ABSTRACT
Stenotrophomonas maltophilia is a widely distributed, Gram-negative bacillus that is increasingly identified as a multidrug-resistant opportunistic pathogen of concern. Here, we report the draft genome sequences of nine strains that were isolated from a freshwater catchment area in Hong Kong, corresponding to four different monophyletic lineages within the species.
ANNOUNCEMENT
Stenotrophomonas maltophilia is a widely distributed, nonfermentative, Gram-negative bacillus that forms a complex of 23 monophyletic lineages, namely, Sm1 to Sm18 (including Sm4a and Sm4b) and Sgn1 to Sgn4 (1). An environmental species found in water (2) and soil (3) and frequently plant associated (4–6), it is considered a low-virulence pathogen (7). Nevertheless, it is responsible for some serious infections in hospitals, for example, among intensive care unit (ICU) patients (8, 9) and burn patients (10), and is the third most common source of secondary infection following severe and critical cases of coronavirus disease 2019 (COVID-19) (11). Of particular concern clinically is its multidrug resistance, including intrinsic resistance to carbapenems via an L1 and/or L2 metallo-β-lactamase (12–14). Contrasting with its pathogenicity in humans, S. maltophilia can promote plant growth (15) and has been proposed as an agricultural probiotic (16). Its resilience in challenging environments and its ability to degrade a wide range of substrates may also support a role in bioremediation (5, 17, 18). Gröschel et al. noted that, while its lineages are globally represented, they are not equal in their association with humans; for example, the authors found that Sm6 is most common among hospitalized patients, while strains within Sgn1 and Sgn2 appear entirely environmental (1).
Nine S. maltophilia strains were isolated during a survey of 10 sites within the catchment area of a freshwater stream in Telegraph Bay, Hong Kong. Aliquots (100 μl) of water samples collected at each site were initially spread on Luria agar containing ampicillin (100 μg/mL) and incubated at 27°C for 48 h. Resultant colonies were transferred to Luria agar containing amoxicillin-clavulanate (Augmentin) (100 μg/mL). Colonies resistant to both ampicillin and Augmentin were tested for resistance to cefepime (30 μg) and ertapenem (10 μg) (discs from Liofilchem). Colonies showing unrestricted growth in the presence of all of the β-lactam antibiotics tested were subsequently passaged eight times on standard Luria agar (19). Single colonies were then spread on Luria agar and incubated for 48 h before harvesting for DNA extraction (Qiagen DNeasy PowerSoil Pro kit). Paired-end short-read sequencing libraries were prepared using the NexteraXT DNA library preparation kit and sequenced via the Illumina MiSeq platform using v3 chemistry (2 × 300 bp). Adapter sequences were removed using Trimmomatic v0.32 (20), and reads were quality filtered and trimmed before assembly with Newbler v2.7 (Roche Diagnostics). Default parameters were used for all software unless otherwise specified. Draft sequences were submitted to NCBI PGAP v5.0 (21) and PATRIC (22) for annotation. Sequencing data and analysis results for all nine isolates are summarized in Table 1.
TABLE 1.
Sequencing data and genomic analysis results
| Strain | GenBank accession no. | SRA accession no. | BioSample accession no. | Estimated genome size (Mbp)a | G+C content (%) | No. of contigs | N50 (bp) | Avg read length (bp) | Avg read coverage (×) | No. of sequencing reads | No. of protein-encoding genes | No. of rRNA genes (5S + 16S + 23S)b | No. of tRNA genes | No. of pseudogenes | Lineagec |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ACYCa.1J | JAIOAN000000000 | SRR15841080 | SAMN21163372 | 5.4 | 66.47 | 89 | 112,705 | 259 | 44 | 916,233 | 4,169 | 4 + 1 + 1 | 68 | 42 | Sm6 |
| ACYCb.1K | JAIOAM000000000 | SRR15841079 | SAMN21163373 | 5.1 | 66.55 | 49 | 152,546 | 267 | 41 | 794,343 | 3,908 | 2 + 1 + 1 | 69 | 30 | Sm5 |
| ACYCa.2H | JAIOAL000000000 | SRR15841078 | SAMN21163374 | 5.3 | 66.55 | 119 | 126,128 | 259 | 62 | 1,279,259 | 4,097 | 2 + 1 + 1 | 67 | 32 | Sm6 |
| ACYCc.3B | JAIOAK000000000 | SRR15841077 | SAMN21163375 | 5.2 | 66.82 | 80 | 102,700 | 271 | 30 | 589,756 | 4,046 | 2 + 1 + 1 | 68 | 40 | Sm4a |
| ACYCa.6E | JAIOAJ000000000 | SRR15841076 | SAMN21163376 | 5.5 | 66.29 | 117 | 96,532 | 273 | 38 | 782,889 | 4,238 | 2 + 1 + 1 | 67 | 46 | Sm6 |
| ACYCb.6H | JAIOAI000000000 | SRR15841075 | SAMN21163377 | 5.0 | 66.52 | 48 | 186,150 | 261 | 57 | 1,096,649 | 3,918 | 4 + 1 + 1 | 67 | 34 | Sm5 |
| ACYCe.8N | JAIOAH000000000 | SRR15841074 | SAMN21163378 | 5.5 | 66.37 | 107 | 122,820 | 262 | 51 | 1,075,603 | 4,170 | 2 + 1 + 1 | 67 | 34 | Sm6 |
| ACYCd.9D | JAIOAG000000000 | SRR15841073 | SAMN21163379 | 5.4 | 66.55 | 70 | 205,490 | 258 | 47 | 996,651 | 3,916 | 2 + 1 + 1 | 67 | 41 | Sm3 |
| ACYCb.10K | JAIOAF000000000 | SRR15841072 | SAMN21163380 | 5.4 | 66.10 | 55 | 223,385 | 262 | 71 | 1,466,929 | 4,189 | 2 + 1 + 1 | 68 | 44 | Sm5 |
Using MinHash genomic distances (23) from representative strains characterized by Gröschel et al. (1), the nine strains were classified into lineages Sm3, Sm4a, Sm5 (3 isolates), and Sm6 (4 isolates). All isolates carry the L1 metallo-β-lactamase, as well as sul4 (24). ACYCe.8N also carries sul2, katG (25), and catB11 (26–28).
Data availability.
The GenBank, Sequence Read Archive (SRA), and BioSample accession numbers of all nine isolates are listed in Table 1 and may also be accessed under NCBI BioProject accession number PRJNA759338.
Contributor Information
S. D. J. Griffin, Email: sgriffin@isf.edu.hk.
F. C. C. Leung, Email: fleung@isf.edu.hk.
Julia A. Maresca, University of Delaware
REFERENCES
- 1.Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A, Steglich M, Conchillo-Solé O, Scherer I-C, Mamat U, Luz CF, De Bruyne K, Utpatel C, Yero D, Gibert I, Daura X, Kampmeier S, Rahman NA, Kresken M, van der Werf TS, Alio I, Streit WR, Zhou K, Schwartz T, Rossen JWA, Farhat MR, Schaible UE, Nübel U, Rupp J, Steinmann J, Niemann S, Kohl TA. 2020. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun 11:2044. doi: 10.1038/s41467-020-15123-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Adjidé CC, De Meyer A, Weyer M, Obin O, Lamory F, Lesueur C, Trouillet L, Biendo M, Eb F, Ganry O. 2010. Evaluation des risques microbiologiques hydriques associés à Stenotrophomonas maltophilia et Pseudomonas aeruginosa au CHU d'Amiens. Pathol-Biol 58:e1–e5. doi: 10.1016/j.patbio.2009.07.006. [DOI] [PubMed] [Google Scholar]
- 3.Deredjian A, Alliot N, Blanchard L, Brothier E, Anane M, Cambier P, Jolivet C, Khelil MN, Nazaret S, Saby N, Thioulouse J, Favre-Bonté S. 2016. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res Microbiol 167:313–324. doi: 10.1016/j.resmic.2016.01.001. [DOI] [PubMed] [Google Scholar]
- 4.Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. 2021. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to plant-growth promotion and stress tolerance. Front Microbiol 12:687463. doi: 10.3389/fmicb.2021.687463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Dubey KK, Fulekar MH. 2012. Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28:1715–1725. doi: 10.1007/s11274-011-0982-1. [DOI] [PubMed] [Google Scholar]
- 6.Berg G, Marten P, Ballin G. 1996. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape: occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27. doi: 10.1016/S0944-5013(96)80051-6. [DOI] [Google Scholar]
- 7.Brooke JS. 2021. Advances in the microbiology of Stenotrophomonas maltophilia. Clin Microbiol Rev 34:e0003019. doi: 10.1128/CMR.00030-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Guyot A, Turton JF, Garner D. 2013. Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J Hosp Infect 85:303–307. doi: 10.1016/j.jhin.2013.09.007. [DOI] [PubMed] [Google Scholar]
- 9.Nseir S, Di Pompeo C, Brisson H, Dewavrin F, Tissier S, Diarra M, Boulo M, Durocher A. 2006. Intensive care unit-acquired Stenotrophomonas maltophilia: incidence, risk factors, and outcome. Crit Care 10:R143. doi: 10.1186/cc5063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tsai WP, Chen CL, Ko WC, Pan SC. 2006. Stenotrophomonas maltophilia bacteremia in burn patients. Burns 32:155–158. doi: 10.1016/j.burns.2005.08.016. [DOI] [PubMed] [Google Scholar]
- 11.Sang L, Xi Y, Lin Z, Pan Y, Song B, Li CA, Zheng X, Zhong M, Jiang L, Pan C, Zhang W, Lv Z, Xia J, Chen N, Wu W, Xu Y, Chen S, Liu D, Liang W, Liu X, Liu X, Li S, Zhong N, Ye D, Xu Y, Zhang N, Zhang D, Li Y. 2021. Secondary infection in severe and critical COVID-19 patients in China: a multicenter retrospective study. Ann Palliat Med 10:8557–8570. doi: 10.21037/apm-21-833. [DOI] [PubMed] [Google Scholar]
- 12.Sánchez MB. 2015. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 6:658. doi: 10.3389/fmicb.2015.00658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Chang YT, Lin CY, Chen YH, Hsueh PR. 2015. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 6:893. doi: 10.3389/fmicb.2015.00893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Han L, Zhang RM, Jia L, Bai SC, Liu XW, Wei R, Cui CY, Sun RY, Wang MG, Cai DT, Liao XP, Liu YH, Sun J. 2020. Diversity of L1/L2 genes and molecular epidemiology of high-level carbapenem resistance Stenotrophomonas maltophilia isolates from animal production environment in China. Infect Genet Evol 86:104531. doi: 10.1016/j.meegid.2020.104531. [DOI] [PubMed] [Google Scholar]
- 15.Alexander A, Singh VK, Mishra A, Jha B. 2019. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 14:e0222405. doi: 10.1371/journal.pone.0222405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Nevita T, Sharma GD, Pandey P. 2018. Composting of rice-residues using lignocellulolytic plant-probiotic Stenotrophomonas maltophilia, and its evaluation for growth enhancement of Oryza sativa L. Environ Sustain 1:185–196. doi: 10.1007/s42398-018-0017-z. [DOI] [Google Scholar]
- 17.Mukherjee P, Roy P. 2016. Genomic potential of Stenotrophomonas maltophilia in bioremediation with an assessment of its multifaceted role in our environment. Front Microbiol 7:967. doi: 10.3389/fmicb.2016.00967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525. doi: 10.1038/nrmicro2163. [DOI] [PubMed] [Google Scholar]
- 19.MacWilliams MP, Liao M-K. 2006. Luria broth (LB) and Luria agar (LA) media and their uses. https://asm.org/Protocols/Luria-Broth-LB-and-Luria-Agar-LA-Media-and-Their-U.
- 20.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. doi: 10.1093/nar/gkx1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, III, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi: 10.1038/srep08365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi: 10.1186/s13059-016-0997-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Larsson DGJ. 2017. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome 5:160. doi: 10.1186/s40168-017-0379-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Tondo ML, Delprato ML, Kraiselburd I, Fernández Zenoff MV, Farías ME, Orellano EG. 2016. KatG, the bifunctional catalase of Xanthomonas citri subsp. citri, responds to hydrogen peroxide and contributes to epiphytic survival on citrus leaves. PLoS One 11:e0151657. doi: 10.1371/journal.pone.0151657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Ghafoori SM, Robles AM, Arada AM, Shirmast P, Dranow DM, Mayclin SJ, Lorimer DD, Myler PJ, Edwards TE, Kuhn ML, Forwood JK. 2021. Structural characterization of a type B chloramphenicol acetyltransferase from the emerging pathogen Elizabethkingia anophelis NUHP1. Sci Rep 11:9453. doi: 10.1038/s41598-021-88672-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542. doi: 10.1016/j.femsre.2004.04.001. [DOI] [PubMed] [Google Scholar]
- 28.McArthur A, Waglechner N, Nizam F, Yan A, Azad M, Baylay A, Bhullar K, Canova M, De Pascale G, Ejim L, Kalan L, King A, Koteva K, Morar M, Mulvey M, O'Brien J, Pawlowski A, Piddock L, Spanogiannopoulos P, Sutherland A, Tang I, Taylor P, Thaker M, Wang W, Yan M, Yu T, Wright G. 2013. The Comprehensive Antibiotic Resistance Database. Antimicrob Agents Chemother 57:3348–3357. doi: 10.1128/AAC.00419-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The GenBank, Sequence Read Archive (SRA), and BioSample accession numbers of all nine isolates are listed in Table 1 and may also be accessed under NCBI BioProject accession number PRJNA759338.
