Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Jul 20;42(7):1062–1068. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.07.15

钠碘转运体报告基因共表达对嵌合型受体T细胞体外增殖及杀伤能力的影响

Effects of sodium iodide symporter co-expression on proliferation and cytotoxic activity of chimeric antigen receptor T cells in vitro

Chuanhuizi TIAN 1, Pufeng HUANG 1, Yujia HE 1, Liang WANG 1, Zhiping PENG 1,*
PMCID: PMC9308869  PMID: 35869771

Abstract

目的

探讨钠碘转运体(NIS)报告基因的共表达对嵌合型受体T(CAR-T)细胞体外增殖和杀伤活性的影响。

方法

慢病毒感染法制备CAR-T细胞(仅表达CD19 CAR的T细胞)、NIS-T细胞(仅表达NIS报告基因的T细胞)和NIS-CAR-T细胞(共表达NIS和CD19 CAR的T细胞),然后按T细胞蛋白表达情况分为4组∶T细胞组(未转染的T细胞)、CAR-T组、NIS-T组、NIS-CART组。流式细胞术检测各组NIS和CAR转染率。各组细胞常规培养24、48、72 h,CCK-8法检测增殖能力。各组T细胞为效应细胞,Nalm6肿瘤细胞为靶细胞,按效靶比0.5∶1、1∶1、2∶1、4∶1共培养24、48、72 h,乳酸脱氢酶细胞毒性检测法(LDH)检测各组细胞对肿瘤细胞的杀伤率,酶联免疫吸附试验(ELISA)法检测共培养上清液中各组细胞因子人干扰素-γ(IFN-γ)和人肿瘤坏死因子-β(TNF-β)释放水平。摄碘实验检测表达NIS蛋白各组细胞的NIS功能。

结果

CAR-T细胞、NIS-CAR-T细胞的CAR转染率分别为91.91%、99.41%,NIS-T细胞、NIS-CAR-T细胞的NIS转染率分别为47.83%、50.24%。常规培养24、48、72 h CAR-T细胞与NIS-CAR-T细胞增殖率差异无统计学意义(P>0.05)。0.5∶1、1∶1、2∶1和4∶1效靶比作用24 h时CAR-T细胞杀伤率(%)均高于NIS-CAR-T细胞(P < 0.05),作用48 h和72 h时两组杀伤率差异均无统计学意义(P>0.05)。CAR-T细胞与NIS-CAR-T细胞均存在IFN-γ和TNF-β释放现象,释放水平均高于对照组(P < 0.05)。NIS-T细胞与NIS-CAR-T细胞均具有特异性摄碘能力,二者间摄碘能力差异无统计学意义(P>0.05),但均高于对照组T细胞(P < 0.05)。

结论

NIS报告基因的共表达不影响CAR-T细胞中CAR转染率,对细胞增殖和杀伤活性无抑制现象。

Keywords: CAR-T细胞, 钠碘转运体, 基因表达, 体外增殖, 杀伤活性


嵌合型受体(CAR)-T细胞疗法的出现为复发或难治性血液瘤患者提供了新的治疗选择[1-4],然而仍存在着疗效不佳、在实体瘤中存活时间短、迁移到肿瘤部位的细胞数量有限以及受实体瘤免疫微环境抑制等诸多问题[5-9]。利用核医学报告基因分子成像技术实现CAR-T细胞体内示踪,有助于明确回输后CAR-T细胞在体内的迁移、定位、浸润和扩增的动态过程,预测可能出现的细胞因子释放综合征(CRS)的严重程度, 帮助优化治疗方案并避免潜在风险[10-13]。目前用于核医学成像的报告基因主要有4类,分别为酶报告基因、钠碘转运体报告基因(NIS)、受体报告基因和抗体报告基因。其中NIS属于钠-葡萄糖共转运体膜蛋白家族成员,在甲状腺滤泡基底膜上内源性表达,因具有特异性摄取碘同位素及碘类似物的特性,应用于PET/SPECT显像可高灵敏、高特异性示踪体内细胞获得高信噪比图像,从而在肿瘤细胞,干细胞示踪中得到广泛应用[14, 15]

运用NIS报告基因示踪CD19 CAR-T细胞有望为解决目前CAR-T药物临床治疗存在的问题提供新的思路[16-21],然而报告基因的插入与表达可能会导致靶细胞存在诱变风险因此NIS在CD19 CAR-T细胞上共表达对CD19 CAR-T细胞原本活化增殖能力及杀伤活性可能造成的影响仍有待进一步确认。目前关于NIS示踪CAR-T细胞的研究较少,2018年Emami-Shahri等[22]将NIS报告基因共表达于靶向前列腺特异膜抗原(PSMA)的CAR-T细胞,用99TcmO4-作为示踪剂评估了PAMA CAR-T细胞的体内分布,2020年Volpe等[23]首次报告了利用NIS报告基因在乳腺癌模型中对ErbB CAR-T细胞的PET成像。既往研究均缺乏NIS报告基因共表达影响CAR-T细胞体外增殖的探讨,对NIS-PAMA CAR-T细胞和NIS-ErbB CAR-T细胞杀伤活性可能存在的变化的研究内容不足,缺少对不同效靶比的设置及较长时间点的观测。因此,本研究制备靶向CD19的NIS-CAR-T细胞,系统性探究NIS共表达对于CD19 CAR-T细胞活化增殖和杀伤活性的影响,旨在为实现核医学技术监测血液瘤患者体内CD19 CAR-T细胞生存-工作状态奠定基础。

1. 材料和方法

1.1. 材料

细胞株:Nalm6细胞购于浙江美森细胞科技有限公司,293T细胞由重庆医科大学放射医学与肿瘤学实验室提供;T细胞由已签署知情同意书的健康成人志愿者提供。慢病毒:CD19 CAR慢病毒质粒(爱康得生物科技苏州有限公司)、NIS慢病毒质粒(汉恒生物技术上海有限公司)。试剂:RPMI 1640培养液、胎牛血清(FBS)(GIBCO)、T细胞扩增培养基、白介素-2(IL-2)、淋巴细胞密度梯度分离液、人CD3/CD28/CD2 T细胞激活剂、人T细胞分离试剂盒(STEMCELL公司;磷酸盐缓冲液(PBS缓冲液)(上海碧云天生物技术有限公司)、APC抗人EGFR抗体(Biolegend)、台盼蓝染液(上海经科化学科技有限公司)、CCK8试剂盒(日本同仁化学研究所)、乳酸脱氢酶细胞毒性检测试剂盒(LDH Cytotoxicity Assay Kit)(上海碧云天生物技术有限公司)、ELISA试剂盒(R&D)、125I(重庆原子高科医药有限公司)。

1.2. 方法

1.2.1. CAR慢病毒、NIS慢病毒制备

CD19 CAR慢病毒由爱康得生物科技苏州有限公司合成,NIS慢病毒由汉恒生物技术上海有限公司合成并经DNA测序验证。慢病毒分装保存于-80 ℃。

1.2.2. CAR-T细胞、NIS-T细胞及NIS-CAR-T细胞的制备

采健康成人志愿者外周血,密度梯度离心法获得外周血单个核细胞(PBMC),免疫磁珠富集法获得CD3+ T细胞群。1×105 CD3+T细胞加入1 mL T细胞扩增培养基(含人CD3/CD28/CD2 T细胞激活剂25 µL、IL-2 500 IU)激活扩增。活化后的CD3+ T细胞CAR慢病毒MOI=7.5、NIS慢病毒MOI=50感染48 h分别获得CAR-T细胞、NIS-T细胞及NIS-CAR-T细胞,细胞密度维持在1×106/mL 37 ℃、5% CO2继续培养。

1.2.3. 慢病毒转染率检测

CAR-T细胞、NIS-T细胞及NIS-CAR-T细胞培养3 d,流式细胞仪(BD Biosciences)检测转染效率,FlowJo软件分析数据。

1.2.4. 细胞体外增殖能力检测

T细胞、CAR-T细胞及NIS-CAR-T细胞96孔板3000/孔分别铺板。每孔加入100 µL T细胞扩增培养基(含IL-2 50 U),37 ℃、5% CO2分别培养24、48、72 h。CCK-8细胞增殖毒性检测试剂盒进行增殖能力检测,酶标仪测定A450 nm,计算各孔增殖率,增殖率(%)=(A实验孔-A空白孔)÷(A对照孔-A空白孔)×100%。每组设3个复孔,实验重复3次。

1.2.5. 体外杀伤活性检测

CD19表达阳性的急性B淋巴细胞白血病Nalm6细胞株RPMI 1640(1%青霉素/链霉素10%胎牛血清)37 ℃ 5% CO2培养,定期进行支原体污染检测。

5×103靶细胞(Nalm6细胞)中按照效靶比为0.5∶ 1、1∶1、2∶1和4∶1分别加入效应细胞(T细胞、CAR-T细胞和NIS-CAR-T细胞),分别培养24、48、72 h。LDH法酶标仪测定A490 nm值检测杀伤活性,计算各孔杀伤率。杀伤率(%)=(A实验孔-A效应细胞自发释放-A靶细胞自发释放)÷(A靶细胞最大释放- A靶细胞自发释放)×100%。

ELISA试剂盒检测4∶1效靶比72 h共培养上清中IFN-γ、TNF-β浓度。每组设3个复孔,实验重复3次。

1.2.6. 体外摄碘能力检测

T细胞、NIS-T细胞、NISCAR-T细胞12孔板2×105/孔分别铺板。每孔分别用PBS缓冲液洗涤3次,其中6孔加入新鲜培养基(100 μL/孔),剩余6孔加入KI(10 mmol/L)100 μL/孔,37 ℃孵育30 min,每孔加入100 μL含有125I(0.2 µCi)的新鲜培养基孵育30 min。冷PBS缓冲液洗涤细胞3次,γ测量仪(PerkinElmer,WIZARD2)测量每孔细胞的放射性计数。重复上述实验3次。

上述方式再次铺板后每孔细胞分别加入0.05、0.1、0.2、0.4 µCi 125I,检测细胞碘摄取量随125I浓度及孵育时间的变化。每个浓度3孔,分别孵育0.5、1、2、3和6 h后测量细胞的放射性计数,操作同前。为了后续进行外排实验, 将本次测量时间点记为0。测量后将细胞重悬于PBS缓冲液中, 室温下培养15、30、60、120 min后用冷PBS缓冲液洗涤3次,γ计数器测量细胞相应时间点放射性计数。重复上述实验3次。

1.3. 统计学分析

流式细胞术数据采用FlowJo软件进行分析,其余实验数据用GraphPad Prism 8.0软件进行统计学分析,计量资料以均数±标准差表示,样本两两比较使用LSD-t检验,多组总体差异比较采用单因素方差分析。P < 0.05表示差异具有统计学意义。

2. 结果

2.1. 慢病毒载体构建

CD19 CAR慢病毒质粒采用的是第3代CAR,胞外CD19 scFV连接胞内2个共刺激分子CD8与4-1BB,再与CD3ζ串联,末端自我剪切肽2A连接一个EGFR标签,用于检测CD19-CAR的转染效率。NIS慢病毒质粒中包括目的基因NIS和绿色荧光蛋白(GFP),末端2A连接一个嘌呤霉素(Puromycin)抗性基因(图 1A)。GFP用于检测NIS的转染效率,经测序与预期相符。带有GFP的NIS慢病毒感染293T包装细胞后荧光显微镜下可见NIS-293T细胞表达绿色荧光(图 1B)。

图 1.

图 1

CD19 CAR慢病毒、NIS慢病毒的构建

Preparation of CD19 CAR and NIS lentiviral vectors. A: Schematic diagrams of the CAR and NIS lentiviral vectors. B: NIS-293T cells expressing fluorescence (Original magnification: ×100).

2.2. CAR-T细胞、NIS-T细胞及NIS-CAR-T细胞转染效率检测

CD19 CAR慢病毒携带EFGR标签,NIS慢病毒携带GFP。APC-抗人EGFR抗体对感染后T细胞染色后,检测APC通道荧光和GFP荧光占比即可得到CAR、NIS感染率。CAR-T细胞、NIS-CAR-T细胞的CAR转染率和NIS-T细胞、NIS-CAR-T细胞的NIS转染率(%)分别为91.91、99.41、47.83、50.24(图 2A~C)。

图 2.

图 2

CAR-T细胞、NIS-T细胞及NIS-CAR-T细胞的转染率

Cells expressing CAR and NIS target genes. A: Expression of CAR + assessed by flow cytometry. B: Expression of NIS + assessed by flow cytometry. C: NIS+ and CAR+ co-expression in NIS-CAR-T cells.

2.3. CAR-T细胞与NIS-CAR-T细胞的体外增殖

T细胞培养24、48、72 h增殖率(%)分别为111.82± 11.72、150.46±6.20、313.20±6.39;CAR-T细胞培养24、48、72 h增殖率(%)分别为112.37±8.6、152.09±13.6、323.52±16.92;NIS-CAR-T细胞培养24、48、72 h增殖率(%)分别为97.35±8.12、149.61±17.75、312.49±12.10。3组细胞都具有良好的体外增殖性,增殖率差异无统计学意义(P>0.05,图 3)。

图 3.

图 3

各组T细胞的体外增殖率

Cell proliferation rates in the 3 groups. P>0.05 vs T cell group, P>0.05 vs CAR-T group.

2.4. CAR-T细胞与NIS-CAR-T细胞对Nalm6细胞的体外杀伤活性

各组杀伤活性随共培养时长及效靶比的增加而升高(图 4A~D),CAR-T、NIS-CAR-T细胞组杀伤活性明显强于对照组,差异均具有统计学意义(P < 0.05,表 1)。比较CAR-T与NIS-CAR-T细胞对Nalm6细胞杀伤率发现,不同效靶比(0.5∶1、1∶1、2∶1和4∶1)作用24 h时,CAR-T细胞组杀伤率高于NIS-CAR-T细胞组,差异具有统计学意义(P < 0.05);作用48、72 h两组细胞杀伤率差异无统计学意义(P>0.05)。

图 4.

图 4

各组T细胞对肿瘤杀伤活性

Cytotoxic activity of the T cells in the 3 groups against Nalm6 cells. A-D: Percentage cell viability of tumor cells at different time points in co-culture with T cells as determined by LDH assays. E: IFN-γ and TNF-β release from the T cells at 72 h in co-culture with the tumor cells at the E: T ratio of 4∶1 as determined by ELISA. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs T cell group, #P < 0.05, ###P < 0.05 vs CAR-T group.

表 1.

各组T细胞体外杀伤活性比较

Comparison of cytotoxicity among T cells, CAR-T and NISCAR-T cells at different effector-target (E: T) ratios (%, Mean±SD)

E: T ratio T cells CAR-T NIS-CAR-T
Each experiment was repeated three times.
24 h
  0.5:1 1.69±0.44 7.64±0.95 4.47±0.49
  1:1 6.52±2.05 15.75±0.72 11.21±0.45
  2:1 12.97±0.96 35.35±2.60 20.83±1.37
  4:1 20.97±1.14 48.69±2.31 42.13±1.78
48 h
  0.5:1 6.19±0.22 13.04±1.57 12.10±0.96
  1:1 11.96±0.96 44.02±2.86 40.25±1.18
  2:1 29.18±2.33 59.41±1.08 50.07±3.38
  4:1 36.69±1.04 76.66±0.27 76.56±1.57
72 h
  0.5:1 17.36±2.21 41.90±0.34 38.11±1.53
  1:1 22.24±0.47 59.28±4.14 55.43±2.86
  2:1 33.81±1.85 83.83±1.83 83.49±1.98
  4:1 44.29±0.80 96.35±1.91 91.01±3.35

CAR-T、NIS-CAR-T两组IFN-γ、TNF-β释放水平(pg/mL)均高于T细胞组(1495.77±1.1,1366.76±69.25 vs 87.14 ± 0.85;675.43 ± 2.93,601.30 ± 11.33 vs 65.10 ± 8.85,P < 0.05,图 4E),差异具有统计学意义。

2.5. NIS-T细胞与NIS-CAR-T细胞的摄碘能力

体外摄碘实验结果显示,无竞争性抑制剂KI存在的情况下,0.2 µCi 125I孵育30 min后,NIS-T细胞与NISCAR-T细胞每分钟放射性计数(cpm)明显高于对照组T细胞,差异具有统计学意义(7851±837,7231±481 vs 721±29,P < 0.05,图 5A);KI存在时NIS-T细胞与NISCAR-T细胞125I摄取(cpm)被明显抑制,与对照组相比无明显变化,差异不具有统计学意义(986±65,972± 66 vs 938±50,P>0.05,图 5A)。其中NIS-T细胞、NIACAR-T细胞摄碘水平呈浓度依赖性增高(图 5B),摄碘3 h达到峰值(图 5C),去除125I后细胞内125I快速流出并在30 min后cpm值趋于稳定。NIS-CAR-T细胞摄碘水平与NIS-T细胞相比差异不具有统计学意义(P> 0.05,图 5D)。

图 5.

图 5

细胞的摄碘能力

Iodine uptake of the T cells. A: 125I uptake and inhibitory effect of KI on 125I uptake by the T cells. B: Relative uptake of 125I by concentration. C: Relative T cell 125I uptake over time. D: Efflux of 125I over time shown as percentage of retained activity normalized to time 0. **P < 0.01, ****P < 0.0001 vs T cell group, P>0.05 vs CAR-T group.

3. 讨论

CAR-T疗法的出现改变了血液性肿瘤治疗的格局,但目前依然存在着细胞因子风暴(CRS)和免疫效应细胞神经毒性综合征(ICANS)等并发症问题[1, 4, 24]。利用NIS报告基因成像策略提高对CAR-T细胞体内行为的认识与了解有助于推动解决目前CAR-T细胞治疗所存在的一系列问题。然而NIS作为报告基因,其插入与表达是否存在导致靶细胞诱变、原本功能受抑制等风险是一个十分值得关注的问题[25, 26]。目前有研究[22, 23]将NIS用于示踪CAR-T细胞在前列腺肿瘤和乳腺癌肿瘤模型中的分布,但均未对NIS报告基因共表达是否影响CAR-T细胞体外增殖和杀伤活性进行系统探讨。因此区别于前两项报道,本研究选择CD19 CAR-T细胞作为示踪对象,通过慢病毒感染法制备CAR-T细胞与NISCAR-T细胞,探究NIS是否适用于示踪CD19 CAR-T在血液性肿瘤中的“工作-生存”状态。流式细胞术结果显示CD19 CAR与NIS表达阳性证明制备成功,并且两组细胞CAR转染率相近,表明NIS共表达对CAR的表达无抑制现象。

制备出的CAR-T细胞、NIS-CAR-T细胞参照T细胞培养法进行体外培养,通过对比共表达NIS与CD19 CAR蛋白的T细胞与只表达CD19 CAR蛋白的T细胞体外24、48、72 h的细胞增殖率差异,以研究NIS基因的插入与表达对CD19 CAR-T细胞的增殖活性是否存在影响。CCK8结果显示二者体外增殖率无差异,均具有良好增殖能力。随后本研究将CAR-T细胞、NIS-CART细胞作为效应细胞与Nalm6肿瘤细胞按不同效靶比共培养,对表达不同蛋白的T细胞的肿瘤杀伤率进行对比。LDH结果显示各组杀伤活性随共培养时长及效靶比的增加而升高,CAR-T、NIS-CAR-T细胞组杀伤活性明显强于对照组。不同效靶比作用24 h时,CAR-T细胞组杀伤率高于NIS-CAR-T细胞组,48、72 h两组细胞杀伤率无差异。提示随着共培养时间的延长,两者对肿瘤细胞杀伤作用差异也趋近于无,NIS-CAR-T细胞与CAR-T细胞一样具有良好的杀瘤活性。说明NIS共表达不影响CAR-T细胞体外增殖活性和对肿瘤细胞识别与杀伤功能。ELISA法检测效靶比4∶1作用72 h CART、NIS-CAR-T两组共培养上清均存在明显IFN-γ、TNF-β释放再次表明NIS-CAR-T细胞与CAR-T细胞均能够特异性识别CD19抗原分泌细胞因子并发挥杀伤作用。这与评价共表达其他报告基因(如HSV1-tk[27]、eDHFR[28]、SSTR2受体[29]以及PSMA等[30])CAR-T细胞肿瘤杀伤活性的研究结果一致。

报告基因在靶细胞中转录、翻译、表达的成功是其在成像过程中发挥功能的基础,因此为了进一步探究NIS与CAR共表达时CAR蛋白是否影响NIS的表达与功能, 确保NIS能实现细胞体内示踪作用,我们对比了NIS-CAR-T与NIS-T两组细胞NIS转染率与摄碘能力,流式细胞术结果表明NIS-CAR-T与NIS-T两组细胞NIS转染率相似提示NIS转染率不受影响,碘摄取实验结果表明共表达NIS蛋白具有特异性摄碘功能。这与Emami-Shahri等[22]99TcmO4-作为示踪剂得到的NISPSMA CAR-T细胞SPET/CT成像结果和Volpe等[23]报告的乳腺癌模型中NIS-ErbB CAR-T细胞的PET成像结果相符。

综上所述,本研究通过实验发现NIS共表达对CD19 CAR-T细胞增殖、杀伤活性无明显抑制作用,其本身表达与摄碘能力均未受影响,证明NIS有作为理想的报告基因用于CD19 CAR-T细胞体内示踪的潜质,为后续利用NIS介导放射性核素在血液癌模型中实现CAR-T细胞可视化研究奠定了基础。

Biography

田川卉子,在读硕士研究生,E-mail: 568019552@qq.com

Funding Statement

国家自然科学基金(81771871)

Supported by National Natural Science Foundation of China (81771871)

Contributor Information

田川 卉子 (Chuanhuizi TIAN), Email: 568019552@qq.com.

彭 志平 (Zhiping PENG), Email: pengzhiping@cqmu.edu.cn.

References

  • 1.Mchayleh W, Bedi P, Sehgal R, et al. Chimeric antigen receptor Tcells: the future is now. J Clin Med. 2019;8(2):207. doi: 10.3390/jcm8020207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Geyer MB, Brentjens RJ. Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy. 2016;18(11):1393–409. doi: 10.1016/j.jcyt.2016.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Hoos A. Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15(4):235–47. doi: 10.1038/nrd.2015.35. [DOI] [PubMed] [Google Scholar]
  • 4.Chou CK, Turtle CJ. Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy. Expert Opin Biol Ther. 2020;20(6):653–64. doi: 10.1080/14712598.2020.1729735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res. 2017;5:22. doi: 10.1186/s40364-017-0102-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhang CC, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers. Mol Ther. 2017;25(5):1248–58. doi: 10.1016/j.ymthe.2017.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Fried S, Avigdor A, Bielorai B, et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019;54(10):1643–50. doi: 10.1038/s41409-019-0487-3. [DOI] [PubMed] [Google Scholar]
  • 8.Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128. doi: 10.3389/fimmu.2019.00128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000. doi: 10.3389/fonc.2020.01000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Massoud TF, Singh A, Gambhir SS. Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. AJNRAm J Neuroradiol. 2008;29(2):229–34. doi: 10.3174/ajnr.A0864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Massoud TF, Singh A, Gambhir SS. Noninvasive molecular neuroimaging using reporter genes: part Ⅱ, experimental, current, and future applications. AJNR Am J Neuroradiol. 2008;29(3):409–18. doi: 10.3174/ajnr.A0863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Nair R, Westin J. Car T-cells. Adv Exp Med Biol. 2020;1244:215–33. doi: 10.1007/978-3-030-41008-7_10. [DOI] [PubMed] [Google Scholar]
  • 13.Sadeqi Nezhad M, Seifalian A, Bagheri N, et al. Chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: how close are we to the treatment? Front Immunol. 2020;11:603237. doi: 10.3389/fimmu.2020.603237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther. 2012;12(1):33–47. doi: 10.2174/156652312799789235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ravera S, Reyna-Neyra A, Ferrandino G, et al. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261–89. doi: 10.1146/annurev-physiol-022516-034125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wei WJ, Jiang DW, Ehlerding EB, et al. Noninvasive PET imaging of T cells. Trends Cancer. 2018;4(5):359–73. doi: 10.1016/j.trecan.2018.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol. 2022;15(3):532–46. doi: 10.2174/1874467214666210811150255. [DOI] [PubMed] [Google Scholar]
  • 18.Simonetta F, Alam IS, Lohmeyer JK, et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET. Clin Cancer Res. 2021;27(4):1058–68. doi: 10.1158/1078-0432.CCR-20-2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Pham H, Miller LW. Lanthanide-based resonance energy transfer biosensors for live-cell applications. Methods Enzymol. 2021;651:291–311. doi: 10.1016/bs.mie.2021.01.010. [DOI] [PubMed] [Google Scholar]
  • 20.Huang D, Chen XM, Zeng X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. Nat Immunol. 2021;22(7):865–79. doi: 10.1038/s41590-021-00939-9. [DOI] [PubMed] [Google Scholar]
  • 21.Murty S, Haile ST, Beinat C, et al. Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology. 2020;9(1):1757360. doi: 10.1080/2162402X.2020.1757360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Emami-Shahri N, Foster J, Kashani R, et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun. 2018;9(1):1081. doi: 10.1038/s41467-018-03524-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Volpe A, Lang C, Lim L, et al. Spatiotemporal PET imaging reveals differences in CAR-T tumor retention in triple-negative breast cancer models. Mol Ther. 2020;28(10):2271–85. doi: 10.1016/j.ymthe.2020.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Cappell KM, Sherry RM, Yang JC, et al. Long-term follow-up of antiCD19 chimeric antigen receptor T-cell therapy. J Clin Oncol. 2020;38(32):3805–15. doi: 10.1200/JCO.20.01467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett. 2019;212:53–69. doi: 10.1016/j.imlet.2019.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lana MG, Strauss BE. Production of Lentivirus for the establishment of CAR-T cells. Methods Mol Biol. 2020;2086:61–7. doi: 10.1007/978-1-0716-0146-4_4. [DOI] [PubMed] [Google Scholar]
  • 27.Murty S, Labanieh L, Murty T, et al. PET reporter gene imaging and ganciclovir-mediated ablation of chimeric antigen receptor T cells in solid tumors. Cancer Res. 2020;80(21):4731–40. doi: 10.1158/0008-5472.CAN-19-3579. [DOI] [PubMed] [Google Scholar]
  • 28.Sellmyer MA, Richman SA, Lohith K, et al. Imaging CAR T cell trafficking with eDHFR as a PET reporter gene. Mol Ther. 2020;28(1):42–51. doi: 10.1016/j.ymthe.2019.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Vedvyas Y, Shevlin E, Zaman M, et al. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight. 2016;1(19):e90064. doi: 10.1172/jci.insight.90064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Minn I, Huss DJ, Ahn HH, et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv. 2019;5(7):eaaw5096. doi: 10.1126/sciadv.aaw5096. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES