Skip to main content
. 2022 Jul 3;25(8):104713. doi: 10.1016/j.isci.2022.104713

Table 5.

Articles published using AI to improve fetus face monitoring: objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective Backbone Methods/Framework Optimization/Extractor methods Fetal age AI tasks
Fetal facial standard plane (FFSP)

(Lei et al., 2014) To address the issue of recognition of standard planes (i.e., axial, coronal and sagittal planes) in the fetal US image SVM classifier AdaBoost for detect region of interest, ROI)
Dense Scale Invariant Feature Transform (DSIFT)
Aggregating vectors for feature extraction fish vector (FV)
Gaussian Mixture Model (GMM)
20 - 36 weeks Classification
(Yu et al., 2016) To automatically recognize the FFSP from US images Deep convolutional networks (DCNN) N/A 20 - 36 weeks Classification
(Yu et al., 2018) To automatically recognize FFSP via a deep convolutional neural network (DCNN) architecture DCNN t-Distributed Stochastic Neighbor Embedding (t-SNE) 20 - 36 weeks Classification
(Lei et al., 2015) To automatically recognize the fetal facial standard planes (FFSPs) SVM classifier Root scale invariant feature transform (RootSIFT)
Gaussian mixture model (GMM)
Fisher Vector (FV)
Principal Component Analysis (PCA)
20 - 36 weeks Classification
(Wang et al., 2021) To automatically recognize and classify FFSPs SVM classifier Local Binary Pattern (LBP)
Histogram of Oriented Gradient (HOG)
20 - 24 weeks Classification

Face anatomical landmarks

(Singh et al., 2021a) To detect position and orientation of facial region and landmarks SFFD-Net (Samsung Fetal Face Detection Network) multi-class segmented N/A 14 - 30 weeks Miscellaneous
(Chen et al., 2020c) To detect landmarks in 3D fetal facial US volumes CNN Backbone Network Region Proposal Network (RPN)
Bounding-box regression
N/A Miscellaneous
(Anjit and Rishidas, 2011) To detect nasal bone for US of fetus Back Propagation Neural Network (BPNN) Discrete Cosine Transform (DCT)
Daubechies D4 Wavelet transform
11 - 13 weeks Miscellaneous

Facial expressions

(Dave and Nadiad, 2015) To recognize facial expressions from 3D US ANN Histogram equalization
Thresholding
Morphing
Sampling
Clustering
Local Binary Pattern (LBP)
Minimum Redundancy and Maximum Relevance (MRMR)
N/A Classification
(Miyagi et al., 2021) To recognize fetal facial expressions that are considered as being related to the brain development of fetuses CNN N/A 19 - 38 weeks Classification