing through the ester units are inclined at angles of 62.9 (1) and 81.3 (1)°, respectively, to the plane of their arene ring. The two bromine atoms of each mol­ecule are located on opposite sides of the benzene ring. In the crystal of the 5-hy­droxy­benzene-1,3-dicarbaldehyde (3) (Fig. 3), the mol­ecule deviates slightly from planarity, with the formyl groups rotated out of the benzene ring at angles of 4.43 (16) and 4.04 (16)°.

Figure 1.

Figure 1

Perspective view of the mol­ecular structure of 1. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Perspective view of the mol­ecular structure of 2. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

Perspective view of the mol­ecular structure of 3. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of 1, the mol­ecules are arranged into layers extending parallel to the crystallographic [101] plane (see Fig. 4). Within a given layer, the mol­ecules are linked in strands via C—H⋯O=C bonds [d(H⋯O) 2.57 Å; Table 1], with a methyl H atom acting as the donor. No directional inter­actions are present between the mol­ecular strands of a layer. With the participation of a H atom of the methyl ester unit, the linkage between the mol­ecules of adjacent layers occurs by C—H⋯π contacts (Nishio et al., 2009) with a H⋯Cg distance of 2.77 Å. Fig. 5 shows a packing excerpt of the crystal structure viewed in the direction of the layer normal.

Figure 4.

Figure 4

Packing diagram of 1 viewed down the crystallographic b-axis.

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

Cg1 represents the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.98 2.57 3.5215 (19) 163
C8—H8BCg1ii 0.98 2.76 3.445 (2) 127

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 5.

Figure 5

Excerpt of the packing structure of 1 viewed in the direction of the layer normal. Dashed lines represent hydrogen-bonding inter­actions.

The excerpt of the crystal structure of 2 shown in Fig. 6 reveals two different inversion-symmetric dimers as the smallest supra­molecular entities, in which the mol­ecules are linked in an identical manner by C—H⋯O=C and C—H⋯Br bonds (Table 2) (Desiraju & Steiner, 1999). These dimers, however, form differently structured domains within the crystal. The dimers formed by mol­ecule A are connected via Br⋯Br bonds (Pedireddy et al., 1999) of type I [d(Br⋯Br) = 3.562 (1) Å; θ1 = 150.2°, θ2 = 158.5°] and of type II [d(Br⋯Br) = 3.859 (1) Å; θ1 = 135.0°, θ2 = 84.6°] as well as C—H⋯Br hydrogen bonds to form two-dimensional aggregates extending parallel to crystallographic [011] plane, in which the bromine atoms contribute to the formation of a cyclic four-membered synthon (Br4) and an eight-membered bonding motif (Fig. 7 a). The structure of the domains created by mol­ecule B is fundamentally different from those formed by mol­ecule A. In them, the dimers are linked in a strand-like fashion via type I Br⋯Br inter­actions [d(Br⋯Br) = 3.638 (1) Å; θ 1 = 152.3°, θ2 = 145.9°] (Fig. 7 b), which are part of an eight-membered ring motif. In the direction of the crystallographic a-axis, the connection of the dimers occurs through π–·π (face-to-face) inter­actions (Tiekink & Zukerman-Schpector, 2012) with a centroid–centroid distance of 3.653 (1) Å and an offset of 1.592 Å between the inter­acting arene rings.

Figure 6.

Figure 6

(a) Structures of the dimers formed by mol­ecule A (left) and mol­ecule B (right) in the crystal structure of 2. (b) Packing structure of 2 viewed down the a-axis. Hydrogen bonds and Br⋯Br inter­actions are shown as dashed lines.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C10A—H10D⋯O2A i 0.97 2.28 3.236 (3) 168
C10A—H10C⋯Br1A i 0.97 2.89 3.836 (3) 164
C8A—H8A3⋯O2 0.96 2.58 3.521 (4) 168
C10—H10B⋯Br2A i 0.97 3.01 3.757 (3) 135
C10—H10A⋯O2ii 0.97 2.58 3.449 (3) 150
C9—H9B⋯Br2iii 0.97 2.95 3.854 (3) 156
C9—H9A⋯O2iii 0.97 2.45 3.334 (3) 151

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 7.

Figure 7

Patterns of inter­molecular inter­actions created by (a) mol­ecule A and (b) mol­ecule B in the crystal structure of 2.

Viewing the crystal structure of compound 3 in the direction of the a-axis reveals a stacking arrangement of mol­ecules (Fig. 8). Along the stacking axis the centroid-centroid distance of 3.735 (1) Å between consecutive mol­ecules indicates the presence of offset π–π inter­actions. As is obvious from Fig. 9, showing the mode of non-covalent bonding in the crystal, the H atom of the hy­droxy group forms an inter­molecular O—H⋯O bond [O1—H1⋯O3 = 1.91 (2) Å, 150 (2)°; Table 3], while its O atom forms a C—H⋯O bond [C2—H2⋯O1 = 2.43 Å, 159.6°; Table 3], thus creating a supra­molecular synthon with the graph set Inline graphic (17) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) in which four mol­ecules take part. The OH group is also involved in formation of an inversion-symmetric ring motif of the structure Inline graphic (8). Another supra­molecular motif corresponding to the Inline graphic (14) graph set is formed by the formyl groups of inversion-related mol­ecules.

Figure 8.

Figure 8

Packing diagram of 3 viewed down the a-axis. Dashed lines represent hydrogen bonds.

Figure 9.

Figure 9

Mode of inter­molecular non-covalent inter­actions in the crystal structure of 3. The cyclic supra­molecular synthons are marked by colour highlighting.

Table 3. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.43 3.3354 (16) 160
C8—H8⋯O2ii 0.95 2.58 3.1973 (18) 123
O1—H1⋯O3iii 0.85 (2) 1.91 (2) 2.6795 (13) 150 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update November 2021; Groom et al., 2016) for benzene derivates containing the corresponding substituents resulted in several hits, but with relatively strong structural differences from the searched structures. The compound with the closest relation to 1 is ethyl 2,3,5,6-tetra­methyl­benzoate (FICVET; Pinkus et al. 2005), the crystal structure of which features C—H⋯O and C—H⋯π inter­actions. In the case of bromo­methyl-substituted benzenes, the crystal structures of 1,2,4,5-tetra­kis­(bromo­meth­yl)-3,6-di­meth­oxy­benzene, 1,2,4,5-tetra­kis­(bromo­meth­yl)-3,6-bis­(hex­yloxy)benzene and 1,2,4,5-tetra­­kis­(bromo­meth­yl)-3,6-bis­(2-ethyl­but­oxy)benzene (BAS­ZIG, BASZOM, BASZUS; Velde et al. 2012) as well as 1,3,5-tris­(bromo­meth­yl)-2,4,6-tri­meth­oxy­benzene (IDOBAG; Koch et al. 2013) are worth mentioning. The crystal structure of IDOBAG, for example, is characterized by the presence of C—H⋯O and C—H⋯Br hydrogen bonds as well as C—Br⋯Br halogen bonds of type II, as observed also in the crystal structure of 2. In the crystal structure of 2-hy­droxy­isophthalaldehyde (NEJJOB; Zondervan et al. 1997), an analogue of 3, the mol­ecules inter­act via O—H⋯O hydrogen bonds, forming chains. In addition, the hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond with the neighbouring carbonyl oxygen atom.

5. Synthesis and crystallization

Compounds 13 were prepared according to literature procedures (Kurz & Göbel, 1996; Battaini et al., 2003; Star et al., 2003).

Suitable crystals of compounds 2 and 3 for X-ray analysis were obtained by slow evaporation from a hexane solution, while crystals of 1 were grown from a subcooled melt.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atom H1 in 3 was located in a difference-Fourier map and freely refined. Other H atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and U iso(H) = 1.2–1.5U eq(C).

Table 4. Experimental details.

  1 2 3
Crystal data
Chemical formula C10H12O2 C10H10Br2O2 C8H6O3
M r 164.20 322.00 150.13
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 153 130 153
a, b, c (Å) 8.4631 (6), 7.9793 (4), 13.4042 (9) 7.7936 (2), 9.1655 (2), 17.2292 (4) 3.7345 (1), 11.9549 (4), 15.0846 (5)
α, β, γ (°) 90, 98.835 (6), 90 88.1637 (12), 80.9050 (12), 65.8659 (11) 90, 94.212 (2), 90
V3) 894.44 (10) 1108.30 (5) 671.64 (4)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 7.29 0.12
Crystal size (mm) 0.40 × 0.25 × 0.16 0.46 × 0.39 × 0.27 0.42 × 0.28 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2T Bruker Kappa APEXII CCD area detector Bruker Kappa APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.134, 0.244
No. of measured, independent and observed [I > 2σ(I)] reflections 7437, 1762, 1449 29065, 5842, 5305 11533, 1819, 1519
R int 0.046 0.033 0.058
(sin θ/λ)max−1) 0.617 0.680 0.691
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.116, 1.05 0.028, 0.070, 1.04 0.047, 0.131, 1.06
No. of reflections 1762 5842 1819
No. of parameters 112 255 104
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19 1.21, −0.98 0.33, −0.28

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), APEX2 and SAINT (Bruker, 2014), SIR2014 (Burla et al., 2015), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015), ShelXle (Hübschle et al., 2011), XP (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989022005643/ex2057sup1.cif

e-78-00682-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022005643/ex20571sup4.hkl

e-78-00682-1sup4.hkl (97.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20571sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022005643/ex20572sup2.hkl

e-78-00682-2sup2.hkl (320.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20572sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989022005643/ex20573sup3.hkl

e-78-00682-3sup3.hkl (100.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20573sup7.cml

CCDC references: 2174617, 2174616, 2174615

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Open access funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

supplementary crystallographic information

Methyl 3,5-dimethylbenzoate (1). Crystal data

C10H12O2 F(000) = 352
Mr = 164.20 Dx = 1.219 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.4631 (6) Å Cell parameters from 7437 reflections
b = 7.9793 (4) Å θ = 2.7–27.2°
c = 13.4042 (9) Å µ = 0.08 mm1
β = 98.835 (6)° T = 153 K
V = 894.44 (10) Å3 Piece, colorless
Z = 4 0.40 × 0.25 × 0.16 mm

Methyl 3,5-dimethylbenzoate (1). Data collection

Stoe IPDS 2T diffractometer 1449 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.046
Plane graphite monochromator θmax = 26.0°, θmin = 2.7°
Detector resolution: 6.67 pixels mm-1 h = −10→9
rotation method scans k = −9→9
7437 measured reflections l = −16→16
1762 independent reflections

Methyl 3,5-dimethylbenzoate (1). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.2723P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1762 reflections Δρmax = 0.24 e Å3
112 parameters Δρmin = −0.19 e Å3

Methyl 3,5-dimethylbenzoate (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Methyl 3,5-dimethylbenzoate (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27708 (14) 0.33954 (14) 0.48553 (8) 0.0433 (3)
O2 0.20755 (12) 0.58613 (12) 0.54594 (7) 0.0309 (3)
C1 0.12649 (14) 0.34326 (16) 0.62305 (9) 0.0244 (3)
C2 0.10405 (16) 0.16993 (17) 0.62357 (10) 0.0276 (3)
H2 0.1406 0.1027 0.5733 0.033*
C3 0.02860 (16) 0.09507 (16) 0.69720 (10) 0.0283 (3)
C4 −0.02303 (16) 0.19629 (17) 0.77063 (10) 0.0279 (3)
H4 −0.0747 0.1458 0.8211 0.033*
C5 −0.00096 (15) 0.36934 (17) 0.77210 (10) 0.0257 (3)
C6 0.07405 (15) 0.44202 (17) 0.69705 (10) 0.0249 (3)
H6 0.0894 0.5599 0.6965 0.030*
C7 0.21123 (15) 0.41859 (17) 0.54403 (10) 0.0271 (3)
C8 0.29088 (18) 0.6711 (2) 0.47431 (11) 0.0361 (4)
H8A 0.2808 0.7926 0.4822 0.054*
H8B 0.2442 0.6387 0.4056 0.054*
H8C 0.4042 0.6398 0.4866 0.054*
C9 0.00480 (19) −0.09303 (17) 0.69749 (12) 0.0383 (4)
H9A −0.0136 −0.1291 0.7647 0.057*
H9B 0.1005 −0.1487 0.6805 0.057*
H9C −0.0879 −0.1231 0.6475 0.057*
C10 −0.05669 (18) 0.47866 (18) 0.85204 (11) 0.0333 (3)
H10A 0.0340 0.5428 0.8870 0.050*
H10B −0.1010 0.4080 0.9008 0.050*
H10C −0.1392 0.5560 0.8201 0.050*

Methyl 3,5-dimethylbenzoate (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0488 (7) 0.0417 (6) 0.0461 (7) 0.0006 (5) 0.0280 (5) −0.0072 (5)
O2 0.0345 (6) 0.0299 (6) 0.0308 (5) −0.0021 (4) 0.0126 (4) 0.0040 (4)
C1 0.0207 (6) 0.0273 (7) 0.0253 (7) 0.0015 (5) 0.0035 (5) −0.0001 (5)
C2 0.0262 (7) 0.0260 (7) 0.0300 (7) 0.0039 (5) 0.0025 (5) −0.0042 (5)
C3 0.0269 (7) 0.0232 (7) 0.0329 (7) 0.0006 (5) −0.0012 (5) 0.0017 (5)
C4 0.0283 (7) 0.0284 (7) 0.0265 (7) −0.0026 (5) 0.0023 (5) 0.0046 (5)
C5 0.0249 (7) 0.0274 (7) 0.0247 (6) 0.0005 (5) 0.0034 (5) −0.0001 (5)
C6 0.0245 (6) 0.0221 (6) 0.0280 (7) 0.0004 (5) 0.0040 (5) 0.0004 (5)
C7 0.0223 (6) 0.0316 (7) 0.0276 (7) 0.0001 (5) 0.0045 (5) −0.0024 (5)
C8 0.0320 (8) 0.0441 (9) 0.0337 (8) −0.0061 (6) 0.0098 (6) 0.0092 (6)
C9 0.0418 (9) 0.0237 (8) 0.0480 (9) −0.0012 (6) 0.0024 (7) 0.0011 (6)
C10 0.0388 (8) 0.0339 (8) 0.0300 (7) −0.0009 (6) 0.0140 (6) −0.0028 (6)

Methyl 3,5-dimethylbenzoate (1). Geometric parameters (Å, º)

O1—C7 1.2073 (16) C5—C6 1.3956 (18)
O2—C7 1.3375 (17) C5—C10 1.5121 (18)
O2—C8 1.4448 (16) C6—H6 0.9500
C1—C6 1.3917 (18) C8—H8A 0.9800
C1—C2 1.3961 (19) C8—H8B 0.9800
C1—C7 1.4936 (17) C8—H8C 0.9800
C2—C3 1.3900 (19) C9—H9A 0.9800
C2—H2 0.9500 C9—H9B 0.9800
C3—C4 1.3944 (19) C9—H9C 0.9800
C3—C9 1.5144 (19) C10—H10A 0.9800
C4—C5 1.3931 (19) C10—H10B 0.9800
C4—H4 0.9500 C10—H10C 0.9800
C7—O2—C8 116.20 (11) O1—C7—C1 124.76 (13)
C6—C1—C2 119.92 (12) O2—C7—C1 111.94 (11)
C6—C1—C7 121.19 (12) O2—C8—H8A 109.5
C2—C1—C7 118.86 (12) O2—C8—H8B 109.5
C3—C2—C1 120.46 (12) H8A—C8—H8B 109.5
C3—C2—H2 119.8 O2—C8—H8C 109.5
C1—C2—H2 119.8 H8A—C8—H8C 109.5
C2—C3—C4 118.70 (12) H8B—C8—H8C 109.5
C2—C3—C9 120.23 (13) C3—C9—H9A 109.5
C4—C3—C9 121.07 (13) C3—C9—H9B 109.5
C5—C4—C3 121.89 (12) H9A—C9—H9B 109.5
C5—C4—H4 119.1 C3—C9—H9C 109.5
C3—C4—H4 119.1 H9A—C9—H9C 109.5
C4—C5—C6 118.46 (12) H9B—C9—H9C 109.5
C4—C5—C10 121.74 (12) C5—C10—H10A 109.5
C6—C5—C10 119.80 (12) C5—C10—H10B 109.5
C1—C6—C5 120.57 (12) H10A—C10—H10B 109.5
C1—C6—H6 119.7 C5—C10—H10C 109.5
C5—C6—H6 119.7 H10A—C10—H10C 109.5
O1—C7—O2 123.30 (12) H10B—C10—H10C 109.5
C6—C1—C2—C3 0.43 (19) C7—C1—C6—C5 −178.18 (12)
C7—C1—C2—C3 178.69 (11) C4—C5—C6—C1 −0.48 (19)
C1—C2—C3—C4 −0.42 (19) C10—C5—C6—C1 179.82 (12)
C1—C2—C3—C9 −179.91 (13) C8—O2—C7—O1 −1.2 (2)
C2—C3—C4—C5 0.0 (2) C8—O2—C7—C1 178.09 (11)
C9—C3—C4—C5 179.44 (13) C6—C1—C7—O1 170.41 (14)
C3—C4—C5—C6 0.5 (2) C2—C1—C7—O1 −7.8 (2)
C3—C4—C5—C10 −179.82 (12) C6—C1—C7—O2 −8.91 (17)
C2—C1—C6—C5 0.03 (19) C2—C1—C7—O2 172.85 (12)

Methyl 3,5-dimethylbenzoate (1). Hydrogen-bond geometry (Å, º)

Cg1 represents the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10B···O1i 0.98 2.57 3.5215 (19) 163
C8—H8B···Cg1ii 0.98 2.76 3.445 (2) 127

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+3/2, −z+3/2.

3,5-Bis(bromomethyl)phenyl acetate (2). Crystal data

C10H10Br2O2 Z = 4
Mr = 322.00 F(000) = 624
Triclinic, P1 Dx = 1.930 Mg m3
a = 7.7936 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1655 (2) Å Cell parameters from 9654 reflections
c = 17.2292 (4) Å θ = 2.7–36.8°
α = 88.1637 (12)° µ = 7.29 mm1
β = 80.9050 (12)° T = 130 K
γ = 65.8659 (11)° Irregular, colourless
V = 1108.30 (5) Å3 0.46 × 0.39 × 0.27 mm

3,5-Bis(bromomethyl)phenyl acetate (2). Data collection

Bruker Kappa APEXII CCD area detector diffractometer 5305 reflections with I > 2σ(I)
φ and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 28.9°, θmin = 1.2°
Tmin = 0.134, Tmax = 0.244 h = −10→10
29065 measured reflections k = −12→12
5842 independent reflections l = −23→22

3,5-Bis(bromomethyl)phenyl acetate (2). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0273P)2 + 2.052P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5842 reflections Δρmax = 1.21 e Å3
255 parameters Δρmin = −0.98 e Å3

3,5-Bis(bromomethyl)phenyl acetate (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,5-Bis(bromomethyl)phenyl acetate (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.08475 (4) 0.81672 (3) 0.00562 (2) 0.02904 (7)
Br2 0.48472 (4) 0.08778 (3) 0.11939 (2) 0.03302 (8)
O1 0.5485 (3) 0.6991 (2) 0.19580 (10) 0.0223 (3)
O2 0.8281 (3) 0.4838 (2) 0.16971 (12) 0.0300 (4)
C1 0.4550 (3) 0.6259 (3) 0.15806 (14) 0.0180 (4)
C2 0.3764 (3) 0.7009 (3) 0.09361 (13) 0.0177 (4)
H2 0.3906 0.7927 0.0756 0.021*
C3 0.2757 (3) 0.6375 (3) 0.05580 (13) 0.0168 (4)
C4 0.2561 (3) 0.5002 (3) 0.08395 (14) 0.0183 (4)
H4 0.1896 0.4570 0.0587 0.022*
C5 0.3346 (3) 0.4268 (3) 0.14936 (14) 0.0189 (4)
C6 0.4351 (3) 0.4903 (3) 0.18721 (14) 0.0190 (4)
H6 0.4879 0.4425 0.2312 0.023*
C7 0.7388 (4) 0.6174 (3) 0.19617 (14) 0.0204 (4)
C8 0.8159 (4) 0.7190 (3) 0.23218 (15) 0.0262 (5)
H8A 0.9257 0.6518 0.2548 0.039*
H8B 0.7203 0.7887 0.2725 0.039*
H8C 0.8515 0.7817 0.1925 0.039*
C9 0.1944 (3) 0.7141 (3) −0.01535 (14) 0.0221 (5)
H9A 0.2349 0.6337 −0.0575 0.026*
H9B 0.2432 0.7937 −0.0326 0.026*
C10 0.3063 (4) 0.2828 (3) 0.18047 (17) 0.0258 (5)
H10A 0.1767 0.2972 0.1783 0.031*
H10B 0.3249 0.2712 0.2351 0.031*
Br1A 0.43346 (3) 0.44424 (3) 0.61006 (2) 0.02337 (6)
Br2A 0.92345 (4) −0.40729 (3) 0.60976 (2) 0.02744 (7)
O1A 0.9262 (3) 0.0059 (2) 0.34359 (11) 0.0285 (4)
O2A 0.6523 (3) 0.1522 (3) 0.30204 (12) 0.0443 (6)
C1A 0.8337 (3) 0.0113 (3) 0.42092 (14) 0.0200 (4)
C2A 0.7921 (3) 0.1409 (3) 0.47025 (16) 0.0219 (5)
H2A 0.8118 0.2296 0.4509 0.026*
C3A 0.7203 (3) 0.1375 (3) 0.54912 (15) 0.0210 (5)
C4A 0.6907 (3) 0.0042 (3) 0.57655 (14) 0.0192 (4)
H4A 0.6413 0.0022 0.6292 0.023*
C5A 0.7340 (3) −0.1266 (3) 0.52649 (13) 0.0171 (4)
C6A 0.8055 (3) −0.1220 (3) 0.44763 (13) 0.0178 (4)
H6A 0.8340 −0.2079 0.4133 0.021*
C7A 0.8205 (4) 0.0866 (3) 0.28849 (14) 0.0219 (5)
C8A 0.9420 (4) 0.0791 (4) 0.21112 (16) 0.0317 (6)
H8A1 0.9001 0.0369 0.1712 0.048*
H8A2 1.0722 0.0109 0.2145 0.048*
H8A3 0.9317 0.1846 0.1980 0.048*
C9A 0.6879 (4) 0.2709 (3) 0.60537 (19) 0.0323 (6)
H9A1 0.7829 0.3134 0.5893 0.039*
H9A2 0.7036 0.2291 0.6574 0.039*
C10A 0.7074 (3) −0.2710 (3) 0.55685 (15) 0.0225 (5)
H10C 0.6986 −0.3315 0.5136 0.027*
H10D 0.5896 −0.2386 0.5938 0.027*

3,5-Bis(bromomethyl)phenyl acetate (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02417 (13) 0.02849 (13) 0.03098 (14) −0.00553 (10) −0.01021 (10) 0.00568 (10)
Br2 0.03039 (14) 0.01534 (12) 0.05357 (18) −0.00887 (10) −0.00889 (12) 0.00249 (11)
O1 0.0273 (9) 0.0173 (8) 0.0254 (9) −0.0095 (7) −0.0116 (7) 0.0010 (7)
O2 0.0238 (9) 0.0277 (10) 0.0385 (11) −0.0103 (8) −0.0035 (8) −0.0084 (8)
C1 0.0183 (10) 0.0160 (10) 0.0198 (11) −0.0063 (8) −0.0051 (8) −0.0011 (8)
C2 0.0205 (10) 0.0141 (10) 0.0182 (10) −0.0069 (8) −0.0028 (8) 0.0009 (8)
C3 0.0170 (10) 0.0163 (10) 0.0139 (10) −0.0042 (8) −0.0005 (8) −0.0014 (8)
C4 0.0159 (10) 0.0169 (10) 0.0218 (11) −0.0068 (8) −0.0020 (8) −0.0019 (8)
C5 0.0152 (10) 0.0162 (10) 0.0228 (11) −0.0055 (8) 0.0010 (8) 0.0012 (8)
C6 0.0194 (10) 0.0174 (10) 0.0186 (10) −0.0056 (8) −0.0049 (8) 0.0037 (8)
C7 0.0248 (11) 0.0231 (11) 0.0166 (10) −0.0126 (9) −0.0045 (9) 0.0028 (9)
C8 0.0337 (13) 0.0302 (13) 0.0228 (12) −0.0199 (11) −0.0081 (10) 0.0016 (10)
C9 0.0238 (11) 0.0252 (12) 0.0163 (11) −0.0088 (9) −0.0040 (9) 0.0007 (9)
C10 0.0232 (12) 0.0225 (12) 0.0330 (13) −0.0118 (10) −0.0019 (10) 0.0063 (10)
Br1A 0.02379 (12) 0.01843 (11) 0.01960 (11) −0.00036 (9) −0.00319 (9) 0.00021 (8)
Br2A 0.02581 (13) 0.02373 (13) 0.03068 (14) −0.00786 (10) −0.00669 (10) 0.00987 (10)
O1A 0.0182 (8) 0.0409 (11) 0.0200 (9) −0.0068 (8) −0.0022 (7) 0.0120 (8)
O2A 0.0272 (10) 0.0641 (15) 0.0212 (10) 0.0028 (10) −0.0076 (8) 0.0062 (10)
C1A 0.0124 (9) 0.0250 (11) 0.0187 (11) −0.0037 (8) −0.0039 (8) 0.0067 (9)
C2A 0.0141 (10) 0.0168 (10) 0.0339 (13) −0.0041 (8) −0.0091 (9) 0.0083 (9)
C3A 0.0131 (10) 0.0183 (11) 0.0285 (12) −0.0013 (8) −0.0081 (9) −0.0012 (9)
C4A 0.0136 (10) 0.0228 (11) 0.0175 (10) −0.0032 (8) −0.0035 (8) −0.0003 (8)
C5A 0.0116 (9) 0.0193 (10) 0.0195 (11) −0.0048 (8) −0.0047 (8) 0.0027 (8)
C6A 0.0144 (9) 0.0192 (10) 0.0180 (10) −0.0041 (8) −0.0051 (8) 0.0000 (8)
C7A 0.0280 (12) 0.0197 (11) 0.0194 (11) −0.0101 (10) −0.0076 (9) 0.0039 (9)
C8A 0.0399 (15) 0.0364 (15) 0.0227 (13) −0.0211 (13) −0.0022 (11) 0.0086 (11)
C9A 0.0200 (12) 0.0241 (13) 0.0471 (17) −0.0002 (10) −0.0115 (11) −0.0131 (12)
C10A 0.0176 (10) 0.0240 (12) 0.0267 (12) −0.0091 (9) −0.0050 (9) 0.0045 (9)

3,5-Bis(bromomethyl)phenyl acetate (2). Geometric parameters (Å, º)

Br1—C9 1.962 (2) Br1A—C9A 1.960 (3)
Br2—C10 1.965 (3) Br2A—C10A 1.979 (2)
O1—C7 1.362 (3) O1A—C7A 1.353 (3)
O1—C1 1.407 (3) O1A—C1A 1.403 (3)
O2—C7 1.196 (3) O2A—C7A 1.184 (3)
C1—C2 1.379 (3) C1A—C2A 1.379 (4)
C1—C6 1.383 (3) C1A—C6A 1.380 (3)
C2—C3 1.392 (3) C2A—C3A 1.390 (4)
C2—H2 0.9300 C2A—H2A 0.9300
C3—C4 1.392 (3) C3A—C4A 1.389 (3)
C3—C9 1.492 (3) C3A—C9A 1.498 (4)
C4—C5 1.389 (3) C4A—C5A 1.392 (3)
C4—H4 0.9300 C4A—H4A 0.9300
C5—C6 1.391 (3) C5A—C6A 1.391 (3)
C5—C10 1.495 (3) C5A—C10A 1.488 (3)
C6—H6 0.9300 C6A—H6A 0.9300
C7—C8 1.492 (3) C7A—C8A 1.494 (4)
C8—H8A 0.9600 C8A—H8A1 0.9600
C8—H8B 0.9600 C8A—H8A2 0.9600
C8—H8C 0.9600 C8A—H8A3 0.9600
C9—H9A 0.9700 C9A—H9A1 0.9700
C9—H9B 0.9700 C9A—H9A2 0.9700
C10—H10A 0.9700 C10A—H10C 0.9700
C10—H10B 0.9700 C10A—H10D 0.9700
C7—O1—C1 118.16 (18) C7A—O1A—C1A 118.43 (19)
C2—C1—C6 122.2 (2) C2A—C1A—C6A 121.8 (2)
C2—C1—O1 116.6 (2) C2A—C1A—O1A 119.6 (2)
C6—C1—O1 121.1 (2) C6A—C1A—O1A 118.3 (2)
C1—C2—C3 119.2 (2) C1A—C2A—C3A 119.3 (2)
C1—C2—H2 120.4 C1A—C2A—H2A 120.3
C3—C2—H2 120.4 C3A—C2A—H2A 120.3
C4—C3—C2 119.3 (2) C4A—C3A—C2A 119.4 (2)
C4—C3—C9 120.7 (2) C4A—C3A—C9A 120.0 (2)
C2—C3—C9 120.0 (2) C2A—C3A—C9A 120.5 (2)
C5—C4—C3 120.8 (2) C3A—C4A—C5A 121.0 (2)
C5—C4—H4 119.6 C3A—C4A—H4A 119.5
C3—C4—H4 119.6 C5A—C4A—H4A 119.5
C4—C5—C6 119.9 (2) C6A—C5A—C4A 119.2 (2)
C4—C5—C10 120.1 (2) C6A—C5A—C10A 120.1 (2)
C6—C5—C10 120.0 (2) C4A—C5A—C10A 120.7 (2)
C1—C6—C5 118.6 (2) C1A—C6A—C5A 119.3 (2)
C1—C6—H6 120.7 C1A—C6A—H6A 120.3
C5—C6—H6 120.7 C5A—C6A—H6A 120.3
O2—C7—O1 123.3 (2) O2A—C7A—O1A 122.4 (2)
O2—C7—C8 126.2 (2) O2A—C7A—C8A 126.0 (2)
O1—C7—C8 110.5 (2) O1A—C7A—C8A 111.6 (2)
C7—C8—H8A 109.5 C7A—C8A—H8A1 109.5
C7—C8—H8B 109.5 C7A—C8A—H8A2 109.5
H8A—C8—H8B 109.5 H8A1—C8A—H8A2 109.5
C7—C8—H8C 109.5 C7A—C8A—H8A3 109.5
H8A—C8—H8C 109.5 H8A1—C8A—H8A3 109.5
H8B—C8—H8C 109.5 H8A2—C8A—H8A3 109.5
C3—C9—Br1 111.76 (16) C3A—C9A—Br1A 112.24 (17)
C3—C9—H9A 109.3 C3A—C9A—H9A1 109.2
Br1—C9—H9A 109.3 Br1A—C9A—H9A1 109.2
C3—C9—H9B 109.3 C3A—C9A—H9A2 109.2
Br1—C9—H9B 109.3 Br1A—C9A—H9A2 109.2
H9A—C9—H9B 107.9 H9A1—C9A—H9A2 107.9
C5—C10—Br2 111.29 (17) C5A—C10A—Br2A 110.38 (16)
C5—C10—H10A 109.4 C5A—C10A—H10C 109.6
Br2—C10—H10A 109.4 Br2A—C10A—H10C 109.6
C5—C10—H10B 109.4 C5A—C10A—H10D 109.6
Br2—C10—H10B 109.4 Br2A—C10A—H10D 109.6
H10A—C10—H10B 108.0 H10C—C10A—H10D 108.1
C7—O1—C1—C2 −116.6 (2) C7A—O1A—C1A—C2A −81.9 (3)
C7—O1—C1—C6 66.7 (3) C7A—O1A—C1A—C6A 104.9 (3)
C6—C1—C2—C3 −0.8 (4) C6A—C1A—C2A—C3A 0.2 (3)
O1—C1—C2—C3 −177.5 (2) O1A—C1A—C2A—C3A −172.7 (2)
C1—C2—C3—C4 0.2 (3) C1A—C2A—C3A—C4A −0.4 (3)
C1—C2—C3—C9 −178.3 (2) C1A—C2A—C3A—C9A 175.3 (2)
C2—C3—C4—C5 0.4 (3) C2A—C3A—C4A—C5A 0.8 (3)
C9—C3—C4—C5 178.8 (2) C9A—C3A—C4A—C5A −175.0 (2)
C3—C4—C5—C6 −0.3 (3) C3A—C4A—C5A—C6A −0.9 (3)
C3—C4—C5—C10 177.8 (2) C3A—C4A—C5A—C10A 178.1 (2)
C2—C1—C6—C5 0.9 (4) C2A—C1A—C6A—C5A −0.3 (3)
O1—C1—C6—C5 177.4 (2) O1A—C1A—C6A—C5A 172.73 (19)
C4—C5—C6—C1 −0.3 (3) C4A—C5A—C6A—C1A 0.6 (3)
C10—C5—C6—C1 −178.5 (2) C10A—C5A—C6A—C1A −178.4 (2)
C1—O1—C7—O2 −4.0 (3) C1A—O1A—C7A—O2A −5.1 (4)
C1—O1—C7—C8 174.9 (2) C1A—O1A—C7A—C8A 175.6 (2)
C4—C3—C9—Br1 70.6 (2) C4A—C3A—C9A—Br1A −95.8 (3)
C2—C3—C9—Br1 −111.0 (2) C2A—C3A—C9A—Br1A 88.5 (3)
C4—C5—C10—Br2 80.7 (2) C6A—C5A—C10A—Br2A 99.1 (2)
C6—C5—C10—Br2 −101.1 (2) C4A—C5A—C10A—Br2A −79.9 (2)

3,5-Bis(bromomethyl)phenyl acetate (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10A—H10D···O2Ai 0.97 2.28 3.236 (3) 168
C10A—H10C···Br1Ai 0.97 2.89 3.836 (3) 164
C8A—H8A3···O2 0.96 2.58 3.521 (4) 168
C10—H10B···Br2Ai 0.97 3.01 3.757 (3) 135
C10—H10A···O2ii 0.97 2.58 3.449 (3) 150
C9—H9B···Br2iii 0.97 2.95 3.854 (3) 156
C9—H9A···O2iii 0.97 2.45 3.334 (3) 151

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z.

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Crystal data

C8H6O3 F(000) = 312
Mr = 150.13 Dx = 1.485 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 3.7345 (1) Å Cell parameters from 6158 reflections
b = 11.9549 (4) Å θ = 2.7–30.5°
c = 15.0846 (5) Å µ = 0.12 mm1
β = 94.212 (2)° T = 153 K
V = 671.64 (4) Å3 Rod, colourless
Z = 4 0.42 × 0.28 × 0.19 mm

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Data collection

Bruker Kappa APEXII CCD area detector diffractometer Rint = 0.058
φ and ω scans θmax = 29.4°, θmin = 2.7°
11533 measured reflections h = −5→4
1819 independent reflections k = −16→16
1519 reflections with I > 2σ(I) l = −20→20

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2868P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1819 reflections Δρmax = 0.33 e Å3
104 parameters Δρmin = −0.28 e Å3

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6355 (3) 0.48950 (8) 0.38804 (7) 0.0332 (3)
O2 1.0631 (3) 0.10838 (8) 0.62211 (7) 0.0336 (3)
O3 0.2117 (3) 0.11521 (8) 0.23777 (6) 0.0291 (3)
C1 0.6468 (4) 0.37799 (10) 0.40378 (8) 0.0214 (3)
C2 0.8207 (3) 0.34507 (10) 0.48515 (8) 0.0207 (3)
H2 0.9189 0.4000 0.5254 0.025*
C3 0.8496 (3) 0.23282 (10) 0.50697 (7) 0.0197 (3)
C4 0.7080 (4) 0.15111 (10) 0.44830 (8) 0.0214 (3)
H4 0.7294 0.0740 0.4631 0.026*
C5 0.5354 (3) 0.18440 (10) 0.36798 (8) 0.0206 (3)
C6 0.5036 (3) 0.29757 (10) 0.34512 (8) 0.0204 (3)
H6 0.3850 0.3191 0.2899 0.024*
C7 1.0363 (4) 0.20285 (11) 0.59351 (8) 0.0235 (3)
H7 1.1419 0.2615 0.6290 0.028*
C8 0.3862 (4) 0.09684 (11) 0.30752 (9) 0.0253 (3)
H8 0.4289 0.0210 0.3240 0.030*
H1 0.519 (7) 0.5065 (19) 0.3394 (16) 0.056 (7)*

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0477 (7) 0.0190 (5) 0.0297 (5) −0.0017 (4) −0.0184 (5) 0.0031 (4)
O2 0.0445 (7) 0.0281 (5) 0.0269 (5) 0.0034 (4) −0.0066 (4) 0.0052 (4)
O3 0.0329 (6) 0.0298 (5) 0.0233 (5) −0.0024 (4) −0.0071 (4) −0.0047 (4)
C1 0.0228 (7) 0.0204 (6) 0.0203 (5) −0.0004 (4) −0.0036 (4) 0.0005 (4)
C2 0.0214 (7) 0.0217 (6) 0.0183 (5) −0.0005 (4) −0.0034 (4) −0.0010 (4)
C3 0.0184 (6) 0.0228 (6) 0.0175 (5) 0.0005 (4) −0.0012 (4) 0.0005 (4)
C4 0.0227 (7) 0.0206 (5) 0.0204 (5) 0.0000 (4) −0.0011 (4) 0.0002 (4)
C5 0.0193 (6) 0.0234 (6) 0.0187 (5) −0.0008 (4) −0.0011 (4) −0.0025 (4)
C6 0.0194 (6) 0.0236 (6) 0.0175 (5) −0.0006 (4) −0.0023 (4) −0.0003 (4)
C7 0.0248 (7) 0.0257 (6) 0.0195 (5) 0.0022 (5) −0.0027 (4) 0.0006 (4)
C8 0.0267 (7) 0.0248 (6) 0.0236 (6) −0.0025 (5) −0.0026 (5) −0.0026 (5)

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Geometric parameters (Å, º)

O1—C1 1.3541 (15) C3—C7 1.4781 (16)
O1—H1 0.85 (2) C4—C5 1.3882 (16)
O2—C7 1.2105 (16) C4—H4 0.9500
O3—C8 1.2163 (16) C5—C6 1.3991 (17)
C1—C6 1.3870 (16) C5—C8 1.4709 (17)
C1—C2 1.4022 (16) C6—H6 0.9500
C2—C3 1.3840 (17) C7—H7 0.9500
C2—H2 0.9500 C8—H8 0.9500
C3—C4 1.3958 (16)
C1—O1—H1 113.2 (16) C4—C5—C6 121.19 (11)
O1—C1—C6 124.40 (11) C4—C5—C8 117.88 (11)
O1—C1—C2 115.87 (11) C6—C5—C8 120.92 (11)
C6—C1—C2 119.73 (11) C1—C6—C5 119.43 (11)
C3—C2—C1 120.23 (11) C1—C6—H6 120.3
C3—C2—H2 119.9 C5—C6—H6 120.3
C1—C2—H2 119.9 O2—C7—C3 124.21 (12)
C2—C3—C4 120.56 (11) O2—C7—H7 117.9
C2—C3—C7 117.95 (11) C3—C7—H7 117.9
C4—C3—C7 121.49 (11) O3—C8—C5 124.23 (12)
C5—C4—C3 118.86 (11) O3—C8—H8 117.9
C5—C4—H4 120.6 C5—C8—H8 117.9
C3—C4—H4 120.6
O1—C1—C2—C3 −179.31 (12) O1—C1—C6—C5 179.13 (13)
C6—C1—C2—C3 0.0 (2) C2—C1—C6—C5 −0.1 (2)
C1—C2—C3—C4 0.3 (2) C4—C5—C6—C1 −0.1 (2)
C1—C2—C3—C7 179.88 (12) C8—C5—C6—C1 179.87 (12)
C2—C3—C4—C5 −0.5 (2) C2—C3—C7—O2 176.10 (14)
C7—C3—C4—C5 179.96 (12) C4—C3—C7—O2 −4.3 (2)
C3—C4—C5—C6 0.3 (2) C4—C5—C8—O3 175.61 (14)
C3—C4—C5—C8 −179.58 (12) C6—C5—C8—O3 −4.3 (2)

5-Hydroxybenzene-1,3-dicarbaldehyde (3). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.43 3.3354 (16) 160
C8—H8···O2ii 0.95 2.58 3.1973 (18) 123
O1—H1···O3iii 0.85 (2) 1.91 (2) 2.6795 (13) 150 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1/2, y+1/2, −z+1/2.

References

  1. Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. [DOI] [PubMed]
  2. Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282–6303.
  3. Amrhein, F., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 233–236. [DOI] [PMC free article] [PubMed]
  4. Battaini, G., Monzani, E., Perotti, A., Para, C., Casella, L., Santagostini, L., Gullotti, M., Dillinger, R., Näther, C. & Tuczek, F. (2003). J. Am. Chem. Soc. 125, 4185–4198. [DOI] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  8. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.
  9. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  10. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  11. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  14. Koch, N., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o679. [DOI] [PMC free article] [PubMed]
  15. Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.
  16. Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229. [DOI] [PMC free article] [PubMed]
  17. Kurz, K. & Göbel, M. W. (1996). Helv. Chim. Acta, 79, 1967–1979.
  18. Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. [DOI] [PubMed]
  19. Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. [DOI] [PubMed]
  20. Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052. [DOI] [PubMed]
  21. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.
  22. Pedireddy, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  23. Pinkus, A. G., Klausmeyer, K. K., Feazell, R. P. & Lin, E. C. H. Y. (2005). Acta Cryst. E61, o662–o663.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Star, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A. & Heath, J. R. (2003). Macromolecules, 36, 553–560.
  27. Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
  28. Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.
  29. Velde, C. M. L. V., Zeller, M. & Azov, V. A. (2012). J. Mol. Struct. 1016, 109–117.
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  31. Zondervan, C., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111–3114.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989022005643/ex2057sup1.cif

e-78-00682-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022005643/ex20571sup4.hkl

e-78-00682-1sup4.hkl (97.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20571sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022005643/ex20572sup2.hkl

e-78-00682-2sup2.hkl (320.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20572sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989022005643/ex20573sup3.hkl

e-78-00682-3sup3.hkl (100.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022005643/ex20573sup7.cml

CCDC references: 2174617, 2174616, 2174615

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES