Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Jul 3;8(7):704. doi: 10.3390/jof8070704

Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense

Xiao-Ya An 1,2, Guo-Hui Cheng 1,2, Han-Xing Gao 2, Xue-Fei Li 2, Yang Yang 3, Dan Li 2,*, Yu Li 1,2,*
Editors: Cheng Gao, Lei Cai
PMCID: PMC9318549  PMID: 35887460

Abstract

Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.

Keywords: taxonomy, green mold disease, one new taxon, mycoparasites, biological agents

1. Introduction

Mushrooms have been used by humans for millennia and are consumed for their nutritive and medicinal values [1,2]. Most of them are appreciated as delicacies and are extensively cultivated and commercially consumed in many countries. Some mushrooms also have high pharmacological activities, especially Ganoderma spp. [3,4]. Ganoderma sichuanense, described from China and previously confused with G. lucidum, an oriental fungus, has a long history in China, Japan, and other Asian countries for promoting health and longevity [5,6]. The mushroom is famous for its pharmacological effects [7,8] and is widely cultivated in northeastern China. However, Trichoderma green mold diseases have increased and pose a serious threat to its production [9,10,11].

Trichoderma has been studied for more than 200 years since it was established by Persoon in 1794 [12], while sharp development occurred in the past few decades, when a large number of taxonomic articles were published [13,14,15,16,17,18,19,20,21,22,23,24,25,26]. At present, similar to Fusarium, Aspergillus, or Penicillium, Trichoderma is a species-rich genus [15] and has been segregated into many groups or clades based on the phylogenetic relationships within the genus [27,28,29]. Moreover, the rapid development of Trichoderma is inseparable from its various uses. For example, it can not only be used as a highly efficient producer of plant biomass-degrading enzymes for biofuel and other industries, but also as a very effective biological agent for plant disease management [30,31,32,33]. Furthermore, Trichoderma has also been an initially produce white and dense mycelia highly similar to mushroom mycelia, which makes it difficult to distinguish them, causing the best period of control to be missed. Thus, it is particularly important to explore the specificity of Trichoderma species and the interaction between Trichoderma and its host for disease control.

Between 2020 and 2021, during fieldwork at mushroom cultivation bases, we found that green mold disease occurred continuously in G. sichuanense production areas in the following provinces of China: Heilongjiang, Jilin, and Shandong, leading to a significant negative effect on the development of fruitbodies. We collected diseased specimens and isolated the pathogens from several bases and identified them based on molecular and morphological characteristics. A new Trichoderma species and a new host record were confirmed. In addition, we summarized the Trichoderma species reported on mushrooms as best as possible and provided their recorded hosts. The relationships among these species were also discussed by constructing a phylogeny tree with multi-locus data, which is expected to help us know more about the relationships between Trichoderma species and their hosts, and to help search for Trichoderma species with potential biocontrol value.

2. Materials and Methods

2.1. Fungal Isolation

Diseased samples of G. sichuanense were collected from Jilin, Heilongjiang, and Shandong Provinces, China, and deposited in the Herbarium of Mycology, Jilin Agricultural University (HMJAU). Diseased tissues were cut into small pieces (5 mm × 5 mm × 5 mm) using a sterilized scalpel, immersed in 75 percent alcohol for 45 s before being rinsed three times with sterilized water, and placed onto Potato Dextrose Agar (PDA, BD, USA) plates containing 100 mg/L of streptomycin sulfate (Solarbio, Bejing, China), and then incubated at room temperature. Pure cultures were obtained using single-spore isolates following the method described by Chomnuti et al. [34]. Germinated spores were transferred to fresh PDA plates and incubated at 25 °C for one or two weeks. Living cultures were deposited in the Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University (Changchun, Jilin, China).

