Abstract
The conventional electronic systems enabled by rigid electronic are prone to malfunction under deformation, greatly limiting their application prospects. As an emerging platform for applications in healthcare monitoring and human-machine interface (HMI), flexible electronics have attracted growing attention due to its remarkable advantages, such as stretchability, flexibility, conformability, and wearing comfort. However, to realize the overall electronic systems, rigid components are also required for functions such as signal acquisition and transmission. Therefore, flexible hybrid electronics (FHE), which simultaneously possesses the desirable flexibility and enables the integration of rigid components for functionality, has been emerging as a promising strategy. This paper reviews the enabling integration techniques for FHE, including technologies for two-dimensional/three-dimensional (2D/3D) interconnects, bonding of rigid integrated circuit (IC) chips to soft substrate, stress-isolation structures, and representative applications of FHE. In addition, future challenges and opportunities involved in FHE-based systems are also discussed.
Footnotes
This work was supported by the Flexible Electronics Research Center of Huazhong University of Science and Technology (HUST) for providing experiment facility, the National Natural Science Foundation of China (Grant Nos. 51820105008, U2013213, and 92048302), and the Technology Innovation Project of Hubei Province of China (Grant No. 2019AEA171). We also thank YANG GanGuang, FANG Han, HUANG Xin, GUO Wei, QIU YuQi, and ZHENG QingYang for the assistance during the preparation of this paper.
References
- 1.Ray T R, Choi J, Bandodkar A J, et al. Bio-integrated wearable systems: A comprehensive review. Chem Rev. 2019;119:5461–5533. doi: 10.1021/acs.chemrev.8b00573. [DOI] [PubMed] [Google Scholar]
- 2.Chung H U, Rwei A Y, Hourlier-Fargette A, et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med. 2020;26:418–429. doi: 10.1038/s41591-020-0792-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat Biomed Eng. 2021;5:749–758. doi: 10.1038/s41551-021-00763-4. [DOI] [PubMed] [Google Scholar]
- 4.Yao G, Xu L, Cheng X, et al. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv Funct Mater. 2020;30:1907312. doi: 10.1002/adfm.201907312. [DOI] [Google Scholar]
- 5.Huang X, Guo W, Liu S, et al. Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv Funct Mater. 2022;32:2109109. doi: 10.1002/adfm.202109109. [DOI] [Google Scholar]
- 6.Mishra S, Kim Y S, Intarasirisawat J, et al. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci Adv. 2020;6:eaay1729. doi: 10.1126/sciadv.aay1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kim M K, Kantarcigil C, Kim B, et al. Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders. Sci Adv. 2019;5:eaay3210. doi: 10.1126/sciadv.aay3210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Xu B, Akhtar A, Liu Y, et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater. 2016;28:4462–4471. doi: 10.1002/adma.201504155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3:571–578. doi: 10.1038/s41928-020-0428-6. [DOI] [Google Scholar]
- 10.Deng J, Yuk H, Wu J, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater. 2020;20:229–236. doi: 10.1038/s41563-020-00814-2. [DOI] [PubMed] [Google Scholar]
- 11.Wu H, Yang G, Zhu K, et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv Sci. 2021;8:2001938. doi: 10.1002/advs.202001938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Liu S, Shah D S, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater. 2021;20:851–858. doi: 10.1038/s41563-021-00921-8. [DOI] [PubMed] [Google Scholar]
- 13.Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater. 2021;20:859–868. doi: 10.1038/s41563-020-00902-3. [DOI] [PubMed] [Google Scholar]
- 14.Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature. 2019;575:473–479. doi: 10.1038/s41586-019-1687-0. [DOI] [PubMed] [Google Scholar]
- 15.Lee K H, Ni X, Lee J Y, et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat Biomed Eng. 2019;4:148–158. doi: 10.1038/s41551-019-0480-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Huang Z, Hao Y, Li Y, et al. Three-dimensional integrated stretchable electronics. Nat Electron. 2018;1:473–480. doi: 10.1038/s41928-018-0116-y. [DOI] [Google Scholar]
- 17.Song H, Luo G, Ji Z, et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci Adv. 2022;8:eab–3785. doi: 10.1126/sciadv.abm3785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Chen X, Gao X, Nomoto A, et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 2021;14:3248–3252. doi: 10.1007/s12274-021-3458-0. [DOI] [Google Scholar]
- 19.Rwei A Y, Lu W, Wu C, et al. A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc Natl Acad Sci USA. 2020;117:31674–31684. doi: 10.1073/pnas.2019786117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Miyamoto A, Lee S, Cooray N F, et al. Inflammation-free, gaspermeable, lightweight, stretchable on-skin electronics with nano-meshes. Nat Nanotech. 2017;12:907–913. doi: 10.1038/nnano.2017.125. [DOI] [PubMed] [Google Scholar]
- 21.Wang Y, Lee S, Wang H, et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc Natl Acad Sci USA. 2021;118:e2111904118. doi: 10.1073/pnas.2111904118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv. 2021;7:eabe3778. doi: 10.1126/sciadv.abe3778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Rodeheaver N, Herbert R, Kim Y, et al. Strain-isolating materials and interfacial physics for soft wearable bioelectronics and wireless, motion artifact-controlled health monitoring. Adv Funct Mater. 2021;31:2104070. doi: 10.1002/adfm.202104070. [DOI] [Google Scholar]
- 24.Lai Z, Liu J. Anisotropically conductive adhesive flip-chip bonding on rigid and flexible printed circuit substrates. IEEE Trans Comp Packag Technol Part B. 1996;19:644–660. [Google Scholar]
- 25.Liu J, Boustedt K, Lai Z. Development of flip-chip joining technology on flexible circuitry using anistropically conductive adhesives and eutectic solder. Circuit World. 1996;22:19–24. doi: 10.1108/03056129610799949. [DOI] [Google Scholar]
- 26.Ghosh M. Polyimides: Fundamentals and Applications. Boca Raton: CRC Press; 2018. [Google Scholar]
- 27.Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science. 2011;333:838–843. doi: 10.1126/science.1206157. [DOI] [PubMed] [Google Scholar]
- 28.Jang K I, Li K, Chung H U, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun. 2017;8:15894. doi: 10.1038/ncomms15894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Tian L, Zimmerman B, Akhtar A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019;3:194–205. doi: 10.1038/s41551-019-0347-x. [DOI] [PubMed] [Google Scholar]
- 30.Xu C, Ma B, Yuan S, et al. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv Electron Mater. 2020;6:1900721. doi: 10.1002/aelm.201900721. [DOI] [Google Scholar]
- 31.Yu C, Duan Z, Yuan P, et al. Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv Mater. 2013;25:1541–1546. doi: 10.1002/adma.201204180. [DOI] [PubMed] [Google Scholar]
- 32.Johnston I D, McCluskey D K, Tan C K L, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and micro-engineering. J Micromech Microeng. 2014;24:035017. doi: 10.1088/0960-1317/24/3/035017. [DOI] [Google Scholar]
- 33.Jang K I, Chung H U, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun. 2015;6:6566. doi: 10.1038/ncomms7566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Li Z, Le T, Wu Z, et al. Rational design of a printable, highly conductive silicone-based electrically conductive adhesive for stretchable radio-frequency antennas. Adv Funct Mater. 2015;25:464–470. doi: 10.1002/adfm.201403275. [DOI] [Google Scholar]
- 35.Guo W, Zheng P, Huang X, et al. Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl Mater Interfaces. 2019;11:8567–8575. doi: 10.1021/acsami.8b21836. [DOI] [PubMed] [Google Scholar]
- 36.Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater. 2017;16:834–840. doi: 10.1038/nmat4904. [DOI] [PubMed] [Google Scholar]
- 37.Choi S, Han S I, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotech. 2018;13:1048–1056. doi: 10.1038/s41565-018-0226-8. [DOI] [PubMed] [Google Scholar]
- 38.Kim H J, Son C, Ziaie B. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett. 2008;92:011904. doi: 10.1063/1.2829595. [DOI] [Google Scholar]
- 39.Takakuwa M, Fukuda K, Yokota T, et al. Direct gold bonding for flexible integrated electronics. Sci Adv. 2021;7:eabl6228. doi: 10.1126/sciadv.abl6228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Zhao D, Zhao J, Liu L, et al. Flexible hybrid integration enabled on-skin electronics for wireless monitoring of electrophysiology and motion. IEEE Trans Biomed Eng. 2022;69:1340–1348. doi: 10.1109/TBME.2021.3115464. [DOI] [PubMed] [Google Scholar]
- 41.Park Y G, An H S, Kim J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci Adv. 2019;5:eaaw2844. doi: 10.1126/sciadv.aaw2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 2014;344:70–74. doi: 10.1126/science.1250169. [DOI] [PubMed] [Google Scholar]
- 43.Byun J, Lee Y, Yoon J, et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci Robot. 2018;3:eaas9020. doi: 10.1126/scirobotics.aas9020. [DOI] [PubMed] [Google Scholar]
- 44.Hwang H, Kong M, Kim K, et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci Adv. 2021;7:eabh0171. doi: 10.1126/sciadv.abh0171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Lee J, Wu J, Shi M, et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater. 2011;23:986–991. doi: 10.1002/adma.201003961. [DOI] [PubMed] [Google Scholar]
- 46.Fang Y, Yang X, Lin Y, et al. Dissecting biological and synthetic soft-hard interfaces for tissue-like systems. Chem Rev. 2022;122:5233–5276. doi: 10.1021/acs.chemrev.1c00365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Ma Y, Pharr M, Wang L, et al. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics. Small. 2017;13:1602954. doi: 10.1002/smll.201602954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Chung H U, Kim B H, Lee J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science. 2019;363:947–969. doi: 10.1126/science.aau0780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Kim Y S, Mahmood M, Lee Y, et al. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. Adv Sci. 2019;6:1900939. doi: 10.1002/advs.201900939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Han S, Kim J, Won S M, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med. 2018;10:eaan4950. doi: 10.1126/scitranslmed.aan4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Yang G, Zhu K, Guo W, et al. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv Funct Mater, 2022, 2200457
- 52.Jeong H, Lee J Y, Lee K H, et al. Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Sci Adv. 2021;7:eabg3092. doi: 10.1126/sciadv.abg3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Zhu K, Guo W, Yang G, et al. High-fidelity recording of EMG signals by multichannel on-skin electrode arrays from target muscles for effective human-machine interfaces. ACS Appl Electron Mater. 2021;3:1350. doi: 10.1021/acsaelm.0c01129. [DOI] [Google Scholar]
- 54.Kwon Y T, Kim Y S, Kwon S, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat Commun. 2020;11:3450. doi: 10.1038/s41467-020-17288-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
