Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jul 9;28(12):1111–1126. doi: 10.1007/s11655-022-3576-x

Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants

Da-cheng Hao 1, Li-jia Xu 2, Yu-wei Zheng 1, Huai-yu Lyu 1, Pei-gen Xiao 2,
PMCID: PMC9282152  PMID: 35809180

Abstract

Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.

Electronic Supplementary Material

Supplementary material (Appendixes 1–9) is available in the online version of this article at 10.1007/s11655-022-3576-x.

Keywords: Ranunculales, chemical constituent, bioactivity, diversity, pharmacophylogeny

Electronic Supplementary Material

Appendix (951.5KB, pdf)
11655_2022_3576_MOESM2_ESM.xls (66.5KB, xls)

Supplementary material, approximately 66.5 KB.

Appendix (616.9KB, pdf)
11655_2022_3576_MOESM4_ESM.xls (70KB, xls)

Supplementary material, approximately 70.0 KB.

Author Contributions

Xiao PG, Hao DC and Xu LJ contributed to study concept and design. Hao DC undertook data analysis and interpretation and wrote the paper. Xu LJ provided financial support. Hao DC and Xu LJ contributed equally to this work. Zheng YW and Lyu HY collected data and Zheng YW drew figures.

Footnotes

Supported by the National Science and Technology Fundamental Resources Investigation Program of China (No. 2018FY100700) and CAMS Innovation Fund for Medical Sciences (No. CIFMS 2021-I2M-1-032)

Conflict of Interest

The authors declare that they have no competing interests. Author XIAO Pei-gen is a member of the Editorial Board for CJIM. The paper was handled by the other Editor and has undergone rigorous peer review process. Author XIAO Pei-gen was not involved in the journal’s review of, or decisions related to, this manuscript.

References

  • 1.Hao DC, Xiao PG, Ma HY, et al. Mining chemodiversity from biodiversity: pharmacophylogeny of medicinal plants of Ranunculaceae. Chin J Nat Med. 2015;13:507–520. doi: 10.1016/S1875-5364(15)30045-5. [DOI] [PubMed] [Google Scholar]
  • 2.Kumar P, Kamle M, Mahato DK, et al. Tinospora cordifolia (Giloy): phytochemistry, ethnopharmacology, clinical application and conservation strategies. Curr Pharm Biotechnol. 2020;21:1165–1175. doi: 10.2174/1389201021666200430114547. [DOI] [PubMed] [Google Scholar]
  • 3.Jia MR, Zhang Y, editors. Dictionary of Chinese ethnic medicine. Beijing: China Medical Science Press; 2016. pp. 1–886. [Google Scholar]
  • 4.Zaman W, Ye JF, Saqib S, et al. Predicting potential medicinal plants with phylogenetic topology: inspiration from the research of traditional Chinese medicine. J Ethnopharmacol. 2021;281:114515. doi: 10.1016/j.jep.2021.114515. [DOI] [PubMed] [Google Scholar]
  • 5.Chen ZD, Yang T, Lin L, et al. Tree of life for the genera of Chinese vascular plants. J Syst Evol. 2016;54:277–306. [Google Scholar]
  • 6.Hu HH, Liu B, Liang YS, et al. An updated Chinese vascular plant tree of life: phylogenetic diversity hotspots revisited. J Syst Evol. 2020;58:663–672. [Google Scholar]
  • 7.Soltis PS, Soltis DE. The origin and diversification of angiosperms. Am J Bot. 2004;91:1614–1626. doi: 10.3732/ajb.91.10.1614. [DOI] [PubMed] [Google Scholar]
  • 8.Hao DC, Gu X, Xiao PG, editors. Medicinal plants: chemistry, biology and omics. Oxford: Elsevier-Woodhead; 2015. pp. 1–400. [Google Scholar]
  • 9.Wang W, Lu AM, Ren Y, et al. Phylogeny and classification of Ranunculales evidence from four molecular loci and morphological data. Persp Plant Ecol Evol Syst. 2009;11:81–110. [Google Scholar]
  • 10.Soltis DE, Smith SA, Cellinese N, et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot. 2011;98:704–730. doi: 10.3732/ajb.1000404. [DOI] [PubMed] [Google Scholar]
  • 11.Sun Y, Moore MJ, Zhang S, et al. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol Phylogenet Evol. 2016;96:93–101. doi: 10.1016/j.ympev.2015.12.006. [DOI] [PubMed] [Google Scholar]
  • 12.Anderson CL, Bremer K, Friis EM. Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am J Bot. 2005;92:1737–1748. doi: 10.3732/ajb.92.10.1737. [DOI] [PubMed] [Google Scholar]
  • 13.Wefferling KM, Hoot SB, Neves SS. Phylogeny and fruit evolution in Menispermaceae. Am J Bot. 2013;100:883–905. doi: 10.3732/ajb.1200556. [DOI] [PubMed] [Google Scholar]
  • 14.Sauquet H, Carrive L, Poullain N, et al. Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. Ann Bot. 2015;115:895–914. doi: 10.1093/aob/mcv020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Peng Y, Chen SB, Liu Y, et al. A pharmacophylogenetic study of the Berberidaceae (s.l.) Acta Phytotaxo Sin (Chin) 2006;44:241–257. [Google Scholar]
  • 16.Peng CY, Liu JQ, Zhang R, et al. A new alkaloid from the fruit of Nandina domestica Thunb. Nat Prod Res. 2014;28:1159–1164. doi: 10.1080/14786419.2014.921166. [DOI] [PubMed] [Google Scholar]
  • 17.Imahori D, Matsumoto T, Saito Y, et al. Cell death-inducing activities via P-glycoprotein inhibition of the constituents isolated from fruits of Nandina domestica. Fitoterapia. 2021;154:105023. doi: 10.1016/j.fitote.2021.105023. [DOI] [PubMed] [Google Scholar]
  • 18.Iwasa K, Doi Y, Takahashi T, et al. Enantiomeric separation of racemic 1-benzyl-N-methyltetrahydroisoquinolines on chiral columns and chiral purity determinations of the O-methylated metabolites in plant cell cultures by HPLC-CD on-line coupling in combination with HPLC-MS. Phytochemistry. 2009;70:198–206. doi: 10.1016/j.phytochem.2008.12.001. [DOI] [PubMed] [Google Scholar]
  • 19.Zhang N, Lian Z, Peng X, et al. Applications of higenamine in pharmacology and medicine. J Ethnopharmacol. 2017;196:242–252. doi: 10.1016/j.jep.2016.12.033. [DOI] [PubMed] [Google Scholar]
  • 20.Forrester MB. Pediatric Nandina domestica ingestions reported to poison centers. Hum Exp Toxicol. 2018;37:338–342. doi: 10.1177/0960327117705429. [DOI] [PubMed] [Google Scholar]
  • 21.Kodai T, Horiuchi Y, Nishioka Y, et al. Novel cycloartane-type triterpenoid from the fruits of Nandina domestica. J Nat Med. 2010;64:216–218. doi: 10.1007/s11418-010-0389-6. [DOI] [PubMed] [Google Scholar]
  • 22.Xia YG, Li GY, Liang J, et al. Genus Caulophyllum: an overview of chemistry and bioactivity. Evid Based Complement Alternat Med. 2014;2014:684508. doi: 10.1155/2014/684508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wang XL, Liu BR, Chen CK, et al. Four new fluorenone alkaloids and one new dihydroazafluoranthene alkaloid from Caulophyllum robustum Maxim. Fitoterapia. 2011;82:793–797. doi: 10.1016/j.fitote.2011.04.010. [DOI] [PubMed] [Google Scholar]
  • 24.Yang HX, Li W, Li Q, et al. Piperidine alkaloids and xanthone from the roots of Caulophyllum robustum Maxim. Fitoterapia. 2019;132:22–25. doi: 10.1016/j.fitote.2018.07.014. [DOI] [PubMed] [Google Scholar]
  • 25.Xia YG, Liang J, Li GY, et al. Energy-resolved technique for discovery and identification of malonyl-triterpene saponins in Caulophyllum robustum by UHPLC-electrospray fourier transform mass spectrometry. J Mass Spectrom. 2016;51:947–958. doi: 10.1002/jms.3806. [DOI] [PubMed] [Google Scholar]
  • 26.Xia YG, Li GY, Liang J, et al. A strategy for characterization of triterpene saponins in Caulophyllum robustum hairy roots by liquid chromatography with electrospray ionization quadrupoletime-of-flight mass spectrometry. J Pharm Biomed Anal. 2014;100:109–122. doi: 10.1016/j.jpba.2014.07.024. [DOI] [PubMed] [Google Scholar]
  • 27.Jia XJ, Li X, Wang F, et al. Berbamine exerts anti-inflammatory effects via inhibition of NF- κ B and MAPK signaling pathways. Cell Physiol Biochem. 2017;41:2307–2318. doi: 10.1159/000475650. [DOI] [PubMed] [Google Scholar]
  • 28.He JM, Mu Q. The medicinal uses of the genus Mahonia in traditional Chinese medicine: an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol. 2015;175:668–683. doi: 10.1016/j.jep.2015.09.013. [DOI] [PubMed] [Google Scholar]
  • 29.Belwal T, Giri L, Bhatt ID, et al. An improved method for extraction of nutraceutically important polyphenolics from Berberis jaeschkeana C.K. Schneid. fruits. Food Chem. 2017;230:657–666. doi: 10.1016/j.foodchem.2017.03.086. [DOI] [PubMed] [Google Scholar]
  • 30.Liu L, Cui ZX, Yang XW, et al. Simultaneous characterisation of multiple Mahonia fortunei bioactive compounds in rat plasma by UPLC-MS/MS for application in pharmacokinetic studies and anti-inflammatory activity in vitro. J Pharm Biomed Anal. 2020;179:113013. doi: 10.1016/j.jpba.2019.113013. [DOI] [PubMed] [Google Scholar]
  • 31.Hu S, Zhou Q, Wu WR, et al. Anticancer effect of deoxypodophyllotoxin induces apoptosis of human prostate cancer cells. Oncol Lett. 2016;12:2918–2923. doi: 10.3892/ol.2016.4943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Zhao C, Zhang N, He W, et al. Simultaneous determination of three major lignans in rat plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Diphylleia sinensis extract. Biomed Chromatogr. 2014;28:463–467. doi: 10.1002/bmc.3066. [DOI] [PubMed] [Google Scholar]
  • 33.Wang QH, Guo S, Yang XY, et al. Flavonoids isolated from Sinopodophylli Fructus and their bioactivities against human breast cancer cells. Chin J Nat Med. 2017;15:225–233. doi: 10.1016/S1875-5364(17)30039-0. [DOI] [PubMed] [Google Scholar]
  • 34.Sun YJ, Gao ML, Zhang YL, et al. Labdane diterpenes from the fruits of Sinopodophyllum emodi. Molecules. 2016;21:434. doi: 10.3390/molecules21040434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sun YJ, Pei LX, Wang KB, et al. Preparative isolation of two prenylated biflavonoids from the roots and rhizomes of Sinopodophyllum emodi by Sephadex LH-20column and high-speed counter-current chromatography. Molecules. 2015;21:E10. doi: 10.3390/molecules21010010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Marques JV, Dalisay DS, Yang H, et al. A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species. Mol Biosyst. 2014;10:2838–2849. doi: 10.1039/c4mb00403e. [DOI] [PubMed] [Google Scholar]
  • 37.Ti H, Wu P, Xu L, et al. Anti-inflammatory neolignans from Epimedium pseudowushanese. Nat Prod Res. 2017;31:2621–2628. doi: 10.1080/14786419.2017.1289200. [DOI] [PubMed] [Google Scholar]
  • 38.Thavamani BS, Mathew M, Palaniswamy DS. Anticancer activity of Cocculus hirsutus against Dalton’s lymphoma ascites (DLA) cells in mice. Pharm Biol. 2014;52:867–872. doi: 10.3109/13880209.2013.871642. [DOI] [PubMed] [Google Scholar]
  • 39.Sim HJ, Kim JH, Lee KR, et al. Simultaneous determination of structurally diverse compounds in different Fangchi species by UHPLC-DAD and UHPLC-ESI-MS/MS. Molecules. 2013;18:5235–5250. doi: 10.3390/molecules18055235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Desgrouas C, Taudon N, Bun SS, et al. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. J Ethnopharmacol. 2014;154:537–563. doi: 10.1016/j.jep.2014.04.024. [DOI] [PubMed] [Google Scholar]
  • 41.Jiang Y, Liu M, Liu H, et al. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji) Phytochem Rev. 2020;2020:1–41. doi: 10.1007/s11101-020-09673-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Dary C, Bun SS, Herbette G, et al. Chemical profiling of the tuber of Stephania cambodica Gagnep. (Menispermaceae) and analytical control by UHPLC-DAD. Nat Prod Res. 2017;31:802–809. doi: 10.1080/14786419.2016.1247077. [DOI] [PubMed] [Google Scholar]
  • 43.Wang XJ, Zhang Q, Peng YR, et al. Two azafluoranthene alkaloids and a phytoecdysone from the stems of Cyclea barbata. J Asian Nat Prod Res. 2019;21:217–226. doi: 10.1080/10286020.2018.1564137. [DOI] [PubMed] [Google Scholar]
  • 44.Wang JZ, Liao J, Xu WL, et al. Bisbenzylisoquinoline alkaloids from the roots of Cyclea tonkinensis. Planta Med. 2015;81:600–605. doi: 10.1055/s-0035-1545882. [DOI] [PubMed] [Google Scholar]
  • 45.Wang JZ, Liu XY, Wang FP. Two new curine-type bisbenzylisoquinoline alkaloids from the roots of Cyclea wattii with cytotoxic activities. Chem Pharm Bull. 2010;58:986–988. doi: 10.1248/cpb.58.986. [DOI] [PubMed] [Google Scholar]
  • 46.Wang JZ, Chen QH, Wang FP. Cytotoxic bisbenzylisoquinoline alkaloids from the roots of Cyclea racemosa. J Nat Prod. 2010;73:1288–1293. doi: 10.1021/np1001863. [DOI] [PubMed] [Google Scholar]
  • 47.Hullatti KK, Gopikrishna UV, Kuppast IJ. Phytochemical investigation and diuretic activity of Cyclea peltata leaf extracts. J Adv Pharm Technol Res. 2011;2:241–244. doi: 10.4103/2231-4040.90880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.da Silva Mendes JW, Cunha WEM, Rodrigues FFG, et al. Cissampelos genus: biological activities, ethnobotanical and phytochemical aspects. Phytochem Rev. 2020;19:955–982. [Google Scholar]
  • 49.Hullatti KK, Sharada MS. Comparative phytochemical investigation of the sources of ayurvedic drug patha: a chromatographic fingerprinting analysis. Indian J Pharm Sci. 2010;72:39–45. doi: 10.4103/0250-474X.62235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Logesh R, Das N, Adhikari-Devkota A, et al. Cocculus hirsutus (L.) W. Theob. (Menispermaceae): a review on traditional uses, phytochemistry and pharmacological activities. Medicines. 2020;7:69. doi: 10.3390/medicines7110069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Liao J, Lei Y, Wang JZ. Chemical constituents of Cocculus orbiculatus var. mollis root. J Chin Med Mater (Chin) 2014;37:254–257. [PubMed] [Google Scholar]
  • 52.Huang YF, He F, Wang CJ, et al. Discovery of chemical markers for improving the quality and safety control of Sinomenium acutum stem by the simultaneous determination of multiple alkaloids using UHPLC-QQQ-MS/MS. Sci Rep. 2020;10:14182. doi: 10.1038/s41598-020-71133-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Lyu HN, Zeng KW, Cao NK, et al. Alkaloids from the stems and rhizomes of Sinomenium acutum from the Qinling Mountains, China. Phytochemistry. 2018;156:241–249. doi: 10.1016/j.phytochem.2018.09.009. [DOI] [PubMed] [Google Scholar]
  • 54.Sun M, Wang J, Zhou Y, et al. Isotetrandrine reduces astrocyte cytotoxicity in neuromyelitis optica by blocking the binding of NMO-IgG to aquaporin 4. Neuroimmunomodulation. 2016;23:98–108. doi: 10.1159/000444530. [DOI] [PubMed] [Google Scholar]
  • 55.Lv HN, Zeng KW, Zhao MB, et al. Pyrrolo[2,1-a]isoquinoline and pyrrole alkaloids from Sinomenium acutum. J Asian Nat Prod Res. 2018;20:195–200. doi: 10.1080/10286020.2017.1326910. [DOI] [PubMed] [Google Scholar]
  • 56.Wei H, Han Y, Wang J, et al. Analgesic bisbenzylisoquinoline alkaloids from the rhizoma of Menispermum dauricum DC. Bioorg Chem. 2021;107:104517. doi: 10.1016/j.bioorg.2020.104517. [DOI] [PubMed] [Google Scholar]
  • 57.Shao J, Shi CF, Wei JX, et al. Chemical constituents from rhizome of Menispermum dauricum and their anti-hypoxic activities. China J Chin Mater Med (Chin) 2019;44:723–729. doi: 10.19540/j.cnki.cjcmm.20181121.003. [DOI] [PubMed] [Google Scholar]
  • 58.Singh D, Chaudhuri PK. Chemistry and pharmacology of Tinospora cordifolia. Nat Prod Commun. 2017;12:299–308. [PubMed] [Google Scholar]
  • 59.Zhu XF. Study on the separation of chemical constituents and determination of active components in Tibetan medicine Tinospora sinensis [dissertation] Nanchang: Jiangxi University of Traditional Chinese Medicine; 2019. [Google Scholar]
  • 60.Hossen F, Ahasan R, Haque MR, et al. Crispene A, B, C and D, four new clerodane type furanoid diterpenes from Tinospora crispa (L.) Pharmacogn Mag. 2016;12(S1):37–41. doi: 10.4103/0973-1296.176116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zhang G, Ma H, Hu S, et al. Clerodane-type diterpenoids from tuberous roots of Tinospora sagittata (Oliv.) Gagnep. Fitoterapia. 2016;110:59–65. doi: 10.1016/j.fitote.2016.02.012. [DOI] [PubMed] [Google Scholar]
  • 62.Wang EJ, Ma YB, Zhang XM, et al. Five alkaloids from vine stems of Diploclisia affinis. China J Chin Mater Med (Chin) 2008;33:2503–2505. [PubMed] [Google Scholar]
  • 63.Jayasinghe UL, Hara N, Fujimoto Y. (2-Nitro ethyl)phenyl and cyanophenyl glycosides from the fruits of Diploclisia glaucescens. Nat Prod Res. 2007;21:260–264. doi: 10.1080/14786410600898615. [DOI] [PubMed] [Google Scholar]
  • 64.Jayasinghe L, Jayasooriya CP, Oyama K, et al. 3-Deoxy-1beta,20-dihydroxyecdysone from the leaves of Diploclisia glaucescens. Steroids. 2002;67:555–558. doi: 10.1016/s0039-128x(02)00003-x. [DOI] [PubMed] [Google Scholar]
  • 65.Samita F, Ochieng CO, Owuor PO, et al. Isolation of a new β -carboline alkaloid from aerial parts of Triclisia sacleuxii and its antibacterial and cytotoxicity effects. Nat Prod Res. 2017;31:529–536. doi: 10.1080/14786419.2016.1201666. [DOI] [PubMed] [Google Scholar]
  • 66.Gao GY, Xiao PG. Review of studies of bisbenzylisoquinoline alkaloid (BBI) on distribution in higher plant and physiological activities. Nat Prod Res Develop. 1999;11:96–103. [Google Scholar]
  • 67.Yu LL, Li RT, Ai YB, et al. Protoberberine isoquinoline alkaloids from Arcangelisia gusanlung. Molecules. 2014;19:13332–13341. doi: 10.3390/molecules190913332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Subeki, Matsuura H, Takahashi K, et al. Antibabesial activity of protoberberine alkaloids and 20-hydroxyecdysone from Arcangelisia flava against Babesia gibsoni in culture. J Vet Med Sci. 2005;67:223–227. doi: 10.1292/jvms.67.223. [DOI] [PubMed] [Google Scholar]
  • 69.Fun HK, Salae AW, Razak IA, et al. Absolute configuration of fibaruretin B. Acta Crystallogr Sect E Struct Rep Online. 2011;67:1246–1247. doi: 10.1107/S1600536811014887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Kawakami Y, Nagai Y, Nezu Y, et al. Indonesian medicinal plants. I. New furanoditerpenes from Arcangelisia flava MERR. (2). Stereostructure of furanoditerpenes determined by nuclear magneticresonance analysis. Chem Pharm Bull. 1987;35:4839–4845. doi: 10.1248/cpb.35.4839. [DOI] [PubMed] [Google Scholar]
  • 71.Qiao W, Wang L, Ye B, et al. Electrochemical behavior of palmatine and its sensitive determination based on an electrochemically reduced L-methionine functionalized graphene oxide modified electrode. Analyst. 2015;140:7974–7983. doi: 10.1039/c5an01770j. [DOI] [PubMed] [Google Scholar]
  • 72.Rao GX, Zhang S, Wang HM, et al. Antifungal alkaloids from the fresh rattan stem of Fibraurea recisa Pierre. J Ethnopharmacol. 2009;123:1–5. doi: 10.1016/j.jep.2009.02.046. [DOI] [PubMed] [Google Scholar]
  • 73.Su CR, Chen YF, Liou MJ, et al. Anti-inflammatory activities of furanoditerpenoids and other constituents from Fibraurea tinctoria. Bioorg Med Chem. 2008;16:9603–9609. doi: 10.1016/j.bmc.2008.09.023. [DOI] [PubMed] [Google Scholar]
  • 74.Zhao X, Zhang Y, Wang Q, et al. An integrated strategy for the establishment of a protoberberine alkaloid profile: exploration of the differences in composition between Tinosporae Radix and Fibraurea Caulis. Phytochem Anal. 2021;32:1131–1140. doi: 10.1002/pca.3054. [DOI] [PubMed] [Google Scholar]
  • 75.Zhang W, Sun C, Zhou S, et al. Recent advances in chemistry and bioactivity of Sargentodoxa cuneata. J Ethnopharmacol. 2021;270:113840. doi: 10.1016/j.jep.2021.113840. [DOI] [PubMed] [Google Scholar]
  • 76.Li DH, Lv YS, Liu JH, et al. Simultaneous determination of four active ingredients in Sargentodoxa cuneata by HPLC coupled with evaporative light scattering detection. Int J Anal Chem. 2016;2016:8509858. doi: 10.1155/2016/8509858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Li H, Zhao FC, Yuan XD, et al. Determination of phenols and triterpenoid saponins in stems of Sargentodoxa cuneata. China J Chin Mater Med (Chin) 2015;40:1865–1871. [PubMed] [Google Scholar]
  • 78.Li X, Xia Y, Li G, et al. Traditional uses, phytochemistry, pharmacology, and toxicology of Akebiae Caulis and its synonyms: a review. J Ethnopharmacol. 2021;277:114245. doi: 10.1016/j.jep.2021.114245. [DOI] [PubMed] [Google Scholar]
  • 79.Maciag D, Dobrowolska E, Sharafan M, et al. Akebia quinata and Akebia trifoliata-a review of phytochemical composition, ethnopharmacological approaches and biological studies. J Ethnopharmacol. 2021;280:114486. doi: 10.1016/j.jep.2021.114486. [DOI] [PubMed] [Google Scholar]
  • 80.An JP, Ha TK, Kim J. Protein tyrosine phosphatase 1B inhibitors from the stems of Akebia quinata. Molecules. 2016;21:1091. doi: 10.3390/molecules21081091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kim DR, Lee JE, Shim KJ, et al. Effects of herbal Epimedium on the improvement of bone metabolic disorder through the induction of osteogenic differentiation from bone marrow-derived mesenchymal stem cells. Mol Med Rep. 2017;15:125–130. doi: 10.3892/mmr.2016.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Ling Y, Zhang Q, Zhu DD, et al. Identification and characterization of the major chemical constituents in Fructus Akebiae by high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight mass spectrometry. J Chromatogr Sci. 2016;54:148–157. doi: 10.1093/chromsci/bmv119. [DOI] [PubMed] [Google Scholar]
  • 83.Gong LL, Li GR, Zhang W, et al. Akebia saponin D decreases hepatic steatosis through autophagy modulation. J Pharmacol Exp Ther. 2016;359:392–400. doi: 10.1124/jpet.116.236562. [DOI] [PubMed] [Google Scholar]
  • 84.Xu QL, Wang J, Dong LM, et al. Two new pentacyclic triterpene saponins from the leaves of Akebia trifoliata. Molecules. 2016;21:962. doi: 10.3390/molecules21070962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Ding W, Li Y, Li G, et al. New 30-noroleanane triterpenoid saponins from Holboellia coriacea Diels. Molecules. 2016;21:734. doi: 10.3390/molecules21060734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Fu H, Koike K, Zheng Q, et al. Fargosides A-E, triterpenoid saponins from Holboellia fargesii. Chem Pharm Bull. 2001;49:999–1002. doi: 10.1248/cpb.49.999. [DOI] [PubMed] [Google Scholar]
  • 87.Vinh LB, Jang HJ, Phong NV, et al. Isolation, structural elucidation, and insights into the anti-inflammatory effects of triterpene saponins from the leaves of Stauntonia hexaphylla. Bioorg Med Chem Lett. 2019;29:965–969. doi: 10.1016/j.bmcl.2019.02.022. [DOI] [PubMed] [Google Scholar]
  • 88.Liu XL, Wang DD, Wang ZH, et al. Diuretic properties and chemical constituent studies on Stauntonia brachyanthera. Evid Based Complement Alternat Med. 2015;2015:432419. doi: 10.1155/2015/432419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Hu X, Wang S, Xu J, et al. Triterpenoid saponins from Stauntonia chinensis ameliorate insulin resistance via the AMP-activated protein kinase and IR/IRS-1/PI3K/Akt pathways in insulin-resistant HepG2 cells. Int J Mol Sci. 2014;15:10446–10458. doi: 10.3390/ijms150610446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Wang D, Tian J, Zhou GP, et al. Triterpenoid glycosides from Stauntonia chinensis. J Asian Nat Prod Res. 2010;12:150–156. doi: 10.1080/10286020903479709. [DOI] [PubMed] [Google Scholar]
  • 91.Lu X, Qiu F, Pan X, et al. Simultaneous quantitative analysis of nine triterpenoid saponins for the quality control of Stauntonia obovatifoliola Hayata subsp. intermedia stems. J Sep Sci. 2014;37:3632–3640. doi: 10.1002/jssc.201400771. [DOI] [PubMed] [Google Scholar]
  • 92.Gao H, Zhao F, Chen GD, et al. Bidesmoside triterpenoid glycosides from Stauntonia chinensis and relationship to anti-inflammation. Phytochemistry. 2009;70:795–806. doi: 10.1016/j.phytochem.2009.04.005. [DOI] [PubMed] [Google Scholar]
  • 93.Hwang SH, Kwon SH, Kim SB, et al. Inhibitory activities of Stauntonia hexaphylla leaf constituents on rat lens aldose reductase and formation of advanced glycation end products and antioxidant. Biomed Res Int. 2017;2017:4273257. doi: 10.1155/2017/4273257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Deng AP, Zhang Y, Zhou L, et al. Systematic review of the alkaloid constituents in several important medicinal plants of the genus Corydalis. Phytochemistry. 2021;183:112644. doi: 10.1016/j.phytochem.2020.112644. [DOI] [PubMed] [Google Scholar]
  • 95.Mao Z, Wang X, Liu Y, et al. Simultaneous determination of seven alkaloids from Rhizoma Corydalis Decumbentis in rabbit aqueous humor by LC-MS/MS: application to ocular pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1057:46–53. doi: 10.1016/j.jchromb.2017.04.040. [DOI] [PubMed] [Google Scholar]
  • 96.Shang WQ, Chen YM, Gao XL, et al. Phytochemical and pharmacological advance on Tibetan medicinal plants of Corydalis. China J Chin Mater Med (Chin) 2014;39:1190–1198. [PubMed] [Google Scholar]
  • 97.Zhang RF, Guo Q, Kennelly EJ, et al. Diverse alkaloids and biological activities of Fumaria (Papaveraceae): an ethnomedicinal group. Fitoterapia. 2020;146:104697. doi: 10.1016/j.fitote.2020.104697. [DOI] [PubMed] [Google Scholar]
  • 98.Zhang RF, Zha S, Yin X, et al. Phytochemical and pharmacological progress on Tibetan medicine Hypecoi Erecti Herba and plants of Hypecoum L. Chin Tradit Herb Drugs (Chin) 2016;47:1217–1224. [Google Scholar]
  • 99.Song K, Oh JH, Lee MY, et al. Molecular network-guided alkaloid profiling of aerial parts of Papaver nudicaule L. Using LC-HRMS. Molecules. 2020;25:2636. doi: 10.3390/molecules25112636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Li Y, Winzer T, He Z, et al. Over 100 million years of enzyme evolution underpinning the production of morphine in the Papaveraceae family of flowering plants. Plant Commun. 2020;1:100029. doi: 10.1016/j.xplc.2020.100029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Guo Q, Bai R, Zhao B, et al. An ethnopharmacological, phytochemical and pharmacological review of the genus Meconopsis. Am J Chin Med. 2016;44:439–462. doi: 10.1142/S0192415X16500257. [DOI] [PubMed] [Google Scholar]
  • 102.Kukula-Koch W, Mroczek T. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots. Anal Bioanal Chem. 2015;407:2581–2589. doi: 10.1007/s00216-015-8468-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Ghosh S, Tiwari SS, Kumar B, et al. Identification of potential plant extracts for anti-tick activity against acaricide resistant cattle ticks, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) Exp Appl Acarol. 2015;66:159–171. doi: 10.1007/s10493-015-9890-7. [DOI] [PubMed] [Google Scholar]
  • 104.Croaker A, King GJ, Pyne JH, et al. Sanguinaria canadensis: traditional medicine, phytochemical composition, biological activities and current uses. Int J Mol Sci. 2016;17:1414. doi: 10.3390/ijms17091414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Lu M, Li K, He H, et al. Systematic characterization of alkaloids in Eomecon chionantha Hance using ultrahigh-performance liquid chromatography-tandem quadrupole exactive orbitrap mass spectrometry with a four-step screening strategy. Rapid Commun Mass Spectrom. 2020;34:e8880. doi: 10.1002/rcm.8880. [DOI] [PubMed] [Google Scholar]
  • 106.Son SY, Rhee HS, Lee MW, et al. Analysis of benzo[c]phenanthridine alkaloids in Eschscholtzia californica cell culture using HPLC-DAD and HPLC-ESI-MS/MS. Biosci Biotechnol Biochem. 2014;78:1103–1111. doi: 10.1080/09168451.2014.917264. [DOI] [PubMed] [Google Scholar]
  • 107.Cahlíková L, Kucera R, Host’álková A, et al. Identification of pavinane alkaloids in the genera Argemone and Eschscholzia by GC-MS. Nat Prod Commun. 2012;7:1279–1281. [PubMed] [Google Scholar]
  • 108.Guo W, Lu X, Liu B, et al. Anti-TMV activity and mode of action of three alkaloids isolated from Chelidonium majus. Pest Manag Sci. 2021;77:510–517. doi: 10.1002/ps.6049. [DOI] [PubMed] [Google Scholar]
  • 109.Huang XY, Shao ZX, An LJ, et al. New lignanamides and alkaloids from Chelidonium majus and their anti-inflammation activity. Fitoterapia. 2019;139:104359. doi: 10.1016/j.fitote.2019.104359. [DOI] [PubMed] [Google Scholar]
  • 110.Qu YF, Gao JY, Wang J, et al. New triterpenoid saponins from the herb Hylomecon japonica. Molecules. 2017;22:1731. doi: 10.3390/molecules22101731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Bournine L, Bensalem S, Wauters JN, et al. Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum. Int J Mol Sci. 2013;14:23533–23544. doi: 10.3390/ijms141223533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Chang L, Hagel JM, Facchini PJ. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol. 2015;169:1127–1140. doi: 10.1104/pp.15.01240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Lin L, Liu YC, Huang JL, et al. Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): a review of their phytochemistry, pharmacology, and toxicology. Phytother Res. 2018;32:19–48. doi: 10.1002/ptr.5952. [DOI] [PubMed] [Google Scholar]
  • 114.Och A, Szewczyk K, Pecio L, et al. UPLC-MS/MS profile of alkaloids with cytotoxic properties of selected medicinal plants of the Berberidaceae and Papaveraceae families. Oxid Med Cell Longev. 2017;2017:9369872. doi: 10.1155/2017/9369872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Murakami T, Oominami H, Matsuda H, et al. Bioactive saponins and glycosides. XVIII. Nortriterpene and triterpene oligoglycosides from the fresh leaves of Euptelea polyandra Sieb. et Zucc. (2): Structures of eupteleasaponins VI, VI acetate, VII, VIII, IX, X, XI, and XII. Chem Pharm Bull. 2001;49:741–746. doi: 10.1248/cpb.49.741. [DOI] [PubMed] [Google Scholar]
  • 116.Xiao PG, Wang LW, Lv SJ, et al. Statistical analysis of the ethnopharmacologic data based on Chinese medicinal plants by electronic computer I. Magnoliidae. Chin J Integr Tradit West Med (Chin) 1986;6:253–256. [PubMed] [Google Scholar]
  • 117.Mokhber-Dezfuli N, Saeidnia S, Gohari AR, et al. Phytochemistry and pharmacology of berberis species. Pharmacogn Rev. 2014;8:8–15. doi: 10.4103/0973-7847.125517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33:504–523. doi: 10.1002/ptr.6252. [DOI] [PubMed] [Google Scholar]
  • 119.Guo ZY, Zhang ZY, Xiao JQ, et al. Antibacterial effects of leaf extract of Nandina domestica and the underlined mechanism. Evid Based Complement Alternat Med. 2018;2018:8298151. doi: 10.1155/2018/8298151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Jo A, Yoo HJ, Lee M. Robustaflavone isolated from Nandina domestica using bioactivity-guided fractionation downregulates inflammatory mediators. Molecules. 2019;24:1789. doi: 10.3390/molecules24091789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Son Y, An Y, Jung J, et al. Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53. Phytother Res. 2019;33:1689–1696. doi: 10.1002/ptr.6357. [DOI] [PubMed] [Google Scholar]
  • 122.Kulkarni RR, Lee W, Jang TS, et al. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses. Bioorg Med Chem Lett. 2015;25:5367–5371. doi: 10.1016/j.bmcl.2015.09.031. [DOI] [PubMed] [Google Scholar]
  • 123.Bi SF, Zhu GQ, Wu J, et al. Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits. Nat Prod Res. 2016;30:362–365. doi: 10.1080/14786419.2015.1057584. [DOI] [PubMed] [Google Scholar]
  • 124.Rocha MP, Campana PRV, Scoaris DO, et al. Combined in vitro studies and in silico target fishing for the evaluation of the biological activities of Diphylleia cymosa and Podophyllum hexandrum. Molecules. 2018;23:3303. doi: 10.3390/molecules23123303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Yang Z, Wu Y, Wu S, et al. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magneticresonance pattern recognition and following conical counter-current chromatography separation: podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples. J Chromatogr A. 2016;1431:184–196. doi: 10.1016/j.chroma.2015.12.074. [DOI] [PubMed] [Google Scholar]
  • 126.Guerram M, Jiang ZZ, Sun L, et al. Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol Rep. 2015;67:245–252. doi: 10.1016/j.pharep.2014.10.003. [DOI] [PubMed] [Google Scholar]
  • 127.Li J, Feng J, Luo C, et al. Absolute configuration of podophyllotoxone and its inhibitory activity against human prostate cancer cells. Chin J Nat Med. 2015;13:59–64. doi: 10.1016/S1875-5364(15)60007-3. [DOI] [PubMed] [Google Scholar]
  • 128.Liang F, Han Y, Gao H, et al. Kaempferol identified by zebrafish assay and fine fractionations strategy from Dysosma versipellis inhibits angiogenesis through VEGF and FGF pathways. Sci Rep. 2015;5:14468. doi: 10.1038/srep14468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Chen R, Duan R, Wei Y, et al. Flavonol dimers from callus cultures of Dysosma versipellis and their in vitro neuraminidase inhibitory activities. Fitoterapia. 2015;107:77–84. doi: 10.1016/j.fitote.2015.10.005. [DOI] [PubMed] [Google Scholar]
  • 130.Li J, Sun H, Jin L, et al. Alleviation of podophyllotoxin toxicity using coexisting flavonoids from Dysosma versipellis. PLoS One. 2013;8:e72099. doi: 10.1371/journal.pone.0072099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Zhou FZ, Wang X, Dai AY, et al. Effects of Sinopodophyllum hexundrum on apoptosis in K562 cells. J Southern Med Univ (Chin) 2016;37:226–231. doi: 10.3969/j.issn.1673-4254.2017.02.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Ma H, He X, Yang Y, et al. The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2011;134:519–541. doi: 10.1016/j.jep.2011.01.001. [DOI] [PubMed] [Google Scholar]
  • 133.Wu L, Du ZR, Xu AL, et al. Neuroprotective effects of total flavonoid fraction of the Epimedium koreanum Nakai extract on dopaminergic neurons: in vivo and in vitro. Biomed Pharmacother. 2017;91:656–663. doi: 10.1016/j.biopha.2017.04.083. [DOI] [PubMed] [Google Scholar]
  • 134.Chen WF, Wu L, Du ZR, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine. 2017;25:93–99. doi: 10.1016/j.phymed.2016.12.017. [DOI] [PubMed] [Google Scholar]
  • 135.Mo ZT, Li WN, Zhai YR, et al. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury. Pharm Biol. 2017;55:848–852. doi: 10.1080/13880209.2017.1281968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Cho JH, Jung JY, Lee BJ, et al. Epimedii Herba: a promising herbal medicine for neuroplasticity. Phytother Res. 2017;31:838–848. doi: 10.1002/ptr.5807. [DOI] [PubMed] [Google Scholar]
  • 137.Arens H, Fischer H, Leyck S, et al. Antiinflammatory compounds from Plagiorhegma dubium cell culture. Planta Med. 1985;51:52–56. [PubMed] [Google Scholar]
  • 138.Kim JM, Jung HA, Choi JS, et al. Comparative analysis of the anti-inflammatory activity of Huang-lian extracts in lipopolysaccharide-stimulated RAW264.7 murine macrophage-like cells using oligonucleotide microarrays. Arch Pharm Res. 2010;33:1149–1157. doi: 10.1007/s12272-010-0803-3. [DOI] [PubMed] [Google Scholar]
  • 139.Jiang Y, Yu L, Wang MH. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: involvement of AP-1 and MAP kinase signalling pathways. Chem Biol Interact. 2015;235:56–62. doi: 10.1016/j.cbi.2015.03.029. [DOI] [PubMed] [Google Scholar]
  • 140.Yu LL, Hu WC, Ding G, et al. Gusanlungionosides A-D, potential tyrosinase inhibitors from Arcangelisia gusanlung. J Nat Prod. 2011;74:1009–1014. doi: 10.1021/np100900k. [DOI] [PubMed] [Google Scholar]
  • 141.Sriwilaijareon N, Petmitr S, Mutirangura A, et al. Stage specificity of Plasmodium falciparum telomerase and its inhibition by berberine. Parasitol Int. 2002;51:99–103. doi: 10.1016/s1383-5769(01)00092-7. [DOI] [PubMed] [Google Scholar]
  • 142.Nguyen-Pouplin J, Tran H, Tran H, et al. Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. J Ethnopharmacol. 2007;109:417–427. doi: 10.1016/j.jep.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 143.Yu H, He ZM, Shi K, et al. Study on antidepressant effect of total alkaloids of Fibraurea recisa. China J Chin Mater Med (Chin) 2021;46:3678–3686. doi: 10.19540/j.cnki.cjcmm.20210406.403. [DOI] [PubMed] [Google Scholar]
  • 144.Zhang M, Chen W, Zong Y, et al. Cognitive-enhancing effects of fibrauretine on A β 1-42-induced Alzheimer’s disease by compatibilization with ginsenosides. Neuropeptides. 2020;82:102020. doi: 10.1016/j.npep.2020.102020. [DOI] [PubMed] [Google Scholar]
  • 145.Ma C, Du F, Yan L, et al. Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules. 2015;20:17913–17928. doi: 10.3390/molecules201017913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Manosroi A, Akazawa H, Akihisa T, et al. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database “MANOSROI III”. J Ethnopharmacol. 2015;161:11–17. doi: 10.1016/j.jep.2014.11.038. [DOI] [PubMed] [Google Scholar]
  • 147.Gong S, Xu D, Zou F, et al. (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomed Pharmacother. 2017;89:894–901. doi: 10.1016/j.biopha.2017.01.148. [DOI] [PubMed] [Google Scholar]
  • 148.Bhagya N, Chandrashekar KR, Prabhu A, et al. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell Dev Biol Anim. 2019;55:331–340. doi: 10.1007/s11626-019-00332-9. [DOI] [PubMed] [Google Scholar]
  • 149.Vijayan D, Cheethaparambil A, Pillai GS, et al. Molecular authentication of Cissampelos pareira L. var. hirsuta (Buch.-Ham.Ex DC.) Forman, the genuine source plant of ayurvedic raw drug ‘Patha’, and its other source plants by ISSR markers. 3 Biotech. 2014;4:559–562. doi: 10.1007/s13205-013-0183-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Rogosnitzky M, Okediji P, Koman I. Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol Rep. 2020;72:1509–1516. doi: 10.1007/s43440-020-00132-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Jayasinghe UL, Kumarihamy BM, Bandara AG, et al. Antifeedant activity of some Sri Lankan plants. Nat Prod Res. 2003;17:5–8. doi: 10.1080/10575630290034285. [DOI] [PubMed] [Google Scholar]
  • 152.Wei ZZ, Qin QP, Chen JN, et al. Oxoisoaporphine as potent telomerase inhibitor. Molecules. 2016;21:1534. doi: 10.3390/molecules21111534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Zhou ZG, Zhang CY, Fei HX, et al. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway. Pharmacogn Mag. 2015;11:690–697. doi: 10.4103/0973-1296.165548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Zhang HF, Wu D, Du JK, et al. Inhibitory effects of phenolic alkaloids of Menispermum dauricum on gastric cancer in vivo. Asian Pac J Cancer Prev. 2014;15:10825–10830. doi: 10.7314/apjcp.2014.15.24.10825. [DOI] [PubMed] [Google Scholar]
  • 155.Li YY, Zheng G, Liu L. Bioinformatics based therapeutic effects of Sinomenium acutum. Chin J Integr Med. 2019;25:122–130. doi: 10.1007/s11655-018-2796-6. [DOI] [PubMed] [Google Scholar]
  • 156.Zhao XX, Peng C, Zhang H, et al. Sinomenium acutum: a review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm Biol. 2012;50:1053–1061. doi: 10.3109/13880209.2012.656847. [DOI] [PubMed] [Google Scholar]
  • 157.Hong GL, Park SR, Jung DY, et al. The therapeutic effects of Stauntonia hexaphylla in benign prostate hyperplasia are mediated by the regulation of androgen receptors and 5α-reductase type 2. J Ethnopharmacol. 2020;250:112446. doi: 10.1016/j.jep.2019.112446. [DOI] [PubMed] [Google Scholar]
  • 158.Li J, Du K, Liu D, et al. New nor-oleanane triterpenoids from the fruits of Stauntonia brachyanthera with potential anti-inflammation activity. Nat Prod Res. 2020;34:915–922. doi: 10.1080/14786419.2018.1540478. [DOI] [PubMed] [Google Scholar]
  • 159.Yang J, Xiong Q, Zhang J, et al. The protective effect of Stauntonia chinensis polysaccharide on CCl4-induced acute liver injuries in mice. Int J Biomed Sci. 2014;10:16–20. [PMC free article] [PubMed] [Google Scholar]
  • 160.Liu D, Li S, Qi JQ, et al. The inhibitory effects of nor-oleanane triterpenoid saponins from Stauntonia brachyanthera towards UDP-glucuronosyltransferases. Fitoterapia. 2016;112:56–64. doi: 10.1016/j.fitote.2016.05.007. [DOI] [PubMed] [Google Scholar]
  • 161.Liu XL, Li S, Meng DL. Anti-gout nor-oleanane triterpenoids from the leaves of Stauntonia brachyanthera. Bioorg Med Chem Lett. 2016;26:2874–2879. doi: 10.1016/j.bmcl.2016.04.048. [DOI] [PubMed] [Google Scholar]
  • 162.Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. Pharm Biol. 2020;58:265–275. doi: 10.1080/13880209.2020.1741651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Gupta PC, Sharma N, Rao CV. A review on ethnobotany, phytochemistry and pharmacology of Fumaria indica (Fumitory) Asian Pac J Trop Biomed. 2012;2:665–669. doi: 10.1016/S2221-1691(12)60117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Yuan HL, Zhao YL, Qin XJ, et al. Diverse isoquinolines with anti-inflammatory and analgesic bioactivities from Hypecoum erectum. J Ethnopharmacol. 2021;270:113811. doi: 10.1016/j.jep.2021.113811. [DOI] [PubMed] [Google Scholar]
  • 165.Doncheva T, Kostova N, Valcheva V, et al. Hypepontine, a new quaternary alkaloid with antimicrobial properties. Nat Prod Res. 2020;34:668–674. doi: 10.1080/14786419.2018.1495640. [DOI] [PubMed] [Google Scholar]
  • 166.Zhang Q, Luan G, Ma T, et al. Application of chromatography technology in the separation of active alkaloids from Hypecoum leptocarpum and their inhibitory effect on fatty acid synthase. J Sep Sci. 2015;38:4063–4070. doi: 10.1002/jssc.201500848. [DOI] [PubMed] [Google Scholar]
  • 167.Akaberi T, Shourgashti K, Emami SA, et al. Phytochemistry and pharmacology of alkaloids from Glaucium spp. Phytochemistry. 2021;191:112923. doi: 10.1016/j.phytochem.2021.112923. [DOI] [PubMed] [Google Scholar]
  • 168.Gilca M, Gaman L, Panait E, et al. Chelidonium majus—an integrative review: traditional knowledge versus modern findings. Forsch Komplementmed. 2010;17:241–248. doi: 10.1159/000321397. [DOI] [PubMed] [Google Scholar]
  • 169.Arcos-Martínez AI, Muñoz-Muñiz OD, Domínguez-Ortiz M, et al. Anxiolytic-like effect of ethanolic extract of Argemone mexicana and its alkaloids in Wistar rats. Avicenna J Phytomed. 2016;6:476–488. [PMC free article] [PubMed] [Google Scholar]
  • 170.Rubio-Pina J, Vazquez-Flota F. Pharmaceutical applications of the benzylisoquinoline alkaloids from Argemone mexicana L. Curr Top Med Chem. 2013;13:2200–2207. doi: 10.2174/15680266113139990152. [DOI] [PubMed] [Google Scholar]
  • 171.Kamalakannan S, Ananth S, Murugan K, et al. Bio fabrication of silver nanoparticle from Argemone mexicana for the control of Aedes albopictus and their antimicrobial activity. Curr Pharm Biotechnol. 2016;17:1285–1294. doi: 10.2174/1389201017666161026093716. [DOI] [PubMed] [Google Scholar]
  • 172.Singh S, Verma M, Malhotra M, et al. Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharm Biol. 2016;54:740–745. doi: 10.3109/13880209.2015.1073334. [DOI] [PubMed] [Google Scholar]
  • 173.Li MX, Wang JH, He XR, et al. Phytochemical and biological studies of plants from the genus Meconopsis. Chem Biodivers. 2010;7:1930–1948. doi: 10.1002/cbdv.200900210. [DOI] [PubMed] [Google Scholar]
  • 174.Yoshikawa M, Murakami T, Oomiinami H, et al. Bioactive saponins and glycosides. XVI. Nortriterpene oligoglycosides with gastroprotective activity from the fresh leaves of Euptelea polyandra Sieb. et Zucc. (1): Structures of Eupteleasaponins I, II, III, IV, V, and V acetate. Chem Pharm Bull. 2000;48:1045–1050. doi: 10.1248/cpb.48.1045. [DOI] [PubMed] [Google Scholar]
  • 175.Suzuki R, Fukami S, Tomomura M, et al. Screening for natural medicines effective for the treatment of osteoporosis. J Nat Med. 2019;73:331–337. doi: 10.1007/s11418-018-1258-y. [DOI] [PubMed] [Google Scholar]
  • 176.Hao DC, ed. Ranunculales medicinal plants: biodiversity, chemodiversity and pharmacotherapy. London: Academic Press;2018:1–350.
  • 177.Liscombe DK, MacLeod BP, Loukanina N, et al. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry. 2005;66:2501–2520. doi: 10.1016/j.phytochem.2005.04.044. [DOI] [PubMed] [Google Scholar]
  • 178.Petruczynik A, Plech T, Tuzimski T, et al. Determination of selected isoquinoline alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata extracts by HPLC-DAD and comparison of their cytotoxic activity. Toxins. 2019;11:575. doi: 10.3390/toxins11100575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Li P, Shen J, Li Y, et al. Metabolite profiling based on UPLC-Q-TOF-MS/MS and the biological evaluation of medicinal plants of Chinese Dichocarpum (Ranunculaceae) Chem Biodivers. 2021;18:e2100432. doi: 10.1002/cbdv.202100432. [DOI] [PubMed] [Google Scholar]
  • 180.Hao DC, Yang L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: a systems perspective. Expert Opin Drug Metab Toxicol. 2016;12:1047–1065. doi: 10.1080/17425255.2016.1201068. [DOI] [PubMed] [Google Scholar]
  • 181.Xiao PG, Xiao W, Xu LJ, et al. Coptids Rhizoma and Chinese herbal medicines which contain berberine-type alkaloids. Modern Chin Med. 2016;18:1381–1385. [Google Scholar]
  • 182.Hao DC, He CN, Shen J, et al. Anticancer chemodiversity of Ranunculaceae medicinal plants: molecular mechanisms and functions. Curr Genomics. 2017;18:39–59. doi: 10.2174/1389202917666160803151752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Weber C, Opatz T. Bisbenzylisoquinoline alkaloids. Alkaloids Chem Biol. 2019;81:1–114. doi: 10.1016/bs.alkal.2018.07.001. [DOI] [PubMed] [Google Scholar]
  • 184.Zhang J, Chen L, Sun J. Oxoisoaporphine alkaloids: prospective anti-Alzheimer’s disease, anticancer, and antidepressant agents. Chem Med Chem. 2018;13:1262–1274. doi: 10.1002/cmdc.201800196. [DOI] [PubMed] [Google Scholar]
  • 185.Peng P, Jia D, Cao L, et al. Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells. J Ethnopharmacol. 2021;266:113446. doi: 10.1016/j.jep.2020.113446. [DOI] [PubMed] [Google Scholar]
  • 186.Almeida IV, Fernandes LM, Biazi BI, et al. Evaluation of the anticancer activities of the plant alkaloids sanguinarine and chelerythrine in human breast adenocarcinoma cells. Anticancer Agents Med Chem. 2017;17:1586–1592. doi: 10.2174/1871520617666170213115132. [DOI] [PubMed] [Google Scholar]
  • 187.Hao DC, Zhang Y, He CN, et al. Distribution of therapeutic efficacy of Ranunculales plants used by ethnic minorities on the phylogenetic tree of Chinese species. Evid Based Complement Alternat Med. 2022;2022:9027727. doi: 10.1155/2022/9027727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Hao DC, Li P, Xiao PG, et al. Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae): implications in evolution of specialized metabolism of Ranunculales medicinal plants. Peer J. 2021;9:e12428. doi: 10.7717/peerj.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Hagel JM, Mandal R, Han B, et al. Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol. 2015;15:220. doi: 10.1186/s12870-015-0594-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Liu Y, Wang B, Shu S, et al. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun. 2021;12:3276. doi: 10.1038/s41467-021-23611-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Angiosperm Phylogeny Group An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG I. Bot J Linnean Soc. 2009;161:105–121. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix (951.5KB, pdf)
11655_2022_3576_MOESM2_ESM.xls (66.5KB, xls)

Supplementary material, approximately 66.5 KB.

Appendix (616.9KB, pdf)
11655_2022_3576_MOESM4_ESM.xls (70KB, xls)

Supplementary material, approximately 70.0 KB.


Articles from Chinese Journal of Integrative Medicine are provided here courtesy of Nature Publishing Group

RESOURCES