Abstract
Gene Model for Akt in the D. eugracilis (DeugGB2) assembly (GCA_000236325.2).
Description
Introduction
The insulin signaling pathway is a highly conserved pathway in animals, and is central to nutrient uptake (Hietakangas and Cohen 2009, Grewal 2009). Akt kinase ( Akt also known as Akt1, Protein Kinase B, PKB; FBgn0010379) regulates stress response, aging, and cell growth and survival in Drosophila (Stavely et al ., 1998; Verdu et al. , 1999). It is involved in signal transduction pathways in physiological and neurological pathways in Drosophila (Guo and Zhong 2006). It encodes a core serine-threonine kinase (Bellacosa et al. 1991) component of the Insulin-like growth factor pathway that functions downstream of, and following its activation by the Pi3K92E product in Drosophila (Andjelkovic et al., 1995). It is activated by phosphatidylinositol binding and phosphorylation (Potter et al ., 2002). The gene model reported ( Deug_Akt ) was determined in the Apr. 2013 (BCM-HGSC/Deug_2.0; GCA_000236325.2) of D. eugracilis and compared to the ortholog dmel_Akt (GCA_000001215.4, FB2021_02; Larkin et al., 2021). D. eugracilis is part of the melanogaste r species group within the subgenus Sophophora of Drosophila (Pélandakis et al., 1993). It was first described as Tanygastrella gracilis by Duda (1924) and revised to Drosophila eugracilis by Bock and Wheeler (1972). D. eugracilis is found in humid tropical and subtropical forests across southeast Asia (https://www.taxodros.uzh.ch). The methods and dataset versions used to establish the gene model are described in Rele et al . (2020). The Genomics Education Partnership maintains a mirror of the UCSC Genome Browser (Kent WJ et al ., 2002; Gonzalez et al ., 2021), which is available at http://gander.wustl.edu .The predicted gene model in D. eugracilis for Akt was found in NCBI RefSeq Accession XM_017228041.1 and Locus ID LOC108116251.
Synteny
Akt is located on chromosome 3R (Muller element D) in D. melanogaster and is surrounded by sxe2, CG32855, and Mhcl (upstream) and Sb and CG5903 (downstream). After performing a tblastn , the putative Akt ortholog (LOC10811625/XM_017228041.1/XP_017083530.1, e-value of 0.0 and percent identity of 90.39%) in D. eugracilis was found to be on scaffold KB465333 (mapped to Muller element D) and is surrounded by orthologs to sxe2 (LOC108116355/XM_017228178.2/XP_017083667.2, e-value of 0.0 and percent identity of 87.08%), Mhcl (LOC108116352/XM_017228167.2/XP_017083656.2, e-value of 0.0 and percent identity of 97.13%), Sb (LOC108116404/XM_017228281.2/XP_017083770.2, e-value of 0.0 and percent identity of 87.02%), and CG5903 ( Mic26-27 /LOC108116407/XM_017228287.1/XP_017083776.1, e-value of 7e-151 and percent identity of 88.26%) as determined by blastp (Figure 1A, Altschul et al. , 1990). The annotated model is likely to be the true ortholog of Akt due to the high level of synteny that exists between D. melanogaster and D. eugracilis , and the reciprocal best blast hits between the two genes.
Protein Model
There are five RNA isoforms of Akt : Akt-RA, Akt-RB, Akt-RC, Akt-RD, and Akt-RE . The RA, RB, RD, and RE isoforms have identical protein coding sequences, represented by the Akt-PE protein isoform here. The Akt-PC coding sequence is unique. Both the Akt-PC and Akt-PE isoforms in D. melanogaster are encoded by six coding exons. The Akt-PC and Akt-PE isoforms in D. eugracilis are encoded by six coding exons ( Figure 1B). The coordinates of the curated gene models can be found in NCBI at GenBank/BankIt using the accessions BK059589, BK059590, BK059591, BK059592, and BK059593, one for each protein-coding isoform of Akt . These data are also available in Extended Data files below, which are archived in CaltechData.
Special characteristics of the gene model
Non-canonical Start Codon: The Akt-RC isoform has a non-canonical ACG start codon. This is well conserved across the 28 Drosophila species as shown in Figure 1D. This non-canonical start codon is used for the translation of the Akt-PC isoform in D. melanogaster , (Figure 1D). There is a high level of conservation of the non-canonical ACG start codon (encoding threonine) across all 28 Drosophila species, as well as high conservation of the region surrounding the non-canonical start codon. This provides evidence for the existence of a non-canonical start codon in the Akt-PC isoform in D. eugracilis .
Methods
Detailed methods including algorithms, database versions, and citations for the complete annotation process can be found in Rele et al. (2020).
Reagents
NA
Extended Data
Description: GTF. Resource Type: Model. DOI: 10.22002/D1.20201
Description: FAA. Resource Type: Model. DOI: 10.22002/D1.20202
Description: FNA. Resource Type: Model. DOI: 10.22002/D1.20203
Acknowledgments
Acknowledgments
We would like to thank Wilson Leung, who created and maintain the GEP technological infrastructure. We would also like to thank Rachael A. Cowan for helping us submit the microPublication and data to NCBI, and Alyssa C. Koehler and Abigail R. Myers for their input on drafting the microPublication.
Funding
This material is based upon work supported by the National Science Foundation under Grant No. IUSE-1915544 to LKR and the National Institute of General Medical Sciences of the National Institute of Health Award R25GM130517 to LKR. The Genomics Education Partnership is fully financed by Federal moneys. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
References
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Andjelković M, Jones PF, Grossniklaus U, Cron P, Schier AF, Dick M, Bilbe G, Hemmings BA. Developmental regulation of expression and activity of multiple forms of the Drosophila RAC protein kinase. J Biol Chem. 1995 Feb 24;270(8):4066–4075. doi: 10.1074/jbc.270.8.4066. [DOI] [PubMed] [Google Scholar]
- Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991 Oct 11;254(5029):274–277. doi: 10.1126/science.254.5029.274. [DOI] [PubMed] [Google Scholar]
- Bock, I.R., Wheeler, M.R. (1972). The Drosophila melanogaster species group. Univ. Texas Publs Stud. Genet. 7(7213): 1--102.
- Chen ZX, Sturgill D, Qu J, Jiang H, Park S, Boley N, Suzuki AM, Fletcher AR, Plachetzki DC, FitzGerald PC, Artieri CG, Atallah J, Barmina O, Brown JB, Blankenburg KP, Clough E, Dasgupta A, Gubbala S, Han Y, Jayaseelan JC, Kalra D, Kim YA, Kovar CL, Lee SL, Li M, Malley JD, Malone JH, Mathew T, Mattiuzzo NR, Munidasa M, Muzny DM, Ongeri F, Perales L, Przytycka TM, Pu LL, Robinson G, Thornton RL, Saada N, Scherer SE, Smith HE, Vinson C, Warner CB, Worley KC, Wu YQ, Zou X, Cherbas P, Kellis M, Eisen MB, Piano F, Kionte K, Fitch DH, Sternberg PW, Cutter AD, Duff MO, Hoskins RA, Graveley BR, Gibbs RA, Bickel PJ, Kopp A, Carninci P, Celniker SE, Oliver B, Richards S. Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 2014 Jul 1;24(7):1209–1223. doi: 10.1101/gr.159384.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duda, O. 1924. Revision der europäischen u. grönländischen sowie einiger sudostasiat. Arten der Gattung Piophila Fallén (Dipteren) [part]. Konowia 3: 97-113 [1924.07.10]
- Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom KR, Raney BJ, Powell CC, Nassar LR, Maulding ND, Lee CM, Lee BT, Hinrichs AS, Fyfe AC, Fernandes JD, Diekhans M, Clawson H, Casper J, Benet-Pagès A, Barber GP, Haussler D, Kuhn RM, Haeussler M, Kent WJ. The UCSC Genome Browser database: 2021 update. Nucleic Acids Res. 2021 Jan 8;49(D1):D1046–D1057. doi: 10.1093/nar/gkaa1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grewal SS. Insulin/TOR signaling in growth and homeostasis: a view from the fly world. Int J Biochem Cell Biol. 2008 Oct 18;41(5):1006–1010. doi: 10.1016/j.biocel.2008.10.010. [DOI] [PubMed] [Google Scholar]
- Guo HF, Zhong Y. Requirement of Akt to mediate long-term synaptic depression in Drosophila. J Neurosci. 2006 Apr 12;26(15):4004–4014. doi: 10.1523/JNEUROSCI.3616-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hietakangas V, Cohen SM. Regulation of tissue growth through nutrient sensing. Annu Rev Genet. 2009;43:389–410. doi: 10.1146/annurev-genet-102108-134815. [DOI] [PubMed] [Google Scholar]
- Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun 1;12(6):996–1006. doi: 10.1101/gr.229102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larkin A, Marygold SJ, Antonazzo G, Attrill H, Dos Santos G, Garapati PV, Goodman JL, Gramates LS, Millburn G, Strelets VB, Tabone CJ, Thurmond J, FlyBase Consortium. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 2021 Jan 8;49(D1):D899–D907. doi: 10.1093/nar/gkaa1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002 Sep 1;4(9):658–665. doi: 10.1038/ncb840. [DOI] [PubMed] [Google Scholar]
- Pélandakis, M., Solignac, M. Molecular phylogeny of Drosophila based on ribosomal RNA sequences. J Mol Evol 37, 525–543 (1993). https://doi.org/10.1007/BF00160433 [DOI] [PubMed]
- Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Zweig AS, Karolchik D, Kent WJ. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics. 2013 Nov 13;30(7):1003–1005. doi: 10.1093/bioinformatics/btt637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rele CP, Sandlin KM, Leung W, Reed LK. 2020. Manual Annotation of Genes within Drosophila Species: the Genomics Education Partnership protocol. bioRxiv 2020.12.10.420521 doi: 10.1101/2020.12.12.420521
- Staveley BE, Ruel L, Jin J, Stambolic V, Mastronardi FG, Heitzler P, Woodgett JR, Manoukian AS. Genetic analysis of protein kinase B (AKT) in Drosophila. Curr Biol. 1998 May 7;8(10):599–602. doi: 10.1016/s0960-9822(98)70231-3. [DOI] [PubMed] [Google Scholar]
- Verdu J, Buratovich MA, Wilder EL, Birnbaum MJ. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol. 1999 Dec 1;1(8):500–506. doi: 10.1038/70293. [DOI] [PubMed] [Google Scholar]