Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jul 9;29(3):268–279. doi: 10.1007/s11655-022-3674-9

Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review

Guilherme Vinício de Sousa Silva 1, Ana Luiza Vieira Ferreira Guimarães Lopes 1, Isis Carolina Viali 1, Lucas Zannini Medeiros Lima 1, Matheus Ribeiro Bizuti 1, Fabiana Brum Haag 2, Débora Tavares de Resende e Silva 3,
PMCID: PMC9282630  PMID: 35809179

Abstract

Cancers have high morbidity and mortality rates worldwide. Current anticancer therapies have demonstrated specific signaling pathways as a target in the involvement of carcinogenesis. Autophagy is a quality control system for proteins and plays a fundamental role in cancer carcinogenesis, exerting an anticarcinogenic role in normal cells and can inhibit the transformation of malignant cells. Therefore, drugs aimed at autophagy can function as antitumor agents. Flavonoids are a class of polyphenolic secondary metabolites commonly found in plants and, consequently, consumed in diets. In this review, the systematic search strategy was used, which included the search for descriptors “flavonoids” AND “mTOR pathway” AND “cancer” AND “autophagy”, in the electronic databases of PubMed, Cochrane Library, Web of Science and Scopus, from January 2011 to January 2021. The current literature demonstrates that flavonoids have anticarcinogenic properties, including inhibition of cell proliferation, induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, impaired cell migration, invasion, tumor angiogenesis and reduced resistance to multiple drugs in tumor cells. We demonstrate the available evidence on the roles of flavonoids and autophagy in cancer progression and inhibition. (Registration No. CRD42021243071 at PROSPERO)

Electronic Supplementary Material

Supplementary material (Appendices 1–2) is available in the online version of this article at 10.1007/s11655-022-3674-9.

Keywords: anti-cancer effects, apoptosis, cell proliferation, cell survival, flavonoids

Supplementary material to

11655_2022_3674_MOESM1_ESM.pdf (134.6KB, pdf)

Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review

Author Contributions

Silva DTR contributed to the conception, project administration and supervision. Silva GVS, Lopes ALVFG, and Viali IC contributed to the formal analysis, investigation, and methodology. Haag FB and Bizuti MR supervised the methodology. Lima LML contributed to the writing and translation of the original draft. Bizuti MR, Silva DTR and Haag FB revised the final work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Reference

  • 1.Prado B do. Influence of life habits on the development of cancer. Sci Cult (Portug) 2014;66:21–24. [Google Scholar]
  • 2.Instituto Nacional de Câncer. What is cancer? Available at: https://www.inca.gov.br/o-que-e-cancer. Accessed 13 Jun 2021.
  • 3.Dos Santos DS, Farias Rodrigues MM. Pharmacological activities of flavonoids: a review study. UNIFAP Sci Stat (Portug) 2017;7:29. [Google Scholar]
  • 4.Kabala-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7—a comparative study. Cell Mol Biol. 2018;64:1. doi: 10.14715/cmb/2018.64.8.1. [DOI] [PubMed] [Google Scholar]
  • 5.Gonçalves C, de Freitas M, Ferreira A. Flavonoids, thyroid iodide uptake and thyroid cancer—a review. Int J Mol Sci. 2017;18:1247. doi: 10.3390/ijms18061247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ngabire D, Kim GD. Autophagy and inflammatory response in the tumor microenvironment. Int J Mol Sci. 2017;18:2016. doi: 10.3390/ijms18092016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.An HK, Kim KS, Lee JW, et al. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in a549 human lung cancer cells. PLoS One. 2014;9:e114607. doi: 10.1371/journal.pone.0114607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Dou J, Wang Z, Ma L, et al. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget. 2018;9:20089–20102. doi: 10.18632/oncotarget.24015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wu X, Liu P, Zhang H, et al. Wogonin as a targeted therapeutic agent for EBV(+) lymphoma cells involved in LMP1/NF- κ B/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147. doi: 10.1186/s12885-017-3145-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jiang S, Chang H, Deng S, et al. Icariin enhances the chemosensitivity of cisplatin-resistant ovarian cancer cells by suppressing autophagy via activation of the AKT/mTOR/ATG5 pathway. Int J Oncol. 2019;54:1933–1942. doi: 10.3892/ijo.2019.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Deng Y, Zhang Q, Li Y, et al. Pectolinarigenin inhibits cell viability, migration and invasion and induces apoptosis via a ROS-mitochondrial apoptotic pathway in melanoma cells. Oncol Lett. 2020;20:116. doi: 10.3892/ol.2020.11977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cui XL, Li KJ, Ren HX, et al. Extract of Cycas revoluta Thunb. enhances the inhibitory effect of 5-fluorouracil on gastric cancer cells through the AKT-mTOR pathway. World J Gastroenterol. 2019;25:1854–1864. doi: 10.3748/wjg.v25.i15.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wang S, Yan Y, Cheng Z, et al. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov. 2018;4:26. doi: 10.1038/s41420-018-0026-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bonesi M, Loizzo MR, Menichini F, et al. Flavonoids in treating psoriasis. In: Immunity and inflammation in health and disease. Elsevier 2018;23:281–294.
  • 16.Kashyap D, Sharma A, Sak K, et al. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018;194:75–87. doi: 10.1016/j.lfs.2017.12.005. [DOI] [PubMed] [Google Scholar]
  • 17.Bao HR, Chen JL, Li F, et al. Relationship between PI3K/mTOR/RhoA pathway-regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. Braz J Med Biol Res. 2020;53:e9207. doi: 10.1590/1414-431x20209207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal. 2014;26:2694–2701. doi: 10.1016/j.cellsig.2014.08.019. [DOI] [PubMed] [Google Scholar]
  • 19.Moon HI, Jeong MH, Jo WS. Protective activity of c-geranylflavonoid analogs from paulownia tomentosa against DNA damage in 137Cs irradiated AHH-1 cells. Natural Product Commun. 2014;9:1295–1298. doi: 10.1177/1934578X1400900919. [DOI] [PubMed] [Google Scholar]
  • 20.Aryal P, Kim K, Park PH, et al. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 2014;281:4644–4658. doi: 10.1111/febs.12969. [DOI] [PubMed] [Google Scholar]
  • 21.Liu H, Dong Y, Gao Y, et al. The fascinating effects of baicalein on cancer: a review. Int J Mol Sci. 2016;17:1681. doi: 10.3390/ijms17101681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bie B, Sun J, Guo Y, et al. Baicalein: a review of its anti-cancer effects and mechanisms in hepatocellular carcinoma. Biomed Pharmacother. 2017;93:1285–1291. doi: 10.1016/j.biopha.2017.07.068. [DOI] [PubMed] [Google Scholar]
  • 23.Hu J, Wang R, Liu Y, et al. Baicalein represses cervical cancer cell growth, cell cycle progression and promotes apoptosis via blocking AKT/mTOR pathway by the regulation of circHIAT1/miR-19a-3p axis. OncoTargets Ther. 2021;14:905–916. doi: 10.2147/OTT.S282790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ma XC, Yan W, Dai Z, et al. Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/beta-catenin pathway. Drug Des Devel Ther. 2016;10:1419–1441. doi: 10.2147/DDDT.S102541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Guo Z, Hu X, Xing Z, et al. Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Mol Cell Biochem. 2015;406:111–119. doi: 10.1007/s11010-015-2429-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Peng F, Du Q, Peng C, et al. A review: the pharmacology of isoliquiritigenin. Phytother Res. 2015;29:969–977. doi: 10.1002/ptr.5348. [DOI] [PubMed] [Google Scholar]
  • 27.Zhao TT, Xu YQ, Hu HM, et al. Isoliquiritigenin and its formulations: potential antitumor agents. Curr Med Chem. 2019;26:6786–6796. doi: 10.2174/0929867325666181112091700. [DOI] [PubMed] [Google Scholar]
  • 28.Baba M, Asano R, Takigami I, et al. Studies on cancer chemoprevention by traditional folk medicines XXV. Inhibitory effect of isoliquiritigenin on azoxymethane-induced murine colon aberrant crypt focus formation and carcinogenesis. Biol Pharm Bull. 2002;25:247–250. doi: 10.1248/bpb.25.247. [DOI] [PubMed] [Google Scholar]
  • 29.Chen G, Hu X, Zhang W, et al. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis. 2012;17:90–101. doi: 10.1007/s10495-011-0658-1. [DOI] [PubMed] [Google Scholar]
  • 30.Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12. doi: 10.1186/s12943-020-1138-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Patra S, Mishra SR, Behera BP, et al. Autophagy-modulating phytochemicals in cancer therapeutics: current evidences and future perspectives. Semin Cancer Biol. 2022;80:205–217. doi: 10.1016/j.semcancer.2020.05.008. [DOI] [PubMed] [Google Scholar]
  • 32.Khan NM, Haseeb A, Ansari MY, et al. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med. 2017;106:288–301. doi: 10.1016/j.freeradbiomed.2017.02.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Fu R, Chen Y, Wang XP, et al. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget. 2016;7:5715–5727. doi: 10.18632/oncotarget.6796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Chow S, Chen Y, Liang C, et al. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells. J Cell Biochem. 2012;113:3476–3485. doi: 10.1002/jcb.24224. [DOI] [PubMed] [Google Scholar]
  • 35.He C, Wang Z, Shi J. Pharmacological effects of icariin. In: Advances in pharmacology. Elsevier 2020;87:179–203. [DOI] [PubMed]
  • 36.Cheng X, Tan S, Duan F, et al. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer. 2019;26:766–775. doi: 10.1007/s12282-019-00980-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Tian M, Yang S, Yan X. Icariin reduces human colon carcinoma cell growth and metastasis by enhancing p53 activities. Braz J Med Biol Res. 2018;51:e7151. doi: 10.1590/1414-431x20187151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Huang S, Xie T, Liu W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. J BUON. 2019;24:990–996. [PubMed] [Google Scholar]
  • 39.Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. doi: 10.3389/fchem.2019.00697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Jia S, Xu X, Zhou S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10:142. doi: 10.1038/s41419-019-1366-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Cheriet T, Ben-Bachir B, Thamri O, et al. Isolation and biological properties of the natural flavonoids pectolinarin and pectolinarigenin—a review. Antibiotics. 2020;9:417. doi: 10.3390/antibiotics9070417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Lee H, Venkatarame Gowda Saralamma V, Kim S, et al. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway. Nutrients. 2018;10:1043. doi: 10.3390/nu10081043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Xu F, Gao X, Pan H. Pectolinarigenin inhibits non-small cell lung cancer progression by regulating the PTEN/PI3K/AKT signaling pathway. Oncol Rep. 2018;40:3458–3468. doi: 10.3892/or.2018.6759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zappavigna S, Vanacore D, Lama S, et al. Silybin-induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in human hepatocarcinoma cells. Int J Mol Sci. 2019;20:2190. doi: 10.3390/ijms20092190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Pignatelli P, Carnevale R, Menichelli D. Silybin and metabolic disorders. Intern Emerg Med. 2019;14:1–3. doi: 10.1007/s11739-018-1968-x. [DOI] [PubMed] [Google Scholar]
  • 46.Li F, Ma Z, Guan Z, et al. Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int J Mol Sci. 2015;16:8415–8429. doi: 10.3390/ijms16048415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35:864–876. doi: 10.1002/ptr.6873. [DOI] [PubMed] [Google Scholar]
  • 48.Wang S, Xu X, Hu Y, et al. Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Front Pharmacol. 2019;10:1460. doi: 10.3389/fphar.2019.01460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.An D, Song Z, Yi Y, et al. Oroxylin A, a methylated metabolite of baicalein, exhibits a stronger inhibitory effect than baicalein on the CYP1B1-mediated carcinogenic estradiol metabolite formation. Phytother Res. 2019;33:1033–1043. doi: 10.1002/ptr.6297. [DOI] [PubMed] [Google Scholar]
  • 50.Zhao Y, Zhu Q, Bu X, et al. Triggering apoptosis by oroxylin A through caspase-8 activation and p62/SQSTM1 proteolysis. Redox Biol. 2020;29:101392. doi: 10.1016/j.redox.2019.101392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Zou M, Lu N, Hu C, et al. Beclin 1-mediated autophagy in hepatocellular carcinoma cells: implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. Cell Signal. 2012;24:1722–732. doi: 10.1016/j.cellsig.2012.04.009. [DOI] [PubMed] [Google Scholar]
  • 52.Gourgiotis S, Kocher HM, Solaini L, et al. Gallbladder cancer. Am J Surg. 2008;196:252–264. doi: 10.1016/j.amjsurg.2007.11.011. [DOI] [PubMed] [Google Scholar]
  • 53.Gupta A, Siddeek R, Gupta S, et al. Evaluation of platelet distribution width as novel biomarker in gall bladder cancer. J Carcinog. 2020;19:5. doi: 10.4103/jcar.JCar_12_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Torres O, Caldas L, Azevedo R, et al. Cholelithiasis and gallbladder carcinoma. Rev Col Bras Cir (Portug) 2002;29:88–91. doi: 10.1590/S0100-69912002000200006. [DOI] [Google Scholar]
  • 55.Jung K, Narwal M, Min S, et al. Squamous cell carcinoma of head and neck: what internists should know. Kor J Intern Med. 2020;35:1031–1044. doi: 10.3904/kjim.2020.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Augustine D, Singh P, Rao R, et al. Role of cancer stem cells in head-and-neck squamous cell carcinoma—a systematic review. J Carcinog. 2021;20:12. doi: 10.4103/jcar.JCar_14_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Felippu A, Freire E, de Arruda Silva R, et al. Impact of delay in the diagnosis and treatment of head and neck cancer. Braz J Otorhinolaryngol. 2016;82:140–143. doi: 10.1016/j.bjorl.2015.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Nayyar A, Patil M, Lavanya T, et al. Serum ceruloplasmin as cancer marker in oral pre-cancers and cancers. J Carcinog. 2021;20:15. doi: 10.4103/jcar.jcar_10_21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Kramer IR, Lucas RB, Pindborg JJ, et al. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol. 1978;46:518–539. doi: 10.1016/0030-4220(78)90383-3. [DOI] [PubMed] [Google Scholar]
  • 60.Krishna A, Singh S, Kumar V, et al. Molecular concept in human oral cancer. Natl J Maxillofac Surg. 2015;6:9–15. doi: 10.4103/0975-5950.168235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Cancer de boca. INCA—Instituto Nacional de Câncer. Available at: https://www.inca.gov.br/tipos-de-cancer/cancer-de-boca. Accessed 13 February, 2022.
  • 62.de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  • 63.Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511. doi: 10.1038/nrd.2017.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9:1167–1181. doi: 10.1158/2159-8290.CD-19-0292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Eskelinen EL. The dual role of autophagy in cancer. Curr Opin Pharmacol. 2011;11:294–300. doi: 10.1016/j.coph.2011.03.009. [DOI] [PubMed] [Google Scholar]
  • 66.Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2021;17:1–382. doi: 10.1080/15548627.2020.1797280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8:515. doi: 10.3390/nu8080515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: new frontier for immuno-regulation and breast cancer control. Antioxidants. 2019;8:103. doi: 10.3390/antiox8040103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kopustinskiene DM, Jakstas V, Savickas A, et al. Flavonoids as anticancer agents. Nutrients. 2020;12:457. doi: 10.3390/nu12020457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Aune D. Plant foods, antioxidant biomarkers, and the risk of cardiovascular disease, cancer, and mortality: a review of the evidence. Adv Nutr. 2019;10:S404–S421. doi: 10.1093/advances/nmz042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 2013;3:439–459. doi: 10.1007/s13205-013-0117-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Pang X, Zhang X, Jiang Y, et al. Autophagy: mechanisms and therapeutic potential of flavonoids in cancer. Biomolecules. 2021;11:135. doi: 10.3390/biom11020135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Benvenuto M, Albonici L, Focaccetti C, et al. Polyphenol-mediated autophagy in cancer: evidence of in vitro and in vivo studies. Int J Mol Sci. 2020;21:6635. doi: 10.3390/ijms21186635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Kiruthiga C, Devi KP, Nabavi SM, et al. Autophagy: a potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers. 2020;12:562. doi: 10.3390/cancers12030562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Deng S, Shanmugam MK, Kumar AP, et al. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer. 2019;125:1228–1246. doi: 10.1002/cncr.31978. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11655_2022_3674_MOESM1_ESM.pdf (134.6KB, pdf)

Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review


Articles from Chinese Journal of Integrative Medicine are provided here courtesy of Nature Publishing Group

RESOURCES