2.2. Growth Characterization

Colony characteristics, growth rates, and optimum temperatures for growth were determined according to the methods of Jaklitsch [18,19] by using agar media cornmeal dextrose agar (CMD, 40 g cornmeal + 2% (w/v) dextrose (Genview, Beijing, China) + 2% (w/v) agar (Genview, Beijing, China)), PDA, and synthetic low nutrient agar (SNA, pH adjusted to 5.5) [35]. Colonies were incubated in 9 cm diameter Petri dishes at 25 °C with alternating 12 h/12 h fluorescent light/darkness and measured daily until the dishes were covered with mycelia. The influence of temperature on growth was studied by growing isolates on PDA, SNA, and CMD at 15 °C, 20 °C, 25 °C, 30 °C, and 35 °C under dark conditions. Each temperature was repeated for five plates, and the experiment was repeated three times.

2.3. Morphological Study

The characteristics of asexual states were described following the methods of Jaklitsch [36] and Rifai [37]. Microscopic observations were conducted using a Zeiss Axio Lab A1 light microscope (Göttingen, Germany) (objectives 10, 20, 40, and 100 oil immersion). All measurements and photographs were performed using a Zeiss Imager A2 microscope with an Axiocam 506 color camera and integrated software. Microscopically, the characteristics of 50 conidia and conidiophores from the isolates were observed. The effects of Trichoderma on Ganoderma morphology were studied using a Hitachi, model SU8010, Field Emission Scanning Electron Microscope (FESEM) at Jilin Agricultural University.

2.4. DNA Extraction, PCR, and Sequencing

Mycelia were harvested from three-day-old cultures on PDA for DNA extraction according to the manufacturer’s instructions (NuClean Plant Gen DNA Kit, CWBIO, Taizhou, China). Sequences of ITS, TEF1, and RPB2 genes were amplified by polymerase chain reaction (PCR) with the pairs of primers ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS5 (5′-GGAAGTAAAAGTCGTAACAAGG-3′) [38], primers EF1-728F (5′-CATCGAGAAGTTCGAGAAGG-3′) [39] and TEF1-LLErev (5′-GCCATCCTTGGAGATACCAGC-3′) [40], and primers RPB2-5F (5′-GAYGAYMGWGATCAYTTYGG-3′) and RPB2-7CR (5′-CCCATRGCTTGYTTRCCCA-3′) [41], respectively.

PCR was carried out in a 25 μL reaction mixture containing 1 μL of DNA sample, 12.5 μL 2 × SanTaq PCR Mix (Sangon Biotech, Shanghai, China), 1 μL of each primer (10 µM), and 9.5 μL nuclease-free water. The PCR conditions were as follows: initial denaturation at 94 °C for 3 min, then denaturation at 94 °C for 30 s, annealing for 45 s with the corresponding temperatures (56 °C for TEF1, and 55 °C for RPB2), extension at 72 °C for 1 min, followed by 35 cycles, then a final extension at 72 °C for 10 min, using an Applied Biosystems S1000 TM Thermal Cycler machine. PCR products were sent to the Changchun Branch of Sangon Biotech Co., Ltd. (Changchun, China) for paired-end sequencing, and the results were first assembled using BioEdit [42] and then confirmed by BLAST on NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 21 June 2021).

2.5. Phylogenetic Analyses

BLASTn searches with the sequences were performed against NCBI to detect the most closely related species (http://www.blast.ncbi.nlm.nih.gov/, accessed on 22 December 2021). Phylogenetic trees were constructed using TEF1 and RPB2 sequences, and phylogenetic analyses were performed with the Maximum Likelihood (ML), Maximum Parsimony (MP), and Bayesian Inference (BI) methods. New sequences were generated from the new species in this study, along with reference sequences retrieved from GenBank (Table 1). The Trichoderma sequences associated with mushroom green mold are listed in Table 2. Multiple alignments of all common sequences and reference sequences were automatically generated using MAFFT V.7.471 [43], with manual improvements made using BioEdit when necessary [42], and converted to nexus and NEX format through the software Aliview [44]. In the analysis, ambiguous areas were excluded and gaps were regarded as missing data.

Table 1.

Strain information and GenBank accession numbers of sequences used for phylogenetic analyses for new species.

Species Strains GenBank Accession Number References
TEF1 RPB2
T. afarasin GJS 99-227 AF348093 [45]
T. afroharzianum LESF229 KT279013 KT278945 [46]
T. afroharzianum GJS04-186 (T) FJ463301 FJ442691 In GenBank
T. aggregatum HMAS248864 KY688063 KY688002 [47]
T. aggressivum CBS100525 AF534614 AF545541 [48]
T. aggressivum DAOM222156 AF348098 FJ442752 [45]
T. alni CPK2494 EU498313 EU498350 [49]
T. alni CBS120633 = CPK1982 (T) EU498312 EU498349 [49]
T. alpinum HMAS248870 KY688017 KY687963 [47]
T. alpinum HMAS248821 (T) KY688012 KY687958 [47]
T. amazonicum IB95 HM142377 HM142368 [50]
T. asperellum CBS433.97 = TR3 (T) AF456907 EU248617 [51]
T. atrobrunneum S3 KJ665376 KJ665241 [20]
T. atrobrunneum GJS92-110 (T) AF443942 [16]
T. atrogelatinosum CBS237.63 (T) KJ842201 In GenBank
T. azevedoi CEN1403 MK696638 MK696800 [52]
T. azevedoi CEN1422 MK696660 MK696821 [52]
T. bannaense HMAS248865 KY688038 KY688003 [47]
T. bannaense HMAS248840 (T) KY688037 KY687979 [47]
T. breve HMAS248845 KY688046 KY687984 [47]
T. breve HMAS248844 (T) KY688045 KY687983 [47]
T. brunneoviride CBS121130 = CPK2014 EU498316 EU498357 [49]
T. camerunense GJS99-231 AF348108 [45]
T. camerunense GJS99-230 (T) AF348107 [45]
T. catoptron GJS02-76 = CBS114232 (T) AY391963 AY391900 [53]
T. christiani CBS132572 = S442 (T) KJ665439 KJ665244 [20]
T. cinnamomeum GJS97-237 (T) AY391979 AY391920 [53]
T. compactum CBS121218 KF134798 KF134789 [54]
T. concentricum HMAS248858 KY688028 KY687997 [47]
T. concentricum HMAS248833 (T) KY688027 KY687971 [47]
T. endophyticum DIS220J FJ463330 FJ442690 [55]
T. endophyticum DIS221E FJ463316 FJ442775 In GenBank
T. epimyces CPK1980 EU498319 EU498359 [49]
T. epimyces CBS120534 = CPK1981 (T) EU498320 EU498360 [49]
T. ganodermatigerum CCMJ5245 (T) ON567195 ON567189 This study
T. ganodermatigerum CCMJ5246 ON567196 ON567190 This study
T. ganodermatigerum CCMJ5247 ON567197 ON567191 This study
T. ganodermatigerum CCMJ5248 ON567198 ON567192 This study
T. ganodermatigerum CCMJ5249 ON567199 ON567193 This study
T. ganodermatigerum CCMJ5250 ON567200 ON567194 This study
T. guizhouense S278 KF134799 KF134791 [54]
T. guizhouense S628 KJ665511 KJ665273 [20]
T. harzianum GJS05-107 FJ463329 FJ442708 In GenBank
T. harzianum GJS04-71 FJ463396 FJ442779 In GenBank
T. harzianum Thaum12 MT081433 MT118248 In GenBank
T. harzianum CBS226.95 (T) AF534621 AF545549 [48]
T. hausknechtii Hypo649 = CBS133493 (T) KJ665515 KJ665276 [20]
T. helicolixii S640 = CBS133499 (T) KJ665517 KJ665278 [20]
T. hengshanicum HMAS248853 KY688055 KY687992 [47]
T. hengshanicum HMAS248852 (T) KY688054 KY687991 [47]
T. hirsutum HMAS248859 KY688030 KY687998 [47]
T. hirsutum HMAS248834 (T) KY688029 KY687972 [47]
T. ingratum HMAS248824 KY688019 KY687964 [47]
T. ingratum HMAS248873 KY688022 KY688010 [47]
T. ingratum HMAS248822 (T) KY688018 KY687973 [47]
T. inhamatum CBS273.78 (T) AF348099 FJ442725 [45]
T. italicum S131 = CBS132567 (T) KJ665525 KJ665282 [20]
T. lentiforme DIS167C FJ463309 FJ442689 In GenBank
T. lentiforme GJS98-6 (T) AF469195 [16]
T. liberatum HMAS248832 KY688026 KY687970 [47]
T. liberatum HMAS248831 (T) KY688025 KY687969 [47]
T. linzhiense HMAS248874 KY688048 KY688011 [47]
T. linzhiense HMAS248846 (T) KY688047 KY687985 [47]
T. lixii CBS110080 = GJS97-96 FJ716622 KJ665290 [20]
T. neocrassum DAOM164916 = CBS336.93 (T) AF534615 AF545542 [48]
T. neotropicale LA11 HQ022771 [56]
T. peberdyi CEN1387 MK696619 MK696781 [52]
T. peberdyi CEN1388 MK696620 MK696782 [52]
T. pleuroticola T1295 EU279973 [57]
T. pleuroticola CBS124383 (T) HM142381 HM142371 [50]
T. pleuroti CBS124387 (T) HM142382 HM142372 [50]
T. polypori HMAS248855 KY688058 KY687994 [47]
T. polypori HMAS248861 KY688059 KY688000 [47]
T. priscilae S129 KJ665689 KJ665332 [20]
T. pseudodensum HMAS248829 KY688024 KY687968 [47]
T. pseudodensum HMAS248828 (T) KY688023 KY687967 [47]
T. pseudogelatinosum TUFC60186 (T) JQ797397 JQ797405 [58]
T. pyramidale S573 KJ665698 [20]
T. pyramidale S73 = CBS135574 (T) KJ665699 KJ665334 [20]
T. rifaii DIS337F FJ463321 FJ442720 In GenBank
T. rifaii DIS355B (T) FJ463324 In GenBank
T. simmonsii GJS90-22 AY391984 AY391925 [53]
T. simmonsii GJS92-100 AF443937 FJ442710 [16]
T. simmonsii GJS91-138 AF443935 FJ442757 [16]
T. simplex HMAS248860 KY688042 KY687999 [47]
T. simplex HMAS248842 (T) KY688041 KY687981 [47]
T. solum HMAS248848 KY688050 KY687987 [47]
T. solum HMAS248847 (T) KY688049 KY687986 [47]
T. spirale DAOM183974 EU280049 [57]
T. spirale LESF107 KT279022 KT278956 [46]
T. stramineum GJS02-84 = CBS114248 (T) AY391999 AY391945 [53]
T. tawa GJS97-174 = CBS114233 (T) AY392004 AY391956 [53]
T. tomentosum S33 KF134801 KF134793 [54]
T. tomentosum DAOM178713A (T) AF534630 AF545557 [48]
T. velutinum DAOM230013 = CPK298 AY937415 KF134794 [59]
T. virens DIS162 FJ463367 FJ442696 In GenBank
T. zayuense HMAS248836 KY688032 KY687975 [47]
T. zayuense HMAS248835 (T) KY688031 KY687974 [47]

New sequences are shown in bold. The type sequences are marked with (T).

Table 2.

Isolates and GenBank accession numbers of Trichoderma species associated with green mold on mushrooms.

Species Host Range Isolates GenBank Accession Number References
TEF1 RPB2
T. aggressivum Agaricus bisporus CBS100525 AF534614 AF545541 [48]
T. aggressivum
f. aggressivum
Agaricus bisporus GJS99-30 AF348109 [60]
DAOM222156 AF348098 FJ442752 [45]
T. aggressivum
f. europaeum
Agaricus bisporus CBS100526 (T) KP008993 KP009166 [45]
TRS27 KP008994 KP009163 In GenBank
CBS435.95 KP008998 KP009169 In GenBank
T. alni Macrotyphula cf. contorta CBS120633 EU498312 EU498349 [49]
CPK2494 EU498313 EU498350
T. asperellum Pleurotus ostreatus T11 (ACCC32725) MF049065 [61]
Pleurotus eryngii [62]
CGMCC6422 KF425756 KF425755 [63]
CBS433.97 = TR3 (T) AF456907 EU248617 In GenBank
T. atrobrunneum Ganoderma sichuanense CGMCC3.19070 MH464779 [64]
T17-27 MW232537 MW232508 [65]
T. atroviride Pleurotus ostreatus CPK3277 EU918154 [66]
Ganoderma sichuanense 2015005 [10]
Agaricus bisporus T33 [67]
Lentinula edodes T25 [68]
Pleurotus eryngii [69]
PARC1011 MT454114 MT454130 [70]
PARC1018 MT454121 MT454137
DAOM222144 AF456889 FJ442754 [71]
Th002 AB558906 AB558915 [72]
T. aureoviride Pleurotus ostreatus HMAS266607 KF923280 KF923306 [73]
T. austriacum Peziza sp. CBS122494 (T) FJ860619 FJ860525 [19]
T. capillare Agaricus bisporus CPK2883 JN182283 JN182312 [74]
GJS99-3 JN175584 JN175529
T. catoptron Aphyllophorales s. l. GJS02-76 (T) AY391963 AY391900 [53]
T. cerinum Lentinula edodes S357 KF134797 KF134788 [75]
T. chromospermum black mycelium and black pyrenomycete GJS95-196 AY391975 AY391914 [53]
GJS98-73 AY391976 AY391915
GJS94-68 = CBS114577 AY391913
HMAS252537 KF729986 KF730004 [25]
HMAS252539 KF923287 KF923314
HMAS252535 KF923292 KF923315
T. citrinoviride Lentinula edodes TAMA0154 AB807641 AB807653 [76]
Pleurotus ostreatus GJS92-8 JN175595 JN175544 [77]
Pleurotus eryngii GJS01-364 AY225860 AF545565 [69]
Polypore mushroom TAMA0188 AB807644 AB807656 [76]
HZA9 MK850831 MK962804 [78]
T. epimyces Polyporus umbellatus CPK1980 EU498319 EU498359 [49]
CBS120534 (T) EU498320 EU498360
T. erinaceum DIS7 DQ109547 EU248604 [79]
T. fasciculatum Hypocrea ascospores CBS118.72 [80]
DAOM172827 AF534628 AF545555 [48]
T. fomiticola Fomes fomentarius CBS121136 FJ860639 FJ860538 [18]
CPK3137 FJ860640 FJ860539
T. ghanense Agaricus bisporus NBRC30902 AB807638 AB807650 [76]
T. ganodermatis Ganoderma sichuanense HMAS248856 KY688060 KY687995 [47]
HMAS248869 KY688061 KY688007 [47]
T. ganodermatigerum Ganoderma sichuanense CCMJ5245(T) ON567195 ON567189 This study
CCMJ5246 ON567196 ON567190
CCMJ5247 ON567197 ON567191
CCMJ5248 ON567198 ON567192
CCMJ5249 ON567199 ON567193
CCMJ5250 ON567200 ON567194
T. ghanense Agaricus bisporus NBRC30902 AB807638 [76]
T. hamatum Agaricus bisporus Tham20-3 [81]
Lentinula edodes [82]
DAOM167057 (T) EU279965 AF545548 [57]
Hypo647 = WU31629 KJ665513 KJ665274 [20]
Hypo648 = CBS132565 KJ665514 KJ665275 [20]
T. harzianum Pleurotus ostreatus KACC40558 [66]
Cyclocybe aegerita JB1 [73]
Lentinula edodes T50 [83]
Pleurotus eryngii KACC40784 [69]
Pleurotus ostreatus
Agaricus bisporus [45]
Pleurotus ostreatus [84]
Polypores/Corticiaceous [18]
Pleurotus tuoliensis [85]
Tremella fuciformis
Flammulina filiformis
CBS226.95 AF348101 AF545549 [48]
Thaum12 MT081433 MT118248 [86]
CBS227.95 AF348100 [45]
GJS05-107 FJ463329 FJ442708 In GenBank
GJS04-71 FJ463396 FJ442779 In GenBank
T. hengshanicum Ganoderma sichuanense 1009 [87]
HMAS248852 (T) KY688054 KY687991 [47]
HMAS248853 KY688055 KY687992
T. inhamatum Agaricus bisporus CBS273.78 (T) AF348099 FJ442725 [81]
Pleurotus tuoliensis [85]
T. koningii Pleurotus eryngii [69]
Agaricus bisporus [88]
Lentinula edodes [85]
Pleurotus ostreatus
Pleurotus tuoliensis
Flammulina filiformis
Volvariella volvacea
Hypsizygus marmoreus
Ganoderma sichuanense TFl040917 [75]
Tremella fuciformis TGy040604
7723 KJ634753 KJ634720 [89]
GJS90-18 DQ289007 EU248600 [23]
CBS979.70 AY665703 EU248601 In GenBank
S22 KC285595 KC285749 [90]
T. koningiopsis Phaiius rubrovolvata CXYL MN135988 MT038997 [91]
Ganoderma sichuanense CCMJ5253 ON567187 ON567201 This study
CCMJ5254 ON567188 ON567202
T. kunigamense Lentinula edodes TAMA193 AB807645 AB807657 [76]
T. leguminosarum dark corticiaceous fungus S391 KJ665548 KJ665287 [20]
CBS130014 KJ665551 KJ665288
S503 KJ665552 KJ665289
T. lieckfeldtiae Moniliophthora roreri GJS00-14 = CBS123049 (T) EU856326 EU883562 [92]
T. longibrachiatum Pleurotus ostreatus TUFC61535 = CBS816.68(T) EU401591 DQ087242 [40]
Agrocybe aegerita JB4 [73]
Lentinula edodes T57 [83]
Ganoderma sichuanense TFl040921 [75]
Pleurotus eryngii [93]
Agaricus bisporus [81]
Pleurotus tuoliensis [85]
Hypsizygus marmoreus
Volvariella volvacea
T. mienum Lentinula edodes TUFC61517 JQ621975 JQ621965 [94]
T. orientale Ganoderma applanatum LESF516 KT279041 KT278976 [46]
Ganoderma applanatum LESF540 KT279042 KT278977
Ganoderma applanatum LESF544 KT279043 KT278978
Ganoderma applanatum TRS707 KP008888 KP009202
T. oblongisporum Lentinula edodes T37 [83]
DAOM167085 AF534623 AF545551 [48]
T. parareesei Pleurotus eryngii TAMA0153 AB807640 AB807652 [76]
T. parestonica Hymenochaete tabacina CBS120636 (T) FJ860667 FJ860565 [18]
T. pleuroticola Pleurotus ostreatus CBS124383 (T) HM142381 HM142371 [66]
CPK2885 EU918161 EU918141
Pleurotus eryngii CAF-TP3 [69]
Lentinula edodes T22 [83]
Cyclocybe aegerita JB7 [73]
T1295 EU279973 [57]
T. pleuroti Pleurotus ostreatus KACC44537 [69]
Pleurotus eryngii var. ferulae [95]
CBS124387 (T) HM142382 HM142372 [50]
T. polypori Lentinula edodes HMAS248861 KY688059 KY688000 [47]
Polyporus sp. HMAS248855 (T) KY688058 KY687994
T. polysporum Lentinula edodes [96]
8232 KJ634779 KJ634746 [89]
8147 KJ634771 KJ634738
T. priscilae Crepidotus sp. S168 = CBS131487 (T) KJ665691 KJ665333 [20]
Stereum sp. S129 KJ665689 KJ665332
HMAS245002 KT343760 KT343764 In GenBank
T. protopulvinatum Fomitopsis pinicola CPK2434 FJ860677 FJ860574 [18]
T. pulvinatum Fomitopsis pinicola CBS121279 FJ860683 FJ860577 [18]
T. pseudokoningii Lentinula edodes DUCC4021 KX431217 [77]
Cyclocybe aegerita TGc050619 [75]
Ganoderma sichuanense TFl040926
Pleurotus eryngii [97]
Flammulina filiformis [98]
Pleurotus tuoliensis [85]
Volvariella volvacea
Hypