Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2022 Jul;36(7):853–859. [Article in Chinese] doi: 10.7507/1002-1892.202203030

国人髌骨嵴高点位置与截骨面形态关系的数字化研究

Digital study on the relationship between position of patellar high point and shape of osteotomy surface in Chinese

Changzhao LI 1, Peiheng HE 1, Yong LIU 1, Dongliang XU 1,*
PMCID: PMC9288918  PMID: 35848182

Abstract

Objective

To measure the position of patellar high point and the shape of the osteotomy surface, and to analyze their relationship, distribution, and gender differences.

Methods

A total of 127 patients who needed anterior cruciate ligament reconstruction or meniscus repair due to trauma between September 2020 and September 2021 were selected as the research subjects. There were 71 males and 56 females, with an average age of 30.5 years (range, 19-43 years). There were significant differences in height and body weight between male and female patients (P<0.05), but no significant difference in age and body mass index (P>0.05). The three-dimensional model of the patella was reconstructed in Mimics software based on the CT images of the knee joint, and then imported into Geomagic Studio software for virtual osteotomy of the patella. The horizontal axis and vertical axis of the osteotomy surface represented the total width (W) and total height (H) of the osteotomy surface, respectively. Then the osteotomy surface was divided into four quadrants with the two axes: inner proximal, inner distal, outer proximal, and outer distal, and the inner width (W1), proximal height (H1), outer width (W2), and distal height (H2) were measured. The midpoint of the patellar ridge was selected as the patellar high point, and the point projected onto the osteotomy surface was defined as the optimal point for patellar prosthesis positioning (OPPP). The distances of OPPP on the horizontal axis (L1) and vertical axis (L2) relative to the center of the osteotomy surface were measured and L1/W1 and L2/H1 were also calculated; the quadrant distribution of OPPP was recorded. The patients were grouped according to gender, and the morphological parameters of the osteotomy surface (W, W1, W2, H, H1, H2) and the parameters related to the position of the OPPP (L1, L2, L1/W1, L2/H1) were analyzed between groups.

Results

The width and height of each osteotomy surface of the patella in males were significantly larger than those in females (P<0.05). As for the relationship between OPPP and osteotomy surface, the L1 of both male and female patients was 1-7 mm, and there was no significant difference in the distribution between the two groups (χ2=8.068, P=0.149); L1/W1 in both male and female patients was mainly 1/10-3/10. The L2 of male patients was 0-5 mm, and that of female patients was –1-4 mm; the difference in distribution between the two groups was significant (χ2=15.500, P=0.006); L2/H1 in both male and female patients was mainly 0-1/5. The OPPP of male patients was mainly distributed in the inner proximal (98.59%) and outer proximal (1.41%) quadrants, while the female patients were distributed in the inner proximal (91.07%), inner distal (7.14%), and outer proximal (1.79%) quadrants. There was significant difference in the OPPP quadrant distribution between the two groups (χ2=5.186, P=0.036).

Conclusion

The OPPP points are widely distributed but mainly concentrated on around 1/5 of the medial patella surface and around 1/10 of the superior patella surface. A small portion of females’ OPPP were inferior while all males’ OPPP were superior to the center of the patella.

Keywords: Patella, arthroplasty, anatomy, morphometry


人工全膝关节置换术(total knee arthroplasty,TKA)中是否施行髌骨置换一直存在争议。有研究显示髌骨置换可以提高患者术后满意度,减少术后翻修率和膝前痛的发生[1-5]。但是,也有研究发现髌骨置换不良往往会伴随一系列并发症,如髌骨脱位、髌骨骨折、术后膝前痛、活动受限等[6-10];而且髌骨假体放置不良还可能导致假体异常磨损,最终引起假体松动[1, 11]

为了获得满意疗效,髌骨置换时需要注意使髌骨假体顶点位置尽可能恢复至原髌骨嵴高点位置[12]。因为髌骨嵴高点可以作为髌骨运动过程中的支点,置换后如高点位置变化,势必改变其原本运动轨迹,从而影响术后髌骨轨迹[13-18]。为使假体准确恢复高点位置,许多术者以髌骨嵴高点或中点投射到髌骨截骨面上的点作为髌骨假体最佳放置点(optimal point for patellar prosthesis positioning,OPPP)[12, 14]。 这种方法能最大程度恢复原髌骨嵴高点,有效减少TKA中需要松解外侧支持带的情况[17],获得良好预后[12, 14, 16]

既往研究表明OPPP主要分布于髌骨截骨面内侧[12, 14, 19],因此置换时术者往往选择内移假体以恢复髌骨嵴高点[14]。然而,对于一些髌骨内侧关节面较小患者,内移假体容易引起假体内侧悬挂,这种现象在亚洲患者中尤为明显[16]。选择更小的假体虽然可以避免内侧悬挂发生,但会导致外侧截骨面覆盖减小而增加髌骨碰撞、骨折等并发症发生风险[15-16]。因此,髌骨置换术在兼顾恢复原髌骨嵴高点和最大程度覆盖截骨面方面存在明显不足。

目前,研究大多单独分析了髌骨嵴高点位置或截骨面形态[12, 17, 19],有关两者关系的研究较少。深入了解两者关系有助于置换时选择合适假体类型、寻找假体放置位置以及改善假体设计,从而更好地兼顾两者以进一步改善预后。为此,本研究通过构建髌骨三维模型和统一规范化坐标系,全面观测OPPP位置和髌骨截骨面形态情况,深入分析和探讨两者关系及性别间差异,为国人髌骨假体设计及手术选择提供理论依据。

1. 研究对象及方法

1.1. 研究对象

选择2020年9月—2021年9月因外伤需行前交叉韧带重建或半月板修复患者作为研究对象。纳入标准:① 年龄18~50岁;② 无髌骨骨折、严重髌股关节炎、髌骨发育不良、髌骨相关手术史、髌骨不稳或脱位。

共127例患者纳入研究,其中男71例,女56例;年龄19~43岁,平均30.5岁。身高143~188 cm,平均166.2 cm;体质量37~95 kg,平均67.7 kg。男女患者身高及体质量差异有统计学意义(P<0.05),年龄及身体质量指数差异无统计学意义(P>0.05)。见表1

表 1.

Comparison of general data between male and female patients ( Inline graphic )

男女患者一般资料比较( Inline graphic

项目
Item
男性(n=71)
Male (n=71)
女性(n=56)
Female (n=56)
统计值
Statistic
年龄(岁) 29.9±7.9 31.3±7.4 t=−1.132
P=0.518
身高(cm) 173.7±6.1 156.8±4.9 t=−16.497
P<0.001
体质量(kg) 73.2±10.3 60.7±8.6 t=7.289
P<0.001
身体质量指数(kg/m2 24.2±2.5 24.7±3.6 t=−0.615
P=0.580

1.2. 研究方法

1.2.1. 髌骨三维模型重建

采用螺旋CT(Siemens公司,德国)对所有患者行膝关节扫描。患者取仰卧位,双下肢中立位伸直;扫描范围:胫骨近端1/2至股骨远端1/2;扫描参数:层厚1 mm,电压120 kV,矩阵512×512。将扫描获得的膝关节图像数据以DICOM格式导入Mimics 19.0软件(Materialise公司,比利时),根据骨皮质和软组织之间灰度值差异使用“Bone CT Segment”和“Edit Masks”功能进行图像分割和修补,重建髌骨三维模型,并以STL格式保存。

1.2.2. 髌骨标准坐标系建立

参考文献 [20] 方法建立髌骨标准坐标系。将髌骨三维模型导入Geomagic Studio 2014软件(Research Triangle Park公司,美国),使用“Lasso Selection Tool”功能选取髌骨前表面后,使用“Plane”里的“Best Fit”功能通过最小二乘法原理拟合一平面,定义该平面为“前皮质面”;选取髌骨嵴距离该平面最远的一系列点,通过最小二乘法原理拟合1条直线,定义该直线为“髌骨中央嵴”,髌骨中央嵴中点定义为“髌骨中央嵴高点”[12, 19]。转换坐标系,以前皮质面作为新坐标系的XY平面,其中Y轴与髌骨中央嵴垂直投射至XY平面上的直线平行,从而形成基于前皮质面和髌骨中央嵴特征的髌骨标准坐标系。见图1

图 1.

Schematic diagram of establishing the standard coordinate system of the patella

髌骨标准坐标系建立示意图

a. 髌骨三维模型; b. 确定前皮质面和髌骨中央嵴;c. 基于前皮质面和髌骨中央嵴建立髌骨标准坐标系

a. Three-dimensional patellar model;   b. The anterior surface plane and patellar ridge line were created;   c. The standard coordinate system of the patella was created based on the anterior surface plane and patellar ridge line

图 1

1.2.3. 虚拟截骨手术及截骨面象限确定并测量

参照临床髌骨外侧关节面截骨法进行虚拟截骨[20]。创建一平面平行于前皮质面,移动该平面至髌骨外侧关节面最低点后模拟截骨。截骨面水平轴和垂直轴分别代表截骨面的总宽度(W)和总高度(H),两轴作一“十”字,交点为截骨面中点[12, 19],并据此将截骨面划分为内近、内远、外近和外远4个象限,进一步测量内侧宽度(W1)、近端高度(H1)、外侧宽度(W2)和远端高度(H2)。见图2

图 2.

Virtual patellar osteotomy and the quadrant of the osteotomy surface

虚拟截骨手术和截骨面象限

a. 建立平行于前皮质面的虚拟截骨面;b. 移动虚拟截骨面至髌骨外侧关节面最低点处后对髌骨进行截骨;c. 基于标准坐标系将截骨面分为4个象限,并测量对应宽度和高度

a. The virtual osteotomy plane parallel to the patellar anterior surface plane was created;   b. After translating the virtual osteotomy plane to the deepest level of the lateral facet, osteotomy on the patella was perfomed;   c. The quadrant of the osteotomy surface was defined based on the patellar coordinate system, and the height and width of the osteotomy plane were measured

图 2

1.2.4. OPPP位置观测

将髌骨中央嵴中点沿标准坐标系Z轴投影到虚拟截骨面上的点定义为OPPP[12, 19]。其中,OPPP相对于截骨面中心在水平轴上的距离定义为内移距离(L1)、在垂直轴上的距离定义为近移距离(L2)。记录OPPP象限分布情况(图3),并计算OPPP内移和近移距离分别与截骨面内侧宽度和近端高度的比值(L1/W1、L2/H1)。将测量的L1及L2每隔1 mm进行分段,L1/W1及L2/H1每隔1/10进行分段,观察OPPP位置在截骨面上分布情况。

图 3.

Measurement of the OPPP position

OPPP测量示意图

a. OPPP确定;b. OPPP象限分布;c. OPPP和截骨面中心的相对位置

a. Identification of the OPPP;   b. The quadrant distribution of the OPPP;   c. The position of the OPPP in reference to the center of the osteotomy surface

图 3

1.3. 统计学方法

采用SPSS25.0统计软件进行分析。计量资料采用Kolmogorov-Smirnov进行正态性检验,均符合正态分布;截骨面形态(W、W1、W2、H、H1、H2)和OPPP位置相关参数(L1、L2、L1/W1、L2/H1)数据以均数±标准差表示,男女患者间比较采用独立样本t检验;OPPP在截骨面上分布情况以及OPPP象限分布情况以频数表示,男女患者间比较采用χ2检验。检验水准α=0.05。

2. 结果

2.1. OPPP位置和截骨面形态情况

截骨面形态:男性髌骨各截骨面宽度、高度均大于女性,差异有统计学意义(P<0.05)。见表2

表 2.

Comparison of the parameters of patellar osteotomy surface and OPPP position between male and female patients ( Inline graphic )

男女患者截骨面形态和OPPP位置参数比较( Inline graphic

项目
Item
男性(n=71)
Male (n=71)
女性(n=56)
Female (n=56)
统计值
Statistic
W(mm) 44.58±2.80 38.32±3.54 t=−7.168
P<0.001
W1(mm) 21.31±1.61 17.98±1.85 t=−7.054
P<0.001
W2(mm) 21.86±1.43 18.99±1.77 t=−6.501
P<0.001
H(mm) 39.52±2.69 34.77±2.62 t=−6.570
P<0.001
H1(mm) 18.04±1.32 16.08±1.17 t=−5.777
P<0.001
H2(mm) 20.55±1.48 17.76±1.45 t=−7.024
P<0.001
L1(mm) 4.42±1.41 3.77±1.35 t=−1.364
P=0.178
L2(mm) 2.54±1.25 1.91±1.17 t=−1.744
P=0.005
L1/W1 0.21±0.08 0.21±0.08 t=0.231
P=0.819
L2/H1 0.14±0.07 0.12±0.07 t=−1.019
P=0.316

OPPP相对于截骨面中心位置情况:除L2差异有统计学意义(P<0.05)外,L1以及L1/W1、L2/H1比较差异均无统计学意义(P>0.05)。见表2。其中,男女患者L1均在1~7 mm范围内,两组分布差异无统计学意义(χ2=8.068,P=0.149);男女患者L1/W1均主要为1/10~3/10。男性患者L2在0~5 mm范围内,女性患者在 –1~4 mm范围内,两组分布差异有统计学意义( χ2=15.500,P=0.006);男女患者L2/H1均主要为0~1/5。见图4

图 4.

The distribution histogram of the OPPP in reference to the center of the osteotomy surface in male and female patients

不同性别OPPP相对于截骨面中心位置分布图

a. L1;b. L1/W1;c. L2;d. L2/H1

a. L1;   b. L1/W1;   c. L2;   d. L2/H1

图 4

2.2. OPPP象限分布情况

127例患者OPPP分布于内近象限121例(95.28%),内远象限4例(3.25%),外近象限2例(1.57%)。其中,男性患者主要分布于内近(70例,98.59%)和外近(1例,1.41%)象限,女性患者分布于内近(51例,91.07%)、内远(4例,7.14%)和外近(1例,1.79%)象限。男、女患者OPPP象限分布比较,差异有统计学意义(χ2=5.186,P=0.036)。见图5

图 5.

Scatter-plot graph of the OPPP

OPPP象限分布散点图

红点代表男性患者,黄点代表女性患者

Red points for males, yellow points for females

图 5

3. 讨论

3.1. 关于OPPP内外方向位置

TKA术中选择髌骨置换时,良好髌骨假体位置对于减少膝前痛、髌股轨迹不良等并发症的发生具有重要意义,目前主流观点是假体内移放置[1, 7, 11-12, 14, 18]。假体偏内放置后,髌骨会在运动过程中更加外移,这样会减少膝关节Q角和外侧支持带张力,从而减少TKA中需要松解外侧支持带的情况,避免与此相关的髌骨脱位、缺血坏死或应力性骨折发生[16]。然而,如假体过度偏内又会导致髌骨外倾增加,从而可能引起骨撞击[16],因此需要选择恰当的偏内放置位置。其中,许多术者推崇术中根据OPPP偏内放置假体,以尽可能恢复原髌骨嵴高点[1214]。Hofmann等[14]的研究结果显示,按照OPPP个性化偏内放置假体的患者术后膝关节屈曲活动度比中间放置的患者恢复更快,且术中需要松解外侧支持带的患者数量会减少60%以上。Assi等[12]对117例个性化放置假体(放置于OPPP处)患者进行了为期平均4.5年随访,随访期间所有患者均无膝前痛、髌骨脱位等并发症以及需要翻修情况发生。本研究直观展示了OPPP在截骨面上的整体分布情况,结果显示大部分患者OPPP偏内分布且范围很广(−1~7 mm),值得注意的是有1.57%患者髌骨分布于截骨面外侧。因此,我们认为按照OPPP放置假体时需考虑到可能存在偏外放置情况。

OPPP内外方向分布广泛,因此个性化放置假体会比单一或经验性放置假体能更好地恢复原髌骨嵴高点[12]。然而对于内侧关节面小(尤其是亚洲人)的髌骨,个性化偏内放置时为了避免假体内侧悬挂需要选择小一号假体[15],从而导致截骨面外侧覆盖减少[16]。但假体对截骨面覆盖减少又会影响髌股关节面的压力分散情况,可能导致髌骨倾斜、碰撞、骨折、翻修及需要施行外侧斜切等情况发生[15-16, 21]。因此,仅仅通过调整假体大小和放置位置并不能很好地兼顾髌骨嵴高点恢复和截骨面的最大覆盖。目前市面上髌骨假体种类繁多,其中根据高点位置可以分为高点位于中央和高点偏内两种假体。因此,我们认为针对OPPP接近中间的髌骨宜选择高点位于中央的假体,OPPP明显偏内的髌骨则选择高点偏内的假体,可能可以在恢复原髌骨嵴高点同时进一步增加截骨面覆盖(图6)。

图 6.

图 6

Different types of patellar prosthesis according to the patient’s OPPP position

根据患者OPPP位置选用不同类型假体

3.2. 关于OPPP远近方向位置

在OPPP远近方向上,本研究结果显示其主要分布于近端(超过90%),该结果和既往研究相似[12, 19]。虽然有临床证据支持按照OPPP放置假体会获得良好预后[12, 14],但有两项生物力学研究结果显示假体远置可以减少膝关节高屈曲度时髌骨假体所承受的压力[22-23]。那么针对使用高屈曲度假体或预期TKA术后能实现膝关节高屈曲度的患者,在OPPP位置基础上适当远置假体可能可以获得更好的髌股轨迹。但该结论尚需生物力学和临床研究进一步证实。此外,本研究进一步对男女患者进行比较,发现OPPP分布于远端的髌骨均为女性患者,而男性均位于近端。因此,对于女性患者,在个性化放置假体时需考虑到远端放置情况。

3.3. 关于OPPP和截骨面形态关系

髌骨假体设计会影响置换效果,目前市面上的假体种类繁多,尚无一种理想的髌骨假体设计[24]。从最初对称设计到偏内不对称设计,从单纯穹窿设计、解剖设计再到目前市面上各种混合设计,这种设计上的不断改进正是源于人们对髌骨形态和功能的了解不断深入[1]。因此,为了设计出能更好地兼顾截骨面覆盖和高点恢复的髌骨假体,需要全面且深入了解OPPP位置和截骨面形态的关系。本研究结果显示经过截骨面大小标准化后,OPPP呈集中分布,表现为超过87%患者分布于截骨面内侧约1/5处,超过84%患者分布于近侧约1/10处。目前市面上高点偏内的不对称假体基本是3 mm偏内设计,我们认为按照OPPP集中分布这一特点设计假体,例如以假体大小的1/5偏内设计,可能会比3 mm偏内髌骨假体能更贴合原髌骨嵴高点位置,置换术后可以获得更好的髌骨轨迹和预后,但该设想有待生物力学和临床研究证实。见图7

图 7.

Design of the high point for patellar prosthesis

髌骨假体高点设计示意图

m1:假体半径

m1: Prosthesis radius

图 7

3.4. 研究局限性

首先,由于数据来源的髌骨三维模型均是二维CT图像转化而来,在转化过程中因数据优化存在测量误差。其次,本次研究对象年龄范围为18~50岁,而关节置换患者通常超过此年龄段,且髌骨常伴有变性、增生等情况。既往研究显示髌骨无明显形变拟行TKA的患者其髌骨嵴高点位置[25]与年轻患者正常髌骨[5, 20, 26]相似。基于此,我们认为本研究结论适用于髌骨无明显形变的骨关节炎老年患者,但不适用于髌骨明显形变、增生的患者。此外,本研究对象为国人,存在一定局限性。

综上述,国人髌骨嵴高点主要分布于截骨面偏内约1/5和偏近约1/10,其中大部分分布于近端,仅小部分女性分布于截骨面远端,为髌骨假体的选择、放置位置及设计提供了一定理论依据。

利益冲突 在课题研究和文章撰写过程中不存在利益冲突

伦理声明 本研究经中山大学附属第一医院医学伦理委员会批准(伦审[2011]57号);受试者均知情同意并签署知情同意书

作者贡献声明 李昌钊:研究设计及实施、数据收集整理及统计分析、起草文章;何沛恒、刘勇:影像学资料搜集;徐栋梁:研究设计并对文章的知识性内容作批评性审阅

References

  • 1.McConaghy K, Derr T, Molloy RM, et al Patellar management during total knee arthroplasty: a review. EFORT Open Rev. 2021;6(10):861–871. doi: 10.1302/2058-5241.6.200156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Coory JA, Tan KG, Whitehouse SL, et al The outcome of total knee arthroplasty with and without patellar resurfacing up to 17 years: A report from the Australian Orthopaedic Association National Joint Replacement Registry. J Arthroplasty. 2020;35(1):132–138. doi: 10.1016/j.arth.2019.08.007. [DOI] [PubMed] [Google Scholar]
  • 3.Huang YF, Gao YH, Ding L, et al. Influence of femoral implant design modification on anterior knee pain and patellar crepitus in patients who underwent total knee arthroplasty without patella resurfacing. BMC Musculoskelet Disord, 2020, 21(1): 364. doi: 10.1186/s12891-020-03391-2.
  • 4.Huitema GC, de Vries LMA, Verboom TW, et al Patella related problems as common reason for revision of NexGen PS® total knee arthroplasty without patella resurfacing: An analysis of 5911 primary total knee arthroplasties registered in the Dutch Arthroplasty Register . Knee. 2022;34:217–222. doi: 10.1016/j.knee.2021.12.008. [DOI] [PubMed] [Google Scholar]
  • 5.Holland G, Keenan OJ, Gillespie M, et al Patellar cartilage loss does not affect early outcomes of total knee arthroplasty performed without patella resurfacing. Knee. 2021;28:194–201. doi: 10.1016/j.knee.2020.12.007. [DOI] [PubMed] [Google Scholar]
  • 6.Anand S, Yadav CS, Kumar N Age and prosthetic design as risk factors for secondary patella resurfacing. J Arthroplasty. 2020;35(10):3061–3062. doi: 10.1016/j.arth.2020.07.011. [DOI] [PubMed] [Google Scholar]
  • 7.Lachiewicz PF, Soileau ES Patella maltracking in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res. 2006;452:155–158. doi: 10.1097/01.blo.0000238803.97713.7d. [DOI] [PubMed] [Google Scholar]
  • 8.Imhoff AB, Bartsch E, Becher C, et al The lack of retropatellar resurfacing at index surgery is significantly associated with failure in patients following patellofemoral inlay arthroplasty: a multi-center study of more than 260 patients. Knee Surg Sports Traumatol Arthrosc. 2022;30(4):1212–1219. doi: 10.1007/s00167-021-06544-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Robben BJ, De Vries AJ, Spekenbrink-Spooren A, et al Rare primary patellar resurfacing does not lead to more secondary patellar resurfacing: analysis of 70, 014 primary total knee arthroplasties in the Dutch Arthroplasty Register (LROI) Acta Orthop. 2022;93:334–340. doi: 10.2340/17453674.2022.2078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hunt LP, Matharu GS, Blom AW, et al Patellar resurfacing during primary total knee replacement is associated with a lower risk of revision surgery. Bone Joint J. 2021;103-B(5):864–871. doi: 10.1302/0301-620X.103B5.BJJ-2020-0598.R2. [DOI] [PubMed] [Google Scholar]
  • 11.Parsons T, Al-Jabri T, Clement ND, et al Patella resurfacing during total knee arthroplasty is cost-effective and has lower re-operation rates compared to non-resurfacing. J Orthop Surg Res. 2021;16(1):185. doi: 10.1186/s13018-021-02295-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Assi C, Kheir N, Samaha C, et al Optimizing patellar positioning during total knee arthroplasty: an anatomical and clinical study. Int Orthop. 2017;41(12):2509–2515. doi: 10.1007/s00264-017-3557-4. [DOI] [PubMed] [Google Scholar]
  • 13.Fleaca SR, Mohor CI, Dura H, et al. Effect of patella resurfacing on functional outcome and revision rate in primary total knee arthroplasty (Review). Exp Ther Med, 2022, 23(1): 104. doi: 10.3892/etm.2021.11027.
  • 14.Hofmann AA, Tkach TK, Evanich CJ, et al Patellar component medialization in total knee arthroplasty. J Arthroplasty. 1997;12(2):155–160. doi: 10.1016/S0883-5403(97)90061-9. [DOI] [PubMed] [Google Scholar]
  • 15.Yang CC, Dennis DA, Davenport PG, et al Patellar component design influences size selection and coverage. Knee. 2017;24(2):460–467. doi: 10.1016/j.knee.2016.10.013. [DOI] [PubMed] [Google Scholar]
  • 16.Anglin C, Brimacombe JM, Wilson DR, et al Biomechanical consequences of patellar component medialization in total knee arthroplasty. J Arthroplasty. 2010;25(5):793–802. doi: 10.1016/j.arth.2009.04.023. [DOI] [PubMed] [Google Scholar]
  • 17.Yoshii I, Whiteside LA, Anouchi YS The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1992;(275):211–219. [PubMed] [Google Scholar]
  • 18.Lewonowski K, Dorr LD, McPherson EJ, et al Medialization of the patella in total knee arthroplasty. J Arthroplasty. 1997;12(2):161–167. doi: 10.1016/S0883-5403(97)90062-0. [DOI] [PubMed] [Google Scholar]
  • 19.Mei X, Ding H, Meng J, et al. Anthropometric measurements of patellar ridge using computed tomography-based three-dimensional computer models. J Orthop Surg Res, 2021, 16(1): 436. doi: 10.1186/s13018-021-02587-z.
  • 20.Huang AB, Luo X, Song CH, et al Comprehensive assessment of patellar morphology using computed tomography-based three-dimensional computer models. Knee. 2015;22(6):475–480. doi: 10.1016/j.knee.2015.05.010. [DOI] [PubMed] [Google Scholar]
  • 21.Joseph L, Batailler C, Roger J, et al Patellar component size effects patellar tilt in total knee arthroplasty with patellar resurfacing. Knee Surg Sports Traumatol Arthrosc. 2021;29(2):553–562. doi: 10.1007/s00167-020-05984-9. [DOI] [PubMed] [Google Scholar]
  • 22.Lee TQ, Budoff JE, Glaser FE Patellar component positioning in total knee arthroplasty. Clin Orthop Relat Res. 1999;(366):274–281. doi: 10.1097/00003086-199909000-00035. [DOI] [PubMed] [Google Scholar]
  • 23.Reithmeier E, Plitz W A theoretical and numerical approach to optimal positioning of the patellar surface replacement in a total knee endoprosthesis. J Biomech. 1990;23(9):883–892. doi: 10.1016/0021-9290(90)90353-5. [DOI] [PubMed] [Google Scholar]
  • 24.Sharma A, Grieco TF, Zingde SM, et al. In vivo three-dimensional patellar mechanics: Normal knees compared with domed and anatomic patellar components. J Bone Joint Surg (Am), 2017, 99(5): e18. doi: 10.2106/JBJS.15.01095.
  • 25.Baldwin JL, House CK Anatomic dimensions of the patella measured during total knee arthroplasty. J Arthroplasty. 2005;20(2):250–257. doi: 10.1016/j.arth.2004.09.027. [DOI] [PubMed] [Google Scholar]
  • 26.Shang P, Zhang L, Hou Z, et al Morphometric measurement of the patella on 3D model reconstructed from CT scan images for the southern Chinese population. Chin Med J (Engl) 2014;127(1):96–101. [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES