Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jul 11;15(12):10328–10342. doi: 10.1007/s12274-022-4666-y

Insights on catalytic mechanism of CeO2 as multiple nanozymes

Yuanyuan Ma 1,#, Zhimin Tian 1,#, Wenfang Zhai 1, Yongquan Qu 1,
PMCID: PMC9274632  PMID: 35845145

Abstract

CeO2 with the reversible Ce3+/Ce4+ redox pair exhibits multiple enzyme-like catalytic performance, which has been recognized as a promising nanozyme with potentials for disease diagnosis and treatments. Tailorable surface physicochemical properties of various CeO2 catalysts with controllable sizes, morphologies, and surface states enable a rich surface chemistry for their interactions with various molecules and species, thus delivering a wide variety of catalytic behaviors under different conditions. Despite the significant progress made in developing CeO2-based nanozymes and their explorations for practical applications, their catalytic activity and specificity are still uncompetitive to their counterparts of natural enzymes under physiological environments. With the attempt to provide the insights on the rational design of highly performed CeO2 nanozymes, this review focuses on the recent explorations on the catalytic mechanisms of CeO2 with multiple enzyme-like performance. Given the detailed discussion and proposed perspectives, we hope this review can raise more interest and stimulate more efforts on this multi-disciplinary field.

graphic file with name 12274_2022_4666_Fig1_HTML.jpg

Keywords: heterogeneous catalysis, ceria, nanozyme, oxygen vacancy

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21872109 and 52002314) and China Postdoctoral Science Foundation (Nos. 2018M633504 and 2018M633749). Authors also acknowledge the support from the Fundamental Research Funds for the Central Universities (Nos. D5000210829, D5000210601, and G2021KY05102) and Funds Shaanxi Province (No. 2021JM-589).

Footnotes

Yuanyuan Ma and Zhimin Tian contributed equally to this work.

References

  • [1].Liang M M, Yan X Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019;52:2190–2200. doi: 10.1021/acs.accounts.9b00140. [DOI] [PubMed] [Google Scholar]
  • [2].Wu J J X, Wang X Y, Wang Q, Lou Z P, Li S R, Zhu Y Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II) Chem. Soc. Rev. 2019;48:1004–1076. doi: 10.1039/C8CS00457A. [DOI] [PubMed] [Google Scholar]
  • [3].Huang Y Y, Ren J S, Qu X G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019;119:4357–4412. doi: 10.1021/acs.chemrev.8b00672. [DOI] [PubMed] [Google Scholar]
  • [4].Fedeli S, Im J, Gopalakrishnan S, Elia J L, Gupta A, Kim D, Rotello V M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021;50:13467–13480. doi: 10.1039/D0CS00659A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Jiang D W, Ni D L, Rosenkrans Z T, Huang P, Yan X Y, Cai W B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019;48:3683–3704. doi: 10.1039/C8CS00718G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Mujtaba J, Liu J R, Dey K K, Li T L, Chakraborty R, Xu K L, Makarov D, Barmin R A, Gorin D A, Tolstoy V P, et al. Micro-bio-chemo-mechanical-systems: Micromotors, microfluidics, and nanozymes for biomedical applications. Adv. Mater. 2021;33:2007465. doi: 10.1002/adma.202007465. [DOI] [PubMed] [Google Scholar]
  • [7].Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. [DOI] [PubMed] [Google Scholar]
  • [8].Ai Y J, Hu Z N, Liang X P, Sun H B, Xin H B, Liang Q L. Recent advances in nanozymes: From matters to bioapplications. Adv. Fun. Mater. 2022;32:2110432. doi: 10.1002/adfm.202110432. [DOI] [Google Scholar]
  • [9].Han J J, Gong H N, Ren X K, Yan X H. Supramolecular nanozymes based on peptide self-assembly for biomimetic catalysis. Nano Today. 2021;41:101295. doi: 10.1016/j.nantod.2021.101295. [DOI] [Google Scholar]
  • [10].Zhang X L, Li G L, Chen G, Wu D, Wu Y N, James T D. Enzyme mimics for engineered biomimetic cascade nanoreactors: Mechanism, applications, and prospects. Adv. Fun. Mater. 2021;37:2106139. doi: 10.1002/adfm.202106139. [DOI] [Google Scholar]
  • [11].Liu S D, Xu J Y, Xing Y P, Yan T F, Yu S J, Sun H C, Liu J Q. Nanozymes as efficient tools for catalytic therapeutics. View. 2022;3:20200147. doi: 10.1002/VIW.20200147. [DOI] [Google Scholar]
  • [12].Zhang R F, Yan X Y, Fan K L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021;2:534–547. doi: 10.1021/accountsmr.1c00074. [DOI] [Google Scholar]
  • [13].Li Y Q, Liu J W. Nanozyme’s catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021;8:336–350. doi: 10.1039/D0MH01393E. [DOI] [PubMed] [Google Scholar]
  • [14].Zu Y, Yao H Q, Wang Y F, Yan L, Gu Z J, Chen C Y, Gao L Z, Yin W Y. The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View. 2021;2:20200188. doi: 10.1002/VIW.20200188. [DOI] [Google Scholar]
  • [15].Ding H, Hu B, Zhang B, Zhang H, Yan X Y, Nie G H, Liang M M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021;74:570–583. doi: 10.1007/s12274-020-3053-9. [DOI] [Google Scholar]
  • [16].Shen L H, Ye D X, Zhao H B, Zhang J J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021;93:1221–1231. doi: 10.1021/acs.analchem.0c04084. [DOI] [PubMed] [Google Scholar]
  • [17].Zhou Y, Wei Y, Ren J S, Qu X G. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater. Horiz. 2020;7:3291–3297. doi: 10.1039/D0MH01535K. [DOI] [Google Scholar]
  • [18].Ma L, Jiang F B, Fan X, Wang L Y, He C, Zhou M, Li S, Luo H R, Cheng C, Qiu L. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020;32:2003065. doi: 10.1002/adma.202003065. [DOI] [PubMed] [Google Scholar]
  • [19].Wang D D, Jana D, Zhao Y L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020;53:1389–1400. doi: 10.1021/acs.accounts.0c00268. [DOI] [PubMed] [Google Scholar]
  • [20].Mikolajczak D J, Berger A A, Koksch B. Catalytically active peptide-gold nanoparticle conjugates: Prospecting for artificial enzymes. Angew. Chem., Int. Ed. 2020;59:8776–8785. doi: 10.1002/anie.201908625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Meng Y T, Li W F, Pan X L, Gadd G M. Applications of nanozymes in the environment. Environ. Sci. Nano. 2020;7:1305–1318. doi: 10.1039/C9EN01089K. [DOI] [Google Scholar]
  • [22].Liu X L, Gao Y, Chandrawati R, Hosta-Rigau L. Therapeutic applications of multifunctional nanozymes. Nanoscale. 2019;11:21046–21060. doi: 10.1039/C9NR06596B. [DOI] [PubMed] [Google Scholar]
  • [23].Wang Q Q, Wei H, Zhang Z Q, Wang E K, Dong S J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018;105:218–224. doi: 10.1016/j.trac.2018.05.012. [DOI] [Google Scholar]
  • [24].Cormode D P, Gao L Z, Koo H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 2018;36:15–29. doi: 10.1016/j.tibtech.2017.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Wang H, Wan K W, Shi X H. Recent advances in nanozyme research. Adv. Mater. 2019;31:1805368. doi: 10.1002/adma.201805368. [DOI] [PubMed] [Google Scholar]
  • [26].Jiang B, Duan D M, Gao L Z, Zhou M J, Fan K L, Tang Y, Xi J Q, Bi Y H, Tong Z, Gao G F, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018;13:1506–1520. doi: 10.1038/s41596-018-0001-1. [DOI] [PubMed] [Google Scholar]
  • [27].Liu Q, Wan K W, Shang Y X, Wang Z G, Zhang Y Y, Dai L R, Wang C, Wang H, Shi X H, Liu D S, et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021;20:395–402. doi: 10.1038/s41563-020-00856-6. [DOI] [PubMed] [Google Scholar]
  • [28].Lu W H, Yuan M, Chen J, Zhang J X, Kong L S, Feng Z Y, Ma X C, Su J, Zhan J H. Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Res. 2021;14:3514–3522. doi: 10.1007/s12274-021-3656-9. [DOI] [Google Scholar]
  • [29].Zhou Q, Yang H, Chen X H, Xu Y, Han D, Zhou S S, Liu S Q, Shen Y F, Zhang Y J. Cascaded nanozyme system with high reaction selectivity by substrate screening and channeling in a microfluidic device. Angew. Chem., Int. Ed. 2022;134:e202112453. doi: 10.1002/anie.202112453. [DOI] [PubMed] [Google Scholar]
  • [30].Cao S J, Zhao Z Y, Zheng Y J, Wu Z H, Ma T, Zhu B H, Yang C D, Xiang X, Ma L, Han X L, et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Adv. Mater. 2022;34:2200255. doi: 10.1002/adma.202200255. [DOI] [PubMed] [Google Scholar]
  • [31].Liu B W, Liu J W. Surface modification of nanozymes. Nano Res. 2017;10:1125–1148. doi: 10.1007/s12274-017-1426-5. [DOI] [Google Scholar]
  • [32].Perez J M, Asati A, Nath S, Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small. 2008;4:552–556. doi: 10.1002/smll.200700824. [DOI] [PubMed] [Google Scholar]
  • [33].Karakoti A S, Singh S, Kumar A, Malinska M, Kuchibhatla S V N T, Wozniak K, Self W T, Seal S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 2009;131:14144–14145. doi: 10.1021/ja9051087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Asati A, Santra S, Kaittanis C, Nath S, Perez J M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. 2009;121:2344–2348. doi: 10.1002/ange.200805279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Singh S, Dosani T, Karakoti A S, Kumar A, Seal S, Self W T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials. 2011;32:6745–6753. doi: 10.1016/j.biomaterials.2011.05.073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Tan Z C, Li G C, Chou H L, Li Y Y, Yi X F, Mahadi A H, Zheng A M, Tsang S C E, Peng Y K. Differentiating surface Ce species among CeO2 facets by solid-state NMR for catalytic correlation. ACS Catal. 2020;10:4003–4011. doi: 10.1021/acscatal.0c00014. [DOI] [Google Scholar]
  • [37].Niu X H, Xu X C, Li X, Pan J M, Qiu F X, Zhao H L, Lan M B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018;54:13443–13446. doi: 10.1039/C8CC07800A. [DOI] [PubMed] [Google Scholar]
  • [38].Xue Y, Zhai Y W, Zhou K B, Wang L, Tan H N, Luan Q F, Yao X. The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chem.—Eur. J. 2012;18:11115–11122. doi: 10.1002/chem.201200983. [DOI] [PubMed] [Google Scholar]
  • [39].Baldim V, Bedioui F, Mignet N, Margaill I, Berret J F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale. 2018;10:6971–6980. doi: 10.1039/C8NR00325D. [DOI] [PubMed] [Google Scholar]
  • [40].Li Y Y, He X, Yin J J, Ma Y H, Zhang P, Li J Y, Ding Y Y, Zhang J, Zhao Y L, Chai Z F, et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015;54:1832–1835. doi: 10.1002/anie.201410398. [DOI] [PubMed] [Google Scholar]
  • [41].Tian Z M, Li J, Zhang Z Y, Gao W M, Zhou X Q, Qu Y Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials. 2015;59:116–124. doi: 10.1016/j.biomaterials.2015.04.039. [DOI] [PubMed] [Google Scholar]
  • [42].Tian Z M, Li X H, Ma Y Y, Chen T, Xu D H, Wang B C, Qu Y Q, Gao Y. Quantitatively intrinsic biomimetic catalytic activity of nanocerias as radical scavengers and their ability against H2O2 and doxorubicin-induced oxidative stress. ACS Appl. Mater. Interfaces. 2017;9:23342–23352. doi: 10.1021/acsami.7b04761. [DOI] [PubMed] [Google Scholar]
  • [43].Tian Z M, Liu H B, Guo Z X, Gou W Y, Liang Z C, Qu Y Q, Han L L, Liu L. A pH-responsive polymer-CeO2 hybrid to catalytically generate oxidative stress for tumor therapy. Small. 2020;16:2004654. doi: 10.1002/smll.202004654. [DOI] [PubMed] [Google Scholar]
  • [44].Cao F X, Zhang M K, Yang K L, Tian Z M, Li J, Qu Y Q. Single crystalline CeO2 nanotubes. Nano Res. 2021;14:715–719. doi: 10.1007/s12274-020-3103-3. [DOI] [Google Scholar]
  • [45].Lee S S, Song W S, Cho M, Puppala H L, Nguyen P, Zhu H G, Segatori L, Colvin V L. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano. 2013;7:9693–9703. doi: 10.1021/nn4026806. [DOI] [PubMed] [Google Scholar]
  • [46].Liu Y, Purich D L, Wu C C, Wu Y, Chen T, Cui C, Zhang L Q, Cansiz S, Hou W J, Wang Y Y, et al. Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzymelike properties. J. Am. Chem. Soc. 2015;137:14952–14958. doi: 10.1021/jacs.5b08533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Fan K L, Wang H, Xi J Q, Liu Q, Meng X Q, Duan D M, Gao L Z, Yan X Y. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 2017;53:424–427. doi: 10.1039/C6CC08542C. [DOI] [PubMed] [Google Scholar]
  • [48].Zhang L, Liu Z W, Deng Q Q, Sang Y J, Dong K, Ren J S, Qu X G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021;60:3469–3474. doi: 10.1002/anie.202012487. [DOI] [PubMed] [Google Scholar]
  • [49].Cao-Milán R, He L D, Shorkey S, Tonga G Y, Wang L S, Zhang X Z, Uddin I, Das R, Sulak M, Rotello V M. Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2017;2:624–628. doi: 10.1039/C7ME00055C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Bülbül G, Hayat A, Andreescu S. ssDNA-functionalized nanoceria: A redox-active aptaswitch for biomolecular recognition. Adv. Healthc. Mater. 2016;5:822–828. doi: 10.1002/adhm.201500705. [DOI] [PubMed] [Google Scholar]
  • [51].Lin Y H, Huang Y Y, Ren J S, Qu X G. Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater. 2014;6:e114. doi: 10.1038/am.2014.42. [DOI] [Google Scholar]
  • [52].Park K S, Kim M I, Cho D Y, Park H G. Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small. 2011;7:1521–1525. doi: 10.1002/smll.201001886. [DOI] [PubMed] [Google Scholar]
  • [53].Sun H J, Zhao A D, Gao N, Li K, Ren J S, Qu X G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015;54:7176–7180. doi: 10.1002/anie.201500626. [DOI] [PubMed] [Google Scholar]
  • [54].Lord M S, Berret J F, Singh S, Vinu A, Karakoti A S. Redox active cerium oxide nanoparticles: Current status and burning issues. Small. 2021;17:2102342. doi: 10.1002/smll.202102342. [DOI] [PubMed] [Google Scholar]
  • [55].Xu C, Qu X G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6:e90. doi: 10.1038/am.2013.88. [DOI] [Google Scholar]
  • [56].Saifi M A, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J. Control. Release. 2021;338:164–189. doi: 10.1016/j.jconrel.2021.08.033. [DOI] [PubMed] [Google Scholar]
  • [57].Das S, Dowding J M, Klump K E, McGinnis J F, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine. 2013;8:1483–1508. doi: 10.2217/nnm.13.133. [DOI] [PubMed] [Google Scholar]
  • [58].Das M, Patil S, Bhargava N, Kang J F, Riedel L M, Seal S, Hickman J J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28:1918–1925. doi: 10.1016/j.biomaterials.2006.11.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Tian Z M, Zhao J L, Zhao S J, Li H C, Guo Z X, Liang Z C, Li J Y, Qu Y Q. Phytic acid-modified CeO2 as Ca2+ inhibitor for a security reversal of tumor drug resistance. Nano Res. 2022;15:4334–4343. doi: 10.1007/s12274-022-4069-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Yao T Z, Tian Z M, Zhang Y Q, Qu Y Q. Phosphatase-like activity of porous nanorods of CeO2 for the highly stabilized dephosphorylation under interferences. ACS Appl. Mater. Interfaces. 2019;11:195–201. doi: 10.1021/acsami.8b17086. [DOI] [PubMed] [Google Scholar]
  • [61].Tian Z M, Yao T Z, Qu C Y, Zhang S, Li X H, Qu Y Q. Photolyase-like catalytic behavior of CeO2. Nano Lett. 2019;19:8270–8277. doi: 10.1021/acs.nanolett.9b03836. [DOI] [PubMed] [Google Scholar]
  • [62].Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik T E, Gural’skiy I A, Pfitzner F, Link T, Schenk S, et al. Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv. Mater. 2017;29:1603823. doi: 10.1002/adma.201603823. [DOI] [PubMed] [Google Scholar]
  • [63].Zambon A, Malavasi G, Pallini A, Fraulini F, Lusvardi G. Cerium containing bioactive glasses: A review. ACS Biomater. Sci. Eng. 2021;7:4388–4401. doi: 10.1021/acsbiomaterials.1c00414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [64].Dong H J, Fan Y Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjugate Chem. 2019;30:1273–1296. doi: 10.1021/acs.bioconjchem.9b00171. [DOI] [PubMed] [Google Scholar]
  • [65].Zandieh M, Liu J W. Surface science of nanozymes and defining a nanozyme unit. Langmuir. 2022;38:3617–3622. doi: 10.1021/acs.langmuir.2c00070. [DOI] [PubMed] [Google Scholar]
  • [66].Seal S, Jeyaranjan A, Neal C J, Kumar U, Sakthivel T S, Sayle D C. Engineered defects in cerium oxides: Tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale. 2020;12:6879–6899. doi: 10.1039/D0NR01203C. [DOI] [PubMed] [Google Scholar]
  • [67].Celardo I, Pedersen J Z, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–1420. doi: 10.1039/c0nr00875c. [DOI] [PubMed] [Google Scholar]
  • [68].Zahra D, Javaid A, Iqbal M, Akbar I, Ashfaq U A. Synthesis and therapeutic potential of nanoceria against cancer: An update. Crit. Rev. Ther. Drug Carrier Syst. 2021;38:1–26. doi: 10.1615/CritRevTherDrugCarrierSyst.2021037662. [DOI] [PubMed] [Google Scholar]
  • [69].Hosseini M, Mozafari M. Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials. 2020;13:3072. doi: 10.3390/ma13143072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Ma Y Y, Gao W, Zhang Z Y, Zhang S, Tian Z M, Liu Y X, Ho J C, Qu Y Q. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018;73:1–36. doi: 10.1016/j.surfrep.2018.02.001. [DOI] [Google Scholar]
  • [71].Zhang S, Xia Z M, Zou Y, Cao F X, Liu Y X, Ma Y Y, Qu Y Q. Interfacial frustrated Lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates. J. Am. Chem. Soc. 2019;141:11353–11357. doi: 10.1021/jacs.9b03217. [DOI] [PubMed] [Google Scholar]
  • [72].Zhang S, Huang Z Q, Ma Y Y, Gao W, Li J, Cao F X, Li L, Chang C R, Qu Y Q. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 2017;8:15266. doi: 10.1038/ncomms15266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [73].Gao W, Xia Z M, Cao F X, Ho J C, Jiang Z, Qu Y Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Fun. Mater. 2018;28:1706056. doi: 10.1002/adfm.201706056. [DOI] [Google Scholar]
  • [74].Schmitt R, Nenning A, Kraynis O, Korobko R, Frenkel A I, Lubomirsky I, Haile S M, Rupp J L M. A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 2020;49:554–592. doi: 10.1039/C9CS00588A. [DOI] [PubMed] [Google Scholar]
  • [75].Wu K, Sun L D, Yan C H. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater. 2016;6:1600501. doi: 10.1002/aenm.201600501. [DOI] [Google Scholar]
  • [76].Campbell C T, Peden C H F. Oxygen vacancies and catalysis on ceria surfaces. Science. 2005;309:713–714. doi: 10.1126/science.1113955. [DOI] [PubMed] [Google Scholar]
  • [77].Zhang Y, Zhao S N, Feng J, Song S Y, Shi W D, Wang D, Zhang H J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem. 2021;7:2022–2059. doi: 10.1016/j.chempr.2021.02.015. [DOI] [Google Scholar]
  • [78].Ziemba M, Schilling C, Ganduglia-Pirovano M V, Hess C. Toward an atomic-level understanding of ceria-based catalysts: When experiment and theory go hand in hand. Acc. Chem. Res. 2021;54:2884–2893. doi: 10.1021/acs.accounts.1c00226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Xu Y W, Mofarah S S, Mehmood R, Cazorla C, Koshy P, Sorrell C C. Design strategies for ceria nanomaterials: Untangling key mechanistic concepts. Mater. Horiz. 2021;8:102–123. doi: 10.1039/D0MH00654H. [DOI] [PubMed] [Google Scholar]
  • [80].Ma J L, Ye F, Ou D R, Li L L, Mori T. Structures of defect clusters on ceria {111} surface. J. Phys. Chem. C. 2012;116:25777–25782. doi: 10.1021/jp306699r. [DOI] [Google Scholar]
  • [81].Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009;131:3140–3141. doi: 10.1021/ja808433d. [DOI] [PubMed] [Google Scholar]
  • [82].Schilling C, Ganduglia-Pirovano M V, Hess C. Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. J. Phys. Chem. Lett. 2018;9:6593–6598. doi: 10.1021/acs.jpclett.8b02728. [DOI] [PubMed] [Google Scholar]
  • [83].Trovarelli A, Llorca J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 2017;7:4716–4735. doi: 10.1021/acscatal.7b01246. [DOI] [Google Scholar]
  • [84].Vayssilov G N, Migani A, Neyman K. Density functional modeling of the interactions of platinum clusters with CeO2 nanoparticles of different size. J. Phys. Chem. C. 2011;115:16081–16086. doi: 10.1021/jp204222k. [DOI] [Google Scholar]
  • [85].Berestok T, Guardia P, Blanco J, Nafria R, Torruella P, López-Conesa L, Estradé S, Ibáñez M, De Roo J, Luo Z S, et al. Tuning branching in ceria nanocrystals. Chem. Mater. 2017;29:4418–4424. doi: 10.1021/acs.chemmater.7b00896. [DOI] [Google Scholar]
  • [86].Nolan M. Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations. J. Mater. Chem. 2011;21:9160–9168. doi: 10.1039/c1jm11238d. [DOI] [Google Scholar]
  • [87].Nolan M, Parker S C, Watson G W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005;595:223–232. doi: 10.1016/j.susc.2005.08.015. [DOI] [Google Scholar]
  • [88].Wu Z L, Li M J, Overbury S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 2012;285:61–73. doi: 10.1016/j.jcat.2011.09.011. [DOI] [Google Scholar]
  • [89].Cargnello M, Doan-Nguyen V V T, Gordon T R, Diaz R E, Stach E A, Gorte R J, Fornasiero P, Murray C B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science. 2013;341:771–773. doi: 10.1126/science.1240148. [DOI] [PubMed] [Google Scholar]
  • [90].Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B. 2005;109:24380–24385. doi: 10.1021/jp055584b. [DOI] [PubMed] [Google Scholar]
  • [91].Lin F, Hoang D T, Tsung C K, Huang W Y, Lo S H Y, Wood J B, Wang H, Tang J Y, Yang P D. Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Res. 2011;4:61–71. doi: 10.1007/s12274-010-0042-4. [DOI] [Google Scholar]
  • [92].Ji Z X, Wang X, Zhang H Y, Lin S J, Meng H, Sun B B, George S, Xia T, Nel A E, Zink J I. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012;6:5366–5380. doi: 10.1021/nn3012114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [93].Gao W, Li J, Zhou X M, Zhang Z Y, Ma Y Y, Qu Y Q. Repeatable fluorescence switcher of Eu3+-doped CeO2 nanorods by L(+)-ascorbic acid and hydrogen peroxide. J. Mater. Chem. C. 2014;2:8729–8735. doi: 10.1039/C4TC01597E. [DOI] [Google Scholar]
  • [94].Li J, Zhang Z Y, Gao W, Zhang S, Ma Y Y, Qu Y Q. Pressure regulations on the surface properties of CeO2 nanorods and their catalytic activity for CO oxidation and nitrile hydrolysis reactions. ACS Appl. Mater. Interfaces. 2016;8:22988–22996. doi: 10.1021/acsami.6b05343. [DOI] [PubMed] [Google Scholar]
  • [95].Tan Z C, Wu T S, Soo Y L, Peng Y K. Unravelling the true active site for CeO2-catalyzed dephosphorylation. Appl. Catal. B Environ. 2020;264:118508. doi: 10.1016/j.apcatb.2019.118508. [DOI] [Google Scholar]
  • [96].Zhang J R, Tan Z C, Leng W Y, Chen Y C, Zhang S Q, Lo B T W, Yung K K L, Peng Y K. Chemical state tuning of surface Ce species on pristine CeO2 with 2400% boosting in peroxidase-like activity for glucose detection. Chem. Commun. 2020;56:7897–7900. doi: 10.1039/D0CC02351E. [DOI] [PubMed] [Google Scholar]
  • [97].Wang Z Z, Shen X M, Gao X F. Density functional theory mechanistic insight into the peroxidase- and oxidase-like activities of nanoceria. J. Phys. Chem. C. 2021;125:23098–23104. doi: 10.1021/acs.jpcc.1c04878. [DOI] [Google Scholar]
  • [98].Nguyen P T, Lee J, Cho A, Kim M S, Choi D, Han J W, Kim M I, Lee J. Rational development of Co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022;32:2112428. doi: 10.1002/adfm.202112428. [DOI] [Google Scholar]
  • [99].Dong S M, Dong Y S, Liu B, Liu J, Liu S K, Zhao Z Y, Li W T, Tian B S, Zhao R X, He F, et al. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv. Mater. 2022;34:2107054. doi: 10.1002/adma.202107054. [DOI] [PubMed] [Google Scholar]
  • [100].Cheng F, Wang S Q, Zheng H, Yang S W, Zhou L, Liu K K, Zhang Q Y, Zhang H P. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf. B Biointerfaces. 2021;205:111878. doi: 10.1016/j.colsurfb.2021.111878. [DOI] [PubMed] [Google Scholar]
  • [101].Tan Z C, Zhang J R, Chen Y C, Chou J P, Peng Y K. Unravelling the role of structural geometry and chemical state of well-defined oxygen vacancies on pristine CeO2 for H2O2 activation. J. Phys. Chem. Lett. 2020;11:5390–5396. doi: 10.1021/acs.jpclett.0c01557. [DOI] [PubMed] [Google Scholar]
  • [102].Wang Y H, Wang F, Song Q, Xin Q, Xu S T, Xu J. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1, 3-diols via Prins condensation and hydrolysis reactions. J. Am. Chem. Soc. 2013;135:1506–1515. doi: 10.1021/ja310498c. [DOI] [PubMed] [Google Scholar]
  • [103].Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti A S, Berret J F. Polymer-coated cerium oxide nanoparticles as oxidoreductase-like catalysts. ACS Appl. Mater. Interfaces. 2020;72:42056–42066. doi: 10.1021/acsami.0c08778. [DOI] [PubMed] [Google Scholar]
  • [104].Zhao Y L, Wang Y W, Mathur A, Wang Y Q, Maheshwari V, Su H J, Liu J W. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: Inhibiting product adsorption and increasing oxygen vacancies. Nanoscale. 2019;11:17841–17850. doi: 10.1039/C9NR05346H. [DOI] [PubMed] [Google Scholar]
  • [105].Celardo I, De Nicola M, Mandoli C, Pedersen J Z, Traversa E, Ghibelli L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano. 2011;5:4537–4549. doi: 10.1021/nn200126a. [DOI] [PubMed] [Google Scholar]
  • [106].Heckert E G, Karakoti A S, Seal S, Self W T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705–2709. doi: 10.1016/j.biomaterials.2008.03.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [107].Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun.2007, 1056–1058. [DOI] [PubMed]
  • [108].Wang Z Z, Shen X M, Gao X F, Zhao Y L. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: A catalytic model bridging computations and experiments for nanozymes. Nanoscale. 2019;11:13289–13299. doi: 10.1039/C9NR03473K. [DOI] [PubMed] [Google Scholar]
  • [109].Pirmohamed T, Dowding J M, Singh S, Wasserman B, Heckert E, Karakoti A S, King J E S, Seal S, Self W T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010;46:2736–2738. doi: 10.1039/b922024k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [110].Yao C, Wang W X, Wang P Y, Zhao M Y, Li X M, Zhang F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018;30:1704833. doi: 10.1002/adma.201704833. [DOI] [PubMed] [Google Scholar]
  • [111].Weng Q J, Sun H, Fang C Y, Xia F, Liao H W, Lee J, Wang J C, Xie A, Ren J F, Guo X, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021;12:1436. doi: 10.1038/s41467-021-21714-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [112].Ni D L, Wei H, Chen W Y, Bao Q Q, Rosenkrans Z T, Barnhart T E, Ferreira C A, Wang Y P, Yao H L, Sun T W, et al. Ceria Nanoparticles meet hepatic ischemia-reperfusion injury: The perfect imperfection. Adv. Mater. 2019;31:1902956. doi: 10.1002/adma.201902956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [113].Soh M, Kang D W, Jeong H G, Kim D, Kim D Y, Yang W, Song C, Baik S, Choi I Y, Ki S K, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017;56:11399–11403. doi: 10.1002/anie.201704904. [DOI] [PubMed] [Google Scholar]
  • [114].Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003;103:2203–2238. doi: 10.1021/cr0204348. [DOI] [PubMed] [Google Scholar]
  • [115].Thiagarajan V, Byrdin M, Eker A P M, Müller P, Brettel K. Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV. Proc. Natl. Acad. Sci. USA. 2011;108:9402–9407. doi: 10.1073/pnas.1101026108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [116].Bucher D B, Kufner C L, Schlueter A, Carell T, Zinth W. UV-induced charge transfer states in DNA promote sequence selective self-repair. J. Am. Chem. Soc. 2016;138:186–190. doi: 10.1021/jacs.5b09753. [DOI] [PubMed] [Google Scholar]
  • [117].Rousseau B J G, Shafei S, Migliore A, Stanley R J, Beratan D N. Determinants of photolyase’s DNA repair mechanism in mesophiles and extremophiles. J. Am. Chem. Soc. 2018;140:2853–2861. doi: 10.1021/jacs.7b11926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [118].Manto M J, Xie P F, Wang C. Catalytic dephosphorylation using ceria nanocrystals. ACS Catal. 2017;7:1931–1938. doi: 10.1021/acscatal.6b03472. [DOI] [Google Scholar]
  • [119].Liu H Y, Liu J W. Self-limited phosphatase-mimicking CeO2 nanozymes. ChemNanoMat. 2020;6:947–952. doi: 10.1002/cnma.202000132. [DOI] [Google Scholar]
  • [120].Kuchma M H, Komanski C B, Colon J, Teblum A, Masunov A E, Alvarado B, Babu S, Seal S, Summy J, Baker C H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine. 2010;6:738–744. doi: 10.1016/j.nano.2010.05.004. [DOI] [PubMed] [Google Scholar]
  • [121].Zhao C L, Xu Y. Theoretical investigation of dephosphorylation of phosphate monoesters on CeO2 (111) Catal. Today. 2018;312:141–148. doi: 10.1016/j.cattod.2018.02.033. [DOI] [Google Scholar]
  • [122].Janoš P, Ederer J, Došek M, Štojdl J, Henych J, Tolasz J, Kormunda M, Mazanec K. Can cerium oxide serve as a phosphodiesterase-mimetic nanozyme? Environ. Sci. Nano. 2019;6:3684–3698. doi: 10.1039/C9EN00815B. [DOI] [Google Scholar]
  • [123].Butler A, Sandy M. Mechanistic considerations of halogenating enzymes. Nature. 2009;460:848–854. doi: 10.1038/nature08303. [DOI] [PubMed] [Google Scholar]
  • [124].Frerichs H, Pütz E, Pfitzner F, Reich T, Gazanis A, Panthöfer M, Hartmann J, Jegel O, Heermann R, Tremel W. Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ) Nanoscale. 2020;12:21344–21358. doi: 10.1039/D0NR06165D. [DOI] [PubMed] [Google Scholar]
  • [125].Hu M H, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Thérien-Aubin H, Tremel W. Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl. Mater. Interfaces. 2018;10:44722–44730. doi: 10.1021/acsami.8b16307. [DOI] [PubMed] [Google Scholar]
  • [126].Lang J Y, Ma X J, Chen P Y, Serota M D, Andre N M, Whittaker G R, Yang R. Haloperoxidase-mimicking CeO2−x nanorods for the deactivation of human coronavirus OC43. Nanoscale. 2022;14:3731–3737. doi: 10.1039/D1NR06966G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [127].Xu F, Lu Q W, Huang P J J, Liu J W. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun. 2019;55:13215–13218. doi: 10.1039/C9CC06782E. [DOI] [PubMed] [Google Scholar]
  • [128].Korschelt K, Schwidetzky R, Pfitzner F, Strugatchi J, Schilling C, von der Au M, Kirchhoff K, Panthöfer M, Lieberwirth I, Tahir M N, et al. CeO2−x nanorods with intrinsic urease-like activity. Nanoscale. 2018;10:13074–13082. doi: 10.1039/C8NR03556C. [DOI] [PubMed] [Google Scholar]

Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES