Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jun 7;78(Pt 7):691–694. doi: 10.1107/S2056989022005382

Crystal structure and Hirshfeld surface analysis of 2,2′-(phenyl­aza­nedi­yl)bis­(1-phenyl­ethan-1-one)

Farid N Naghiyev a, Victor N Khrustalev b,c, Marina G Safronenko b, Mehmet Akkurt d, Ali N Khalilov a,e, Ajaya Bhattarai f,*, İbrahim G Mamedov a
PMCID: PMC9260364  PMID: 35855356

The whole mol­ecule of the title compound is generated by twofold rotational symmetry. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O inter­actions with Inline graphic (12) ring motifs, and C—H⋯π inter­actions, resulting in ribbons along the c-axis direction. The mol­ecular packing is consolidated by van der Waals inter­actions between these ribbons.

Keywords: crystal structure, C—H⋯O hydrogen bonds, C—H⋯··π inter­actions, van der Waals inter­actions, Hirshfeld surface

Abstract

The whole mol­ecule of the title compound, C22H19NO2, is generated by twofold rotational symmetry. The N atom exhibits a trigonal-planar geometry and is located on the twofold rotation axis. In the crystal, mol­ecules are linked by C—H⋯O contacts with R 2 2(12) ring motifs, and C—H⋯π inter­actions, resulting in ribbons along the c-axis direction. van der Waals inter­actions between these ribbons consolidate the mol­ecular packing. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) inter­actions.

1. Chemical context

Functionalized amine and carbonyl compounds are versatile inter­mediates in organic synthesis, material science and medicinal chemistry (Zubkov et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). N,N-bis­(phenac­yl)anilines are of particular significance in the fine chemical industry due to their use as precursors of various heterocyclic systems such as piperidine, triazepine, 1,4-di­hydro­pyrazine, 1,4-oxazine, pyrrole and indoles (Zeng & Chen, 2006; Ravindran et al., 2007; Paul & Muthusubramanian, 2013; Yan et al., 2014). 1.

Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022; Khalilov et al., 2022), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2,2′-(phenyl­aza­nedi­yl)bis­(1-phenyl­ethan-1-one).

2. Structural commentary

The asymmetric unit of the title compound contains half a mol­ecule, the complete mol­ecule being generated by the twofold rotational axis. Atoms N1, C1 and C4 are located on the twofold rotation axis (Fig. 1). The N1 atom has a trigonal-planar geometry, and it is bonded to two C atoms (C5 and C5A) from two symmetry-related 1-phenyl­ethan-1-one groups and atom C1 of the phenyl ring, which is divided by the twofold rotation axis. The phenyl ring (C1–C4/C2A/C3A) attached to the N1 atom and the phenyl rings (C7–C12 and C7A–C12A) of the two symmetry-related 1-phenyl­ethan-1-one groups are oriented at 89.65 (6)° to each other.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by inter­molecular C—H⋯O [C5—H5A⋯O1(x, −y + 1, z +  Inline graphic ); 2.51 Å, 158°] inter­actions with Inline graphic (12) ring motifs, resulting in ribbons along the c-axis direction (Bernstein et al., 1995; Table 1; Fig. 2). C—H⋯π inter­actions also contribute to the stronger cohesion of mol­ecules in the ribbons (Table 1; Fig. 3). The mol­ecular packing also features van der Waals inter­actions between these ribbons.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the phenyl ring attached to atom N1.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.99 2.51 3.4483 (16) 158
C8—H8⋯Cg1ii 0.95 2.85 3.6963 (14) 148
C8—H8⋯Cg1iii 0.95 2.85 3.6963 (14) 148

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

A general view of the inter­molecular C—H⋯O hydrogen bonds, and C—H⋯π inter­actions of the title compound. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity. Symmetry codes: (a) x, y, z + 1; (b) 1 − x, y, Inline graphic  − z; (c) x +  Inline graphic , −y +  Inline graphic , −z + 1; (d) 1 − x, 1 − y, −z; (e) 1 − x, 1 − y, 1 − z; (f) x, 1 − y, − Inline graphic  + z; (g) x, 1 − y, Inline graphic  + z.

Figure 3.

Figure 3

View of the packing down the c axis showing C—H⋯O hydrogen bonds and and C—H⋯π inter­actions in the title compound. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal Explorer17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1305 (red) to 1.2546 (blue) a.u (Fig. 4). In the Hirshfeld surface mapped over d norm (Fig. 4), the bright-red spots near atoms O1 and H5A indicate the short C—H⋯O contacts (Table 1). Other contacts are equal to or longer than the sum of van der Waals radii.

Figure 4.

Figure 4

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.1305 to 1.2546 a.u. The C—H⋯O hydrogen bonds are shown.

Fingerprint plots (Fig. 5 bd; Table1) reveal that H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) inter­actions make the greatest contributions to the surface contacts. N⋯H/H⋯N (0.3%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 5.

Figure 5

Two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the N,N-di­methyl­aniline moiety revealed three structures closely related to the title compound, viz. 4-methyl-N-[(4-methyl­phen­yl)sulfon­yl]-N-phenyl­benzene­sulfonamide [CSD refcode GOBNIW (I); Eren et al., 2014], N,N′-[(phenyl­imino)diethane-2,1-di­yl]bis­(pyridine-2-carboxamide) [IDIZOM (II); Li et al., 2013] and (2E,2′E)-dimethyl 2,2′-[(phenyl­aza­nedi­yl)bis­(methyl­ene)]bis­(3-phenyl­acrylate) [XEBWUY (III); Sabari et al., 2012]. Like the title compound, the mol­ecule of (I) possesses twofold rotational symmetry. The N atom has a trigonal-planar geometry and is located on the twofold rotation axis. Weak C—H⋯O hydrogen bonds connect the mol­ecules, forming a three-dimensional network. The asymmetric unit of (II) contains two independent mol­ecules with similar conformations. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular structure. Weak inter­molecular C—H⋯π inter­actions are also observed. In (III), the C=C double bonds adopt an E configuration. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

5. Synthesis and crystallization

The title compound was synthesized using the reported procedure (He et al., 2014), and pale-yellow needle-like crystals were obtained upon slow evaporation from an ethanol/water (4:1) homogeneous solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms bound to C atoms were positioned geometrically (C—H = 0.95 and 0.99 Å) and refined using a riding model with U iso(H) = 1.2U eq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers (8 1 3, 1 5 6, 25 0 2, 4 5 3, 2 7 3, 1 2 3, 1 1 6, 7 3 0, 14 3 9, 5 3 0, 4 5 8, 0 4 0, 21 0 2, 7 4 8, 9 10 3, 2 4 0, 23 2 2, 2 8 5) were omitted during the final refinement cycle.

Table 2. Experimental details.

Crystal data
Chemical formula C22H19NO2
M r 329.38
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 100
a, b, c (Å) 20.8269 (2), 9.09843 (10), 9.0158 (1)
V3) 1708.42 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.09 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.906, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 21247, 1834, 1746
R int 0.034
(sin θ/λ)max−1) 0.637
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.142, 1.09
No. of reflections 1834
No. of parameters 115
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005382/tx2050sup1.cif

e-78-00691-sup1.cif (675.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005382/tx2050Isup2.hkl

e-78-00691-Isup2.hkl (147.9KB, hkl)

CCDC reference: 2173928

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and MGS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AB, VNK and FNN; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

C22H19NO2 Dx = 1.281 Mg m3
Mr = 329.38 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbcn Cell parameters from 14002 reflections
a = 20.8269 (2) Å θ = 4.3–79.0°
b = 9.09843 (10) Å µ = 0.65 mm1
c = 9.0158 (1) Å T = 100 K
V = 1708.42 (3) Å3 Prism, pale yellow
Z = 4 0.09 × 0.06 × 0.05 mm
F(000) = 696

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 1746 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.034
φ and ω scans θmax = 79.4°, θmin = 4.3°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −26→26
Tmin = 0.906, Tmax = 0.939 k = −11→10
21247 measured reflections l = −10→11
1834 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.6375P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1834 reflections Δρmax = 0.28 e Å3
115 parameters Δρmin = −0.23 e Å3

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38204 (5) 0.42787 (12) 0.14622 (11) 0.0346 (3)
N1 0.500000 0.50356 (17) 0.250000 0.0275 (4)
C1 0.500000 0.65552 (19) 0.250000 0.0258 (4)
C2 0.54585 (7) 0.73540 (15) 0.16825 (14) 0.0312 (3)
H2 0.577660 0.684521 0.112882 0.037*
C3 0.54488 (9) 0.88824 (18) 0.16798 (17) 0.0432 (4)
H3 0.575533 0.940593 0.110555 0.052*
C4 0.500000 0.9651 (2) 0.250000 0.0537 (7)
H4 0.499999 1.069489 0.250000 0.064*
C5 0.45804 (6) 0.41853 (14) 0.34384 (14) 0.0256 (3)
H5A 0.447899 0.476190 0.433961 0.031*
H5B 0.480651 0.328071 0.375413 0.031*
C6 0.39556 (6) 0.37610 (14) 0.26663 (14) 0.0262 (3)
C7 0.35248 (6) 0.26878 (14) 0.34230 (13) 0.0256 (3)
C8 0.36541 (6) 0.21454 (15) 0.48403 (15) 0.0304 (3)
H8 0.402012 0.248116 0.537005 0.036*
C9 0.32461 (7) 0.11135 (17) 0.54737 (16) 0.0362 (4)
H9 0.333629 0.073789 0.643461 0.043*
C10 0.27080 (7) 0.06284 (17) 0.47116 (17) 0.0362 (4)
H10 0.243425 −0.008843 0.514406 0.043*
C11 0.25697 (7) 0.11905 (17) 0.33172 (16) 0.0353 (4)
H11 0.219476 0.087802 0.280639 0.042*
C12 0.29775 (7) 0.22064 (15) 0.26696 (16) 0.0316 (3)
H12 0.288486 0.257788 0.170838 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0336 (5) 0.0400 (6) 0.0302 (5) −0.0032 (4) −0.0024 (4) 0.0071 (4)
N1 0.0260 (7) 0.0226 (7) 0.0338 (8) 0.000 0.0068 (6) 0.000
C1 0.0285 (8) 0.0239 (8) 0.0250 (8) 0.000 −0.0043 (6) 0.000
C2 0.0378 (8) 0.0281 (7) 0.0277 (7) −0.0037 (5) −0.0006 (5) 0.0014 (5)
C3 0.0632 (11) 0.0286 (7) 0.0378 (8) −0.0102 (7) 0.0028 (7) 0.0047 (6)
C4 0.091 (2) 0.0228 (10) 0.0475 (13) 0.000 0.0033 (12) 0.000
C5 0.0251 (6) 0.0241 (6) 0.0277 (6) −0.0004 (4) 0.0020 (4) 0.0007 (4)
C6 0.0266 (6) 0.0247 (6) 0.0272 (6) 0.0028 (5) 0.0027 (5) −0.0019 (5)
C7 0.0254 (6) 0.0236 (6) 0.0277 (6) 0.0014 (5) 0.0035 (4) −0.0028 (4)
C8 0.0292 (6) 0.0326 (7) 0.0292 (6) −0.0036 (5) 0.0009 (5) −0.0009 (5)
C9 0.0377 (7) 0.0407 (8) 0.0303 (7) −0.0064 (6) 0.0040 (6) 0.0041 (6)
C10 0.0352 (7) 0.0367 (7) 0.0366 (7) −0.0092 (6) 0.0086 (6) −0.0019 (6)
C11 0.0305 (7) 0.0382 (8) 0.0372 (8) −0.0086 (6) 0.0014 (5) −0.0063 (6)
C12 0.0316 (7) 0.0328 (7) 0.0304 (7) −0.0024 (5) −0.0009 (5) −0.0019 (5)

Geometric parameters (Å, º)

O1—C6 1.2165 (16) C5—H5B 0.9900
N1—C1 1.383 (2) C6—C7 1.4913 (18)
N1—C5 1.4415 (14) C7—C8 1.3960 (19)
N1—C5i 1.4416 (14) C7—C12 1.3973 (19)
C1—C2i 1.4082 (16) C8—C9 1.3892 (19)
C1—C2 1.4082 (16) C8—H8 0.9500
C2—C3 1.391 (2) C9—C10 1.387 (2)
C2—H2 0.9500 C9—H9 0.9500
C3—C4 1.382 (2) C10—C11 1.388 (2)
C3—H3 0.9500 C10—H10 0.9500
C4—H4 0.9500 C11—C12 1.384 (2)
C5—C6 1.5254 (17) C11—H11 0.9500
C5—H5A 0.9900 C12—H12 0.9500
C1—N1—C5 122.46 (7) O1—C6—C7 121.50 (12)
C1—N1—C5i 122.46 (7) O1—C6—C5 120.45 (11)
C5—N1—C5i 115.08 (14) C7—C6—C5 118.05 (11)
N1—C1—C2i 121.07 (9) C8—C7—C12 119.44 (12)
N1—C1—C2 121.07 (9) C8—C7—C6 122.28 (12)
C2i—C1—C2 117.86 (17) C12—C7—C6 118.27 (12)
C3—C2—C1 120.47 (14) C9—C8—C7 119.81 (13)
C3—C2—H2 119.8 C9—C8—H8 120.1
C1—C2—H2 119.8 C7—C8—H8 120.1
C4—C3—C2 120.98 (15) C10—C9—C8 120.38 (13)
C4—C3—H3 119.5 C10—C9—H9 119.8
C2—C3—H3 119.5 C8—C9—H9 119.8
C3i—C4—C3 119.2 (2) C9—C10—C11 119.97 (13)
C3i—C4—H4 120.4 C9—C10—H10 120.0
C3—C4—H4 120.4 C11—C10—H10 120.0
N1—C5—C6 112.65 (9) C12—C11—C10 120.05 (13)
N1—C5—H5A 109.1 C12—C11—H11 120.0
C6—C5—H5A 109.1 C10—C11—H11 120.0
N1—C5—H5B 109.1 C11—C12—C7 120.32 (13)
C6—C5—H5B 109.1 C11—C12—H12 119.8
H5A—C5—H5B 107.8 C7—C12—H12 119.8
C5—N1—C1—C2i −6.40 (9) O1—C6—C7—C8 −176.33 (12)
C5i—N1—C1—C2i 173.60 (9) C5—C6—C7—C8 4.37 (18)
C5—N1—C1—C2 173.59 (9) O1—C6—C7—C12 4.30 (19)
C5i—N1—C1—C2 −6.41 (9) C5—C6—C7—C12 −175.00 (11)
N1—C1—C2—C3 179.32 (10) C12—C7—C8—C9 1.3 (2)
C2i—C1—C2—C3 −0.68 (10) C6—C7—C8—C9 −178.06 (12)
C1—C2—C3—C4 1.4 (2) C7—C8—C9—C10 −0.6 (2)
C2—C3—C4—C3i −0.69 (11) C8—C9—C10—C11 −0.9 (2)
C1—N1—C5—C6 93.41 (9) C9—C10—C11—C12 1.7 (2)
C5i—N1—C5—C6 −86.59 (9) C10—C11—C12—C7 −1.0 (2)
N1—C5—C6—O1 −8.70 (17) C8—C7—C12—C11 −0.6 (2)
N1—C5—C6—C7 170.61 (11) C6—C7—C12—C11 178.84 (12)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the phenyl ring attached to atom N1.

D—H···A D—H H···A D···A D—H···A
C5—H5A···O1ii 0.99 2.51 3.4483 (16) 158
C8—H8···Cg1iii 0.95 2.85 3.6963 (14) 148
C8—H8···Cg1iv 0.95 2.85 3.6963 (14) 148

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x−1/2, y+1/2, z.

Funding Statement

This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Eren, B., Demir, S., Dal, H. & Hökelek, T. (2014). Acta Cryst. E70, o238–o239. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.
  6. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  7. He, J., Shi, L., Liu, S., Jia, P., Wang, J. & Hu, R. (2014). Monatsh. Chem. 145, 213–216. [DOI] [PMC free article] [PubMed]
  8. Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. [DOI] [PMC free article] [PubMed]
  9. Li, G.-N., Niu, Z.-G., Huang, M.-Q., Zou, Y. & Hu, L.-J. (2013). Acta Cryst. E69, o677. [DOI] [PMC free article] [PubMed]
  10. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  11. Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. [DOI] [PMC free article] [PubMed]
  12. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. [DOI] [PMC free article] [PubMed]
  13. Paul, N. & Muthusubramanian, S. (2013). Synth. Commun. 43, 1200–1209.
  14. Ravindran, G., Muthusubramanian, S., Selvaraj, S. & Perumal, S. (2007). J. Heterocycl. Chem. 44, 133–136.
  15. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2265. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://Hirshfeldsurface.net.
  22. Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
  23. Yan, H., Tan, H. & Xin, H. (2014). Heterocycles, 89, 359–373.
  24. Zeng, D. X. & Chen, Y. (2006). Synlett, pp. 0490–0492.
  25. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022005382/tx2050sup1.cif

e-78-00691-sup1.cif (675.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022005382/tx2050Isup2.hkl

e-78-00691-Isup2.hkl (147.9KB, hkl)

CCDC reference: 2173928

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES