Abstract
The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the preexisting traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.
Keywords: Plastic-waste, Polymers, Health-hazards, Biodegradation, Microorganisms, Enzymes
Acknowledgements
The authors would like to acknowledge the research fellowship provided by the Ministry of Education (MoE), Govt. of India to the first author.
Footnotes
Highlights
• Health hazards of plastic waste on environment are discussed.
• Microbial species involved in biodegradation of plastics are being reviewed.
• Enzymatic biodegradation mechanism of plastics is outlined.
• Analytical techniques to evaluate the plastic biodegradation are presented.
Conflict of Interest
The authors of this manuscript declare that they have no conflict of interest.
References
- Abraham J, Ghosh E, Mukherjee P, Gajendiran A. Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy. 2017;36(1):147–154. doi: 10.1002/ep.12467. [DOI] [Google Scholar]
- Acero E H, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab O H, Guebitz G. Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecular Rapid Communications. 2011;44:4632–4640. [Google Scholar]
- Ahmed T, Shahid M, Azeem F, Rasul I, Shah A A, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research International. 2018;25(8):7287–7298. doi: 10.1007/s11356-018-1234-9. [DOI] [PubMed] [Google Scholar]
- Al-Salem S M, Al-Hazza’a A, Karam H J, Al-Wadi M H, Al-Dhafeeri A T, Al-Rowaih A A. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. Journal of Environmental Management. 2019;250:109475. doi: 10.1016/j.jenvman.2019.109475. [DOI] [PubMed] [Google Scholar]
- Ali M I, Ahmed S, Javed I, Ali N, Atiq N, Hameed A, Robson G. Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1. International Journal of Environmental Science and Technology. 2014;11(2):339–348. doi: 10.1007/s13762-013-0220-5. [DOI] [Google Scholar]
- Alimba C G, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology. 2019;68:61–74. doi: 10.1016/j.etap.2019.03.001. [DOI] [PubMed] [Google Scholar]
- Almeida E L, Carrillo Rincón A F, Jackson S A, Dobson A D W. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Frontiers in Microbiology. 2019;10(2019):2187. doi: 10.3389/fmicb.2019.02187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology. 2017;5(1):8–19. [Google Scholar]
- Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment. 2021;759:143536. doi: 10.1016/j.scitotenv.2020.143536. [DOI] [PubMed] [Google Scholar]
- Andrady A L, Neal M A. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1526):1977–1984. doi: 10.1098/rstb.2008.0304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antipova T V, Zhelifonova V P, Zaitsev K V, Nedorezova P M, Aladyshev A M, Klyamkina A N, Kostyuk S V, Danilogorskaya A A, Kozlovsky A G. Biodegradation of poly-ε-caprolactones and poly-l-lactides by fungi. Journal of Polymers and the Environment. 2018;26(12):4350–4359. doi: 10.1007/s10924-018-1307-3. [DOI] [Google Scholar]
- Arumugam K, Renganathan S, Babalola O O, Muthunarayanan V. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Management. 2018;74:185–193. doi: 10.1016/j.wasman.2017.11.009. [DOI] [PubMed] [Google Scholar]
- Austin H P, Allen M D, Donohoe B S, Rorrer N A, Kearns F L, Silveira R L, Pollard B C, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener W E, Amore A, Skaf M S, Crowley M F, Thorne A W, Johnson C W, Woodcock H L, McGeehan J E, Beckham G T. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, USA. 2018;115(19):E4350–E4357. doi: 10.1073/pnas.1718804115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahl S, Dolma J, Jyot Singh J, Sehgal S. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings. 2021;39:31–34. [Google Scholar]
- Banerjee S, Maiti T K, Roy R N. Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Critical Reviews in Biotechnology. 2022;42(3):384–402. doi: 10.1080/07388551.2021.1942777. [DOI] [PubMed] [Google Scholar]
- Barbeş L, Rădulescu C, Stihi C. ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics. 2014;66(3):765–777. [Google Scholar]
- Bardají D K R, Furlan J P R, Stehling E G. Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Archives of Microbiology. 2019;201(5):699–704. doi: 10.1007/s00203-019-01637-9. [DOI] [PubMed] [Google Scholar]
- Belhouari Y, Farnum B, Jenkins C, Kieser J, López De Román A, Mccauley D, Rochman C, Schreiber R, Schwartz E, Taylor H. International Coastal Cleanup 2017 Report. Washington, DC: Ocean Conservancy; 2017. [Google Scholar]
- Bhagwat G, O’connor W, Grainge I, Palanisami T. Understanding the fundamental basis for biofilm formation on plastic surfaces: Role of conditioning films. Frontiers in Microbiology. 2021;12(2021):1–10. doi: 10.3389/fmicb.2021.687118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhardwaj H, Gupta R, Tiwari A. Communities of microbial enzymes associated with biodegradation of plastics. Journal of Polymers and the Environment. 2013;21(2):575–579. doi: 10.1007/s10924-012-0456-z. [DOI] [Google Scholar]
- Bhatia M, Girdhar A, Tiwari A, Nayarisseri A. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus. 2014;3(1):497. doi: 10.1186/2193-1801-3-497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Höppner A, Ferrer M, Gohlke H, Smits S H J, Jaeger K E. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri — structural and functional insights. Frontiers in Microbiology. 2020;11:114. doi: 10.3389/fmicb.2020.00114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bombelli P, Howe C J, Bertocchini F. Polyethylene biodegradation by caterpillars of the wax moth Galleria mellonella. Current Biology. 2017;27(8):R292–R293. doi: 10.1016/j.cub.2017.02.060. [DOI] [PubMed] [Google Scholar]
- Brandon A M, Gao S H, Tian R, Ning D, Yang S S, Zhou J, Wu W M, Criddle C S. Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology. 2018;52(11):6526–6533. doi: 10.1021/acs.est.8b02301. [DOI] [PubMed] [Google Scholar]
- Briassoulis D. Mechanical design requirements for low tunnel biodegradable and conventional films. Biosystems Engineering. 2004;87(2):209–223. doi: 10.1016/j.biosystemseng.2003.10.013. [DOI] [Google Scholar]
- Briassoulis D. Mechanical behaviour of biodegradable agricultural films under real field conditions. Polymer Degradation & Stability. 2006;91(6):1256–1272. doi: 10.1016/j.polymdegradstab.2005.09.016. [DOI] [Google Scholar]
- Brydson J A. Plastics Materials. Oxford: ButterworthHeinemann, Elsevier; 1999. [Google Scholar]
- Bubpachat T, Sombatsompop N, Prapagdee B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polymer Degradation & Stability. 2018;152:75–85. doi: 10.1016/j.polymdegradstab.2018.03.023. [DOI] [Google Scholar]
- Capitain C, Ross-Jones J, Möhring S, Tippkötter N. Differential scanning calorimetry for quantification of polymer biodegradability in compost. International Biodeterioration & Biodegradation. 2020;149:104914. doi: 10.1016/j.ibiod.2020.104914. [DOI] [Google Scholar]
- Cassone B J, Grove H C, Elebute O, Villanueva S M P, Lemoine C M R. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceedings of the Royal Society B: Biological Sciences. 2020;287(1922):9–11. doi: 10.1098/rspb.2020.0112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T. Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation & Stability. 2017;137:251–271. doi: 10.1016/j.polymdegradstab.2017.01.017. [DOI] [Google Scholar]
- Celina M, Ottesen D K, Gillen K T, Clough R L. FTIR emission spectroscopy applied to polymer degradation. Polymer Degradation & Stability. 1997;58(1–2):15–31. doi: 10.1016/S0141-3910(96)00218-2. [DOI] [Google Scholar]
- Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang J H, Abu-Omar M, Scott S L, Suh S. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering. 2020;8(9):3494–3511. doi: 10.1021/acssuschemeng.9b06635. [DOI] [Google Scholar]
- Chanda M. Plastics Technology Handbook. Boca Raton: CRC Press; 2017. [Google Scholar]
- Chauhan D, Agrawal G, Deshmukh S, Roy S S, Priyadarshini R. Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances. 2018;8(66):37590–37599. doi: 10.1039/C8RA06448B. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaurasia M. Analytical review on biodegradation of plastics. eLifePress. 2020;1(1):1–8. [Google Scholar]
- Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, Wang Z. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment. 2020;709:136138. doi: 10.1016/j.scitotenv.2019.136138. [DOI] [PubMed] [Google Scholar]
- Chinaglia S, Tosin M, Degli-Innocenti F. Biodegradation rate of biodegradable plastics at molecular level. Polymer Degradation and Stability. 2018;147:237–244. doi: 10.1016/j.polymdegradstab.2017.12.011. [DOI] [Google Scholar]
- Christian V, Shrivastava R, Shukla D, Modi H A, Vyas B R M. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: Enzymology and mechanisms involved. Indian Journal of Experimental Biology. 2005;43(4):301–312. [PubMed] [Google Scholar]
- CIEL . Plastic Global Law & Policy. Washington, DC: Center for International Environmental Law; 2020. [Google Scholar]
- da Luz J M R, Paes S A, Bazzolli D M S, Totola M R, Demuner A J, Kasuya M C M. Abiotic and biotic degradation of oxobiodegradable plastic bags by Pleurotus ostreatus. PLoS One. 2014;9(11):e107438. doi: 10.1371/journal.pone.0107438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daftardar A, Shah R, Gandhi P, Garg H. Use of waste plastic as a construction material. International Journal of Engineering and Applied Sciences. 2017;4(11):148–151. [Google Scholar]
- Dang T C H, Nguyen D T, Thai H, Nguyen T C, Hien Tran T T, Le V H, Nguyen V H, Tran X B, Thao Pham T P, Nguyen T G, Nguyen Q T. Plastic degradation by thermophilic Bccillss sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2018;9(1):015014. [Google Scholar]
- Davis A, Sims D, Sims D. Weathering of Polymers. London: Springer Science & Business Media; 1983. [Google Scholar]
- Derraik J G B. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin. 2002;44(9):842–852. doi: 10.1016/S0025-326X(02)00220-5. [DOI] [PubMed] [Google Scholar]
- de Santana FS, Gracioso LH, Karolski B, dos Passo Galluzzi Baltazar, Mendes MA, do Nascimento CA, Perpetuo EA. Isolation of bisphenol A-tolerating/degrading Shewanella haliotis strain MH137742 from an estuarine environment. Applied Biochemistry and Biotechnology. 2019;189(1):103–115. doi: 10.1007/s12010-019-02989-0. [DOI] [PubMed] [Google Scholar]
- Dey A S, Bose H, Mohapatra B, Sar P. Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp., isolated from waste dumpsite and drilling fluid. Frontiers in Microbiology. 2020;11:603210. doi: 10.3389/fmicb.2020.603210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding L, Mao R, Ma S, Guo X, Zhu L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Research. 2020;174:115634. doi: 10.1016/j.watres.2020.115634. [DOI] [PubMed] [Google Scholar]
- El-Shafei H A, Abd El-Nasser N H, Kansoh A L, Ali A M. Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polymer Degradation & Stability. 1998;62(2):361–365. doi: 10.1016/S0141-3910(98)00019-6. [DOI] [Google Scholar]
- Esmaeili A, Pourbabaee A A, Alikhani H A, Shabani F, Esmaeili E. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One. 2013;8(9):e71720. doi: 10.1371/journal.pone.0071720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eubeler J P, Zok S, Bernhard M, Knepper T P. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. Trends in Analytical Chemistry. 2009;28(9):1057–1072. doi: 10.1016/j.trac.2009.06.007. [DOI] [Google Scholar]
- Farzi A, Dehnad A, Fotouhi A F. Biocatalysis and agricultural biotechnology biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology. 2019;17(2019):25–31. doi: 10.1016/j.bcab.2018.11.002. [DOI] [Google Scholar]
- Flieger M, Kantorová M, Prell A, Rezanka T, Votruba J. Biodegradable plastics from renewable sources. Folia Microbiologica. 2003;48(1):27–44. doi: 10.1007/BF02931273. [DOI] [PubMed] [Google Scholar]
- Forte M, Iachetta G, Tussellino M, Carotenuto R, Prisco M, De Falco M, Laforgia V, Valiante S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro. 2016;31:126–136. doi: 10.1016/j.tiv.2015.11.006. [DOI] [PubMed] [Google Scholar]
- García-Depraect O, Lebrero R, Rodriguez-Vega S, Bordel S, Santos-Beneit F, Martínez-Mendoza L J, Aragão Börner R, Börner T, Muñoz R. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresource Technology. 2022;344:126265. doi: 10.1016/j.biortech.2021.126265. [DOI] [PubMed] [Google Scholar]
- Gautam R, Bassi A S, Yanful E K. A review of biodegradation of synthetic plastic and foams. Applied Biochemistry and Biotechnology. 2007;141(1):85–108. doi: 10.1007/s12010-007-9212-6. [DOI] [PubMed] [Google Scholar]
- Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made. Science Advances. 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghatge S, Yang Y, Ahn J H, Hur H G. Biodegradation of polyethylene: A brief review. Applied Biological Chemistry. 2020;63(1):1–14. doi: 10.1186/s13765-020-00511-3. [DOI] [Google Scholar]
- Ghosh S, Qureshi A, Purohit H J. Microbial degradation of plastics: Biofilms and degradation pathways. Contaminants in Agriculture and Environment: Health Risks and emediation. 2019;1:184–199. [Google Scholar]
- Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environmental Research. 2020;158(2020):104949. doi: 10.1016/j.marenvres.2020.104949. [DOI] [PubMed] [Google Scholar]
- Godfrey L. Waste plastic, the challenge facing developing countries—Ban it, change it, collect it? Recycling. 2019;4(1):3. doi: 10.3390/recycling4010003. [DOI] [Google Scholar]
- Gómez-Méndez L D, Moreno-Bayona D A, Poutou-Piñales R A, Salcedo-Reyes J C, Pedroza-Rodríguez A M, Vargas A, Bogoya J M. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One. 2018;13(9):e0203786. doi: 10.1371/journal.pone.0203786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gooljar . Fact Sheet: Plastics in the Ocean. Washington, DC: In Earth Day; 2018. p. 2018. [Google Scholar]
- Grover A, Gupta A, Chandra S, Kumari A, Khurana S M P. Polythene and environment. International Journal of Environmental Sciences. 2015;5(6):1091–1105. [Google Scholar]
- Guern C L. When the mermaids cry: the great plastic tide. Santa Barbara: Coastal Care; 2019. [Google Scholar]
- Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology. 2005;98(5):1093–1100. doi: 10.1111/j.1365-2672.2005.02553.x. [DOI] [PubMed] [Google Scholar]
- Hahladakis J N, Velis C A, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014. [DOI] [PubMed] [Google Scholar]
- Han Y N, Wei M, Han F, Fang C, Wang D, Zhong Y J, Guo C L, Shi X Y, Xie Z K, Li F M. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms. 2020;8(12):1979. doi: 10.3390/microorganisms8121979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison J P, Boardman C, O’Callaghan K, Delort A M, Song J. Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science. 2018;5(5):171792. doi: 10.1098/rsos.171792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart H, Hadad C M, Craine L E, Hart D J. Organic Chemistry: A Short Course. Boston: Cengage Learning; 2011. [Google Scholar]
- Hu X, Thumarat U, Zhang X, Tang M, Kawai F. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobiiida alba AHK119. Applied Microbiology and Biotechnology. 2010;87(2):771–779. doi: 10.1007/s00253-010-2555-x. [DOI] [PubMed] [Google Scholar]
- Huang C Y, Roan M L, Kuo M C, Lu W L. Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends. Polymer Degradation & Stability. 2005;90(1):95–105. doi: 10.1016/j.polymdegradstab.2005.02.015. [DOI] [Google Scholar]
- Huerta Lwanga E, Mendoza Vega J, Ku Quej V, Chi J D, Sanchez del Cid L, Chi C, Escalona Segura G, Gertsen H, Salánki T, van der Ploeg M, et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports. 2017;7(1):1–7. doi: 10.1038/s41598-017-14588-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui Y H. Handbook of Food Science, Technology, and Engineering. Boca Raton: CRC Press; 2006. [Google Scholar]
- Hung C S, Zingarelli S, Nadeau L J, Biffinger J C, Drake C A, Crouch A L, Barlow D E, Russell J N, Jr, Crookes-Goodson W J. Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and Environmental Microbiology. 2016;82(20):6080–6090. doi: 10.1128/AEM.01448-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussein A A, Alzuhairi M, Aljanabi N H. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. In AIP Conference Proceedings. 2018;1968(1):030081. doi: 10.1063/1.5039268. [DOI] [Google Scholar]
- Ioakeimidis C, Fotopoulou K N, Karapanagioti H K, Geraga M, Zeri C, Papathanassiou E, Galgani F, Papatheodorou G. The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Scientific Reports. 2016;6:23501. doi: 10.1038/srep23501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaeger K E, Steinbüchel A, Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates) Applied and Environmental Microbiology. 1995;61(8):3113–3118. doi: 10.1128/aem.61.8.3113-3118.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768–771. doi: 10.1126/science.1260352. [DOI] [PubMed] [Google Scholar]
- Jankauskaite V, Macijauskas G, Lygaitis R. Polyethylene terephthalate waste recycling and application possibilities: A review. Materials Science (Medziagotyra) 2008;14(2):119–127. [Google Scholar]
- Jeon H J, Kim M N. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation. 2015;103:141–146. doi: 10.1016/j.ibiod.2015.04.024. [DOI] [Google Scholar]
- Jeon H J, Kim M N. Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation. 2016;115:244–249. doi: 10.1016/j.ibiod.2016.08.025. [DOI] [Google Scholar]
- Jeon J M, Park S J, Choi T R, Park J H, Yang Y H, Yoon J J. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation & Stability. 2021;191:109662. doi: 10.1016/j.polymdegradstab.2021.109662. [DOI] [Google Scholar]
- Jia H, Zhang M, Weng Y, Zhao Y, Li C, Kanwal A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. Journal of Environmental Sciences-China. 2021;103:50–58. doi: 10.1016/j.jes.2020.10.001. [DOI] [PubMed] [Google Scholar]
- Joo S, Cho I J, Seo H, Son H F, Sagong H Y, Shin T J, Choi S Y, Lee S Y, Kim K J. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications. 2018;9:382. doi: 10.1038/s41467-018-02881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan S, Nadir S, Shah Z U, Shah A A, Karunarathna S C, Xu J, Khan A, Munir S, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution. 2017;225:469–480. doi: 10.1016/j.envpol.2017.03.012. [DOI] [PubMed] [Google Scholar]
- Khorasanizadeh Z. The effect of biotic and abiotic factors on degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria in soil. Hatfield: University of Hertfordshire; 2013. p. 262. [Google Scholar]
- Kjeldsen A, Price M, Lilley C, Guzniczak E, Archer I. A Review of Standards for Biodegradable Plastics with support from. Glasgow: Industrial Biotechnology Innovation Centre IBioIC; 2019. pp. 28–28. [Google Scholar]
- Koelmans A A, Besseling E, Foekema E M. Leaching of plastic additives to marine organisms. Environmental Pollution. 2014;187:49–54. doi: 10.1016/j.envpol.2013.12.013. [DOI] [PubMed] [Google Scholar]
- Krueger M C, Harms H, Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology. 2015;99(21):8857–8874. doi: 10.1007/s00253-015-6879-4. [DOI] [PubMed] [Google Scholar]
- Kumar R V, Kanna G R, Elumalai S. Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation. 2017;8(381):2. [Google Scholar]
- Kumari A, Chaudhary D R, Jha B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environmental Science and Pollution Research International. 2019;26(2):1507–1516. doi: 10.1007/s11356-018-3465-1. [DOI] [PubMed] [Google Scholar]
- Kyaw B M, Champakalakshmi R, Sakharkar M K, Lim C S, Sakharkar K R. Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology. 2012;52(3):411–419. doi: 10.1007/s12088-012-0250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment. 2007;15(2):125–150. doi: 10.1007/s10924-007-0053-8. [DOI] [Google Scholar]
- Laville S, Taylor M. A million bottles a minute: World’s plastic binge ‘as dangerous as climate change’. Guardian. 2017;28(6):2017. [Google Scholar]
- Law K L, Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials. 2021;7(2):104–116. doi: 10.1038/s41578-021-00382-0. [DOI] [Google Scholar]
- Lear G, Kingsbury J M, Franchini S, Gambarini V, Maday S D M, Wallbank J A, Weaver L, Pantos O. Plastics and the microbiome: impacts and solutions. Environmental Microbiome. 2021;16:2. doi: 10.1186/s40793-020-00371-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Communications. 2019;5:6. doi: 10.1057/s41599-018-0212-7. [DOI] [Google Scholar]
- Leslie H A, van Velzen M J M, Brandsma S H, Vethaak A D, Garcia-Vallejo J J, Lamoree M H. Discovery and quantification of plastic particle pollution in human blood. Environment International. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. [DOI] [PubMed] [Google Scholar]
- Li Z, Wei R, Gao M, Ren Y, Yu B, Nie K, Xu H, Liu L. Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management. 2020;263:110402. doi: 10.1016/j.jenvman.2020.110402. [DOI] [PubMed] [Google Scholar]
- Lindell A E, Zimmermann-Kogadeeva M, Patil K R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews. Microbiology. 2022;20:431–443. doi: 10.1038/s41579-022-00681-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment. 2011;409(18):3309–3324. doi: 10.1016/j.scitotenv.2011.04.038. [DOI] [PubMed] [Google Scholar]
- Liu C, Thang Nguyen T, Ishimura Y. Current situation and key challenges on the use of single-use plastic in Hanoi. Waste Management (New York, N.Y.) 2021;121:422–431. doi: 10.1016/j.wasman.2020.12.033. [DOI] [PubMed] [Google Scholar]
- MacArthur E, Waughray D, Stuchtey M (2016). Rethinking Plastics, starting with packaging. Cologny World Economic Forum, 1–206
- Magnin A, Pollet E, Phalip V, Avérous L. Evaluation of biological degradation of polyurethanes. Biotechnology Advances. 2020;39:107457. doi: 10.1016/j.biotechadv.2019.107457. [DOI] [PubMed] [Google Scholar]
- Masaki K, Kamini N R, Ikeda H, Iefuji H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Applied and Environmental Microbiology. 2005;71(11):7548–7550. doi: 10.1128/AEM.71.11.7548-7550.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsunaga M, Whitney P J. Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonization. Polymer Degradation & Stability. 2000;70(3):325–332. doi: 10.1016/S0141-3910(00)00105-1. [DOI] [Google Scholar]
- Meena S S, Sharma R S, Gupta P, Karmakar S, Aggarwal K K. Isolation and identification of Bacillus megaterium YB3 from an effluent contaminated site efficiently degrades pyrene. Journal of Basic Microbiology. 2016;56(4):369–378. doi: 10.1002/jobm.201500533. [DOI] [PubMed] [Google Scholar]
- Miloloža M, Kučićc Grgić D, Bolanča T, Ukić Š, Cvetnić M, Ocelić Bulatovič V, Dionysiou D D, Kušić H. Ecotoxicological assessment of microplastics in freshwater sources: A review. Water. 2021;13(1):56. doi: 10.3390/w13010056. [DOI] [Google Scholar]
- Mohammadi Nafchi A, Moradpour M, Saeidi M, Alias A K. Thermoplastic starches: Properties, challenges, and prospects. Stärke. 2013;65(1–2):61–72. doi: 10.1002/star.201200201. [DOI] [Google Scholar]
- Mohan A J, Sekhar V C, Bhaskar T, Nampoothiri K M. Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology. 2016;213:204–207. doi: 10.1016/j.biortech.2016.03.021. [DOI] [PubMed] [Google Scholar]
- Mohanan N, Montazer Z, Sharma P K, Levin D B. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology. 2020;11:580709. doi: 10.3389/fmicb.2020.580709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moharir R V, Kumar S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. Journal of Cleaner Production. 2019;208:65–76. doi: 10.1016/j.jclepro.2018.10.059. [DOI] [Google Scholar]
- Montazer Z, Habibi-Najafi M B, Mohebbi M, Oromiehei A. Microbial degradation of uv-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment. 2018;26(9):3613–3625. doi: 10.1007/s10924-018-1245-0. [DOI] [Google Scholar]
- Moog D, Schmitt J, Senger J, Zarzycki J, Rexer K H, Linne U, Erb T J, Maier U G. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories. 2019;18:171. doi: 10.1186/s12934-019-1220-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morohoshi T, Oi T, Aiso H, Suzuki T, Okura T, Sato S. Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes and Environments. 2018;33(3):332–335. doi: 10.1264/jsme2.ME18033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller R J, Schrader H, Profe J, Dresler K, Deckwer W D. Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications. 2005;26(17):1400–1405. doi: 10.1002/marc.200500410. [DOI] [Google Scholar]
- Murphy C A, Cameron J A, Huang S J, Vinopal R T. Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology. 1996;62(2):456–460. doi: 10.1128/aem.62.2.456-460.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K, Tomita T, Abe N, Kamio Y. Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Applied and Environmental Microbiology. 2001;67(1):345–353. doi: 10.1128/AEM.67.1.345-353.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanda S, Sahu S, Abraham J. Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Science & Environmental Management. 2010;14(2):57–60. [Google Scholar]
- Narancic T, O’Connor K E. Microbial biotechnology addressing the plastic waste disaster. Microbial Biotechnology. 2017;10(5):1232–1235. doi: 10.1111/1751-7915.12775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narwal S K, Gupta R. Handbook of Research on Inventive Bioremediation Techniques. Kalyani: IGI Global; 2017. pp. 186–212. [Google Scholar]
- Ndahebwa Muhonja C, Magoma G, Imbuga M, Makonde H M. Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology. 2018;2018:4167845. doi: 10.1155/2018/4167845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelms S E, Duncan E M, Broderick A C, Galloway T S, Godfrey M H, Hamann M, Lindeque P K, Godley B J. Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science. 2016;73(2):165–181. doi: 10.1093/icesjms/fsv165. [DOI] [Google Scholar]
- Newman P. Plastics: Are they part of the zero-waste agenda or the toxic-waste agenda? Sustainable Earth. 2021;4(1):1–16. [Google Scholar]
- Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T. Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering. 1998;86(4):339–345. doi: 10.1016/S0922-338X(99)89001-1. [DOI] [Google Scholar]
- Okan M, Aydin H M, Barsbay M. Current approaches to waste polymer utilization and minimization: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) 2019;94(1):8–21. doi: 10.1002/jctb.5778. [DOI] [Google Scholar]
- Orhan Y, Büyükgüngör H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation. 2000;45(1–2):49–55. doi: 10.1016/S0964-8305(00)00048-2. [DOI] [Google Scholar]
- Orr I G, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology. 2004;65(1):97–104. doi: 10.1007/s00253-004-1584-8. [DOI] [PubMed] [Google Scholar]
- Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere. 2019;222:527–533. doi: 10.1016/j.chemosphere.2019.01.159. [DOI] [PubMed] [Google Scholar]
- Pastorelli G, Cucci C, Garcia O, Piantanida G, Elnaggar A, Cassar M, Strlič M. Environmentally induced colour change during natural degradation of selected polymers. Polymer Degradation & Stability. 2014;107:198–209. doi: 10.1016/j.polymdegradstab.2013.11.007. [DOI] [Google Scholar]
- Payne J, Mckeown P, Jones M D. A circular economy approach to plastic waste. Polymer Degradation & Stability. 2019;165:170–181. doi: 10.1016/j.polymdegradstab.2019.05.014. [DOI] [Google Scholar]
- Peixoto J, Silva L P, Krüger R H. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials. 2017;324(2017):634–644. doi: 10.1016/j.jhazmat.2016.11.037. [DOI] [PubMed] [Google Scholar]
- Peng Y, Wu P, Schartup A T, Zhang Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences. 2021;118(47):e2111530118. doi: 10.1073/pnas.2111530118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penkhrue W, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W, Lumyong S. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology & Biotechnology. 2015;31(9):1431–1442. doi: 10.1007/s11274-015-1895-1. [DOI] [PubMed] [Google Scholar]
- Peiry K K. Basel convention on the control of transboundary movements of hazardous wastes and their disposal. New York: The United Nations; 2019. p. 10. [PubMed] [Google Scholar]
- Phua S K, Castillo E, Anderson J M, Hiltner A. Biodegradation of a polyurethane in vitro. Journal of Biomedical Materials Research. 1987;21(2):231–246. doi: 10.1002/jbm.820210207. [DOI] [PubMed] [Google Scholar]
- Pinchuk L S, Makarevich A V, Vlasova G M, Kravtsov A G, Shapovalov V A. Electret-thermal analysis to assess biodegradation of polymer composites. International Biodeterioration & Biodegradation. 2004;54(1):13–18. doi: 10.1016/j.ibiod.2003.11.005. [DOI] [Google Scholar]
- Pometto A L, 3rd, Lee B T, Johnson K E. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Applied and Environmental Microbiology. 1992;58(2):731–733. doi: 10.1128/aem.58.2.731-733.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prata J C, Silva A L P, Walker T R, Duarte A C, Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environmental Science & Technology. 2020;54(13):7760–7765. doi: 10.1021/acs.est.0c02178. [DOI] [PubMed] [Google Scholar]
- Prinz N, Korez Š. Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: a review. In: Jungblut S, Liebich V, Bode-Dalby M, editors. YOUMARES 9 — The Oceans: Our Research, Our Future; Germany. Berlin: SpringerOpen; 2020. pp. 101–120. [Google Scholar]
- Priya A, Dutta K, Daverey A. A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) 2022;97(2):381–390. doi: 10.1002/jctb.6675. [DOI] [Google Scholar]
- Quartinello F, Kremser K, Schoen H, Tesei D. Together is better: the rumen microbial community as biological toolbox for degradation of synthetic polyesters. Frontiers in Bioengineering and Biotechnology. 2021;9(2021):500. [Google Scholar]
- Rajmohan K V S, Ramya C, Viswanathan M R, Varjani S. Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health. 2019;12:72–84. doi: 10.1016/j.coesh.2019.08.006. [DOI] [Google Scholar]
- Ritchie H, Roser M. Plastic Pollution. England & Wales: Our World in Data; 2018. [Google Scholar]
- Rocha-Santos T, Duarte A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends in Analytical Chemistry. 2015;65:47–53. doi: 10.1016/j.trac.2014.10.011. [DOI] [Google Scholar]
- Rochman C M, Browne M A, Halpern B S, Hentschel B T, Hoh E, Karapanagioti H K, Rios-Mendoza L M, Takada H, Teh S, Thompson R C. Classify plastic waste as hazardous. Nature. 2013;494(7436):169–171. doi: 10.1038/494169a. [DOI] [PubMed] [Google Scholar]
- Rudel R A, Dodson R E, Newton E, Zota A R, Brody J G. Correlations between urinary phthalate metabolites and phthalates, estrogenic compounds 4-butyl phenol and o-phenyl phenol, and some pesticides in home indoor air and house dust. Epidemiology (Cambridge, Mass.) 2008;19(6):S332. [Google Scholar]
- Russell J R, Huang J, Anand P, Kucera K, Sandoval A G, Dantzler K W, Hickman D, Jee J, Kimovec F M, Koppstein D, Marks D H, Mittermiller P A, Nu S J, Santiago M, Townes M A, Vishnevetsky M, Williams N E, Boulanger L-A, Bascom-Slack C, Strobel S A. Biodegradation of Polyester Polyurethane by Endophytic Fungi. Applied and Environmental Biotechnology. 2011;77(17):6076–6084. doi: 10.1128/AEM.00521-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sangeetha Devi R, Rajesh Kannan V, Nivas D, Kannan K, Chandru S, Robert Antony A. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin. 2015;96(1–2):32–40. doi: 10.1016/j.marpolbul.2015.05.050. [DOI] [PubMed] [Google Scholar]
- Sangeetha Devi R, Ramya R, Kannan K, Robert Antony A, Rajesh Kannan V. Investigation of biodegradation potentials of high-density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine Pollution Bulletin. 2019;138:549–560. doi: 10.1016/j.marpolbul.2018.12.001. [DOI] [PubMed] [Google Scholar]
- Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation. 2013;84:204–210. doi: 10.1016/j.ibiod.2012.03.001. [DOI] [Google Scholar]
- Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, Fukuda M. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Applied and Environmental Microbiology. 2006;72(3):1825–1832. doi: 10.1128/AEM.72.3.1825-1832.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders J H. Plastic foams. New York: Marcel Dekker; 1972. [Google Scholar]
- Scott A, Pickard S, Sharp S, Becqué R. Phasing out Plastics. London: ODI Reports; 2020. [Google Scholar]
- Shah A A, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnology Advances. 2008;26(3):246–265. doi: 10.1016/j.biotechadv.2007.12.005. [DOI] [PubMed] [Google Scholar]
- Shilpa, Basak N, Meena S S. Exploring the plastic degrading ability of microbial communities through metagenomic approach. Materials Today: Proceedings. 2022;57:1924–1932. [Google Scholar]
- Silva A B, Bastos A S, Justino C I L, Duarte A C, Rocha-Santos T a P. Microplastics in the environment: Challenges in analytical chemistry. A review. Analytica Chimica Acta. 2018;1017:1–19. doi: 10.1016/j.aca.2018.02.043. [DOI] [PubMed] [Google Scholar]
- Singh B, Sharma N. Mechanistic implications of plastic degradation. Polymer Degradation & Stability. 2008;93(3):561–584. doi: 10.1016/j.polymdegradstab.2007.11.008. [DOI] [Google Scholar]
- Singh G, Singh A K, Bhatt K. Biodegradation of polyethylene by bacteria isolated from soil. International Journal of Research and Development in Pharmacy and Life Sciences. 2016;5(2):2056–2062. [Google Scholar]
- Siracusa V. Microbial degradation of synthetic biopolymers waste. Polymers. 2019;11(6):1066. doi: 10.3390/polym11061066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology. 2006;72(2):346–352. doi: 10.1007/s00253-005-0259-4. [DOI] [PubMed] [Google Scholar]
- Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist K S. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research International. 2016;23(18):18307–18319. doi: 10.1007/s11356-016-7000-y. [DOI] [PubMed] [Google Scholar]
- Skariyachan S, Patil A A, Shankar A, Manjunath M, Bachappanavar N, Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation & Stability. 2018;149:52–68. doi: 10.1016/j.polymdegradstab.2018.01.018. [DOI] [Google Scholar]
- Skariyachan S, Taskeen N, Kishore A P, Krishna B V, Naidu G. Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management. 2021;284:112030. doi: 10.1016/j.jenvman.2021.112030. [DOI] [PubMed] [Google Scholar]
- Sowmya H V, Ramalingappa, Krishnappa M, Thippeswamy B. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability. 2015;17(4):731–745. doi: 10.1007/s10668-014-9571-4. [DOI] [Google Scholar]
- Sowmya H V T B. Biodegradation of Polyethylene by Bacillus cereus. International Journal (Toronto, Ont.) 2014;4(2):28–32. [Google Scholar]
- Srivastava A, Prabhakar M R, Mohanty A, Meena S S. Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing. 2021;2:217–231. doi: 10.1007/s43393-021-00052-w. [DOI] [Google Scholar]
- Sriyapai P, Chansiri K, Sriyapai T. Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology. 2018;87(2):290–300. doi: 10.1134/S0026261718020157. [DOI] [Google Scholar]
- Steinbüchel A. Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Current Opinion in Biotechnology. 2005;16(6):607–613. doi: 10.1016/j.copbio.2005.10.011. [DOI] [PubMed] [Google Scholar]
- Sukhumaporn S, Shinji T, Prachumporn K, Tomohiko T, Yuumi I, Vichien K. A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing. African Journal of Microbiological Research. 2011;5(18):2575–2582. doi: 10.5897/AJMR10.722. [DOI] [Google Scholar]
- Sukkhum S, Tokuyama S, Tamura T, Kitpreechavanich V. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. Journal of General and Applied Microbiology. 2009;55(6):459–467. doi: 10.2323/jgam.55.459. [DOI] [PubMed] [Google Scholar]
- Suresh B, Maruthamuthu S, Kannan M, Chandramohan A. Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal. 2011;43(4):398–406. doi: 10.1038/pj.2010.147. [DOI] [Google Scholar]
- Talsness C E, Andrade A J M, Kuriyama S N, Taylor J A, vom Saal F S. Components of plastic: Experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2009;364(1526):2079–2096. doi: 10.1098/rstb.2008.0281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate) International Journal of Systematic and Evolutionary Microbiology. 2016;66(8):2813–2818. doi: 10.1099/ijsem.0.001058. [DOI] [PubMed] [Google Scholar]
- Taylor M L, Gwinnett C, Robinson L F, Woodall L C. Plastic microfibre ingestion by deep-sea organisms. Scientific Reports. 2016;6(1):33997. doi: 10.1038/srep33997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thilagavathi S S, Gomathi V, Kumar K. An approach to Low density polyethylene (LDPE) biodegradation by Xylaria sp. from termite garden. Journal of Pharmacognosy and Phytochemistry. 2018;7(2):2408–2411. [Google Scholar]
- Thind P S, Sareen A, Singh D D, Singh S, John S. Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures. Environmental Pollution. 2021;276:116621. doi: 10.1016/j.envpol.2021.116621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiseo I. Plastic cumulative production globally 2050. Hamburg, Germany: Statista; 2021. [Google Scholar]
- Titow M V. PVC technology. Dordrecht, the Netherlands: Springer Science & Business Media; 2012. [Google Scholar]
- Tokiwa Y, Calabia B P, Ugwu C U, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences. 2009;10(9):3722–3742. doi: 10.3390/ijms10093722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tribedi P, Sarkar S, Mukherjee K, Sil A K. Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environmental Science and Pollution Research International. 2012;19(6):2115–2124. doi: 10.1007/s11356-011-0711-1. [DOI] [PubMed] [Google Scholar]
- Tschan M J L, Brulé E, Haquette P, Thomas C M. Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry. 2012;3(4):836–851. doi: 10.1039/C2PY00452F. [DOI] [Google Scholar]
- Urbanek A K, Mirończuk A M, García-Martín A, Saborido A, de la Mata I, Arroyo M. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2020;1868(2):140315. doi: 10.1016/j.bbapap.2019.140315. [DOI] [PubMed] [Google Scholar]
- Usha R, Sangeetha T, Palaniswamy M. Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International. 2011;2(4):200–204. [Google Scholar]
- van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty B D, Van Franeker J A, Eriksen M, Siegel D, Galgani F, Law K L. A global inventory of small floating plastic debris. Environmental Research Letters. 2015;10(12):124006. doi: 10.1088/1748-9326/10/12/124006. [DOI] [Google Scholar]
- Vignesh R, Deepika R C, Manigandan P, Janani R. Screening of plastic degrading microbes from various dumped soil samples. International Research Journal of Engineering and Technology. 2016;3(4):2493–2498. [Google Scholar]
- Vimala P P, Mathew L. Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology. 2016;24:232–239. doi: 10.1016/j.protcy.2016.05.031. [DOI] [Google Scholar]
- Vivi V K, Martins-Franchetti S M, Attili-Angelis D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica. 2019;64(1):1–7. doi: 10.1007/s12223-018-0621-4. [DOI] [PubMed] [Google Scholar]
- Wang J, Tan Z, Peng J, Qiu Q, Li M. The behaviors of microplastics in the marine environment. Marine Environmental Research. 2016;113:7–17. doi: 10.1016/j.marenvres.2015.10.014. [DOI] [PubMed] [Google Scholar]
- Wilkes R A, Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Peuudomonas sp:. Capabilities and challenges. Journal of Applied Microbiology. 2017;123(3):582–593. doi: 10.1111/jam.13472. [DOI] [PubMed] [Google Scholar]
- Wright R J, Bosch R, Langille M G I, Gibson M I, Christie-Oleza J A. A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome. 2021;9:155. doi: 10.1186/s40168-021-01120-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yabannavar A V, Bartha R. Methods for assessment of biodegradability of plastic films in soil. Applied and Environmental Microbiology. 1994;60(10):3608–3614. doi: 10.1128/aem.60.10.3608-3614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J, Yang Y, Wu W M, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology. 2014;48(23):13776–13784. doi: 10.1021/es504038a. [DOI] [PubMed] [Google Scholar]
- Yang S S, Brandon A M, Andrew Flanagan J C, Yang J, Ning D, Cai S Y, Fan H Q, Wang Z Y, Ren J, Benbow E, Ren N Q, Waymouth R M, Zhou J, Criddle C S, Wu W M. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere. 2018;191:979–989. doi: 10.1016/j.chemosphere.2017.10.117. [DOI] [PubMed] [Google Scholar]
- Yoon M G, Jeon H J, Kim M N. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation. 2012;3(4):1–8. [Google Scholar]
- Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate) Science. 2016;351(6278):1196–1199. doi: 10.1126/science.aad6359. [DOI] [PubMed] [Google Scholar]
- Zahra S, Abbas S S, Mahsa M T, Mohsen N. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management (New York, N.Y.) 2010;30(3):396–401. doi: 10.1016/j.wasman.2009.09.027. [DOI] [PubMed] [Google Scholar]
- Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H, Bi Q, Zhao Y. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment. 2020;704:135931. doi: 10.1016/j.scitotenv.2019.135931. [DOI] [PubMed] [Google Scholar]
- Zhao X, Korey M, Li K, Copenhaver K, Tekinalp H, Celik S, Kalaitzidou K, Ruan R, Ragauskas A J, Ozcan S. Plastic waste upcycling toward a circular economy. Chemical Engineering Journal. 2022;428:131928. doi: 10.1016/j.cej.2021.131928. [DOI] [Google Scholar]
- Zheng Y, Yanful E K, Bassi A S. A review of plastic waste biodegradation. Critical Reviews in Biotechnology. 2005;25(4):243–250. doi: 10.1080/07388550500346359. [DOI] [PubMed] [Google Scholar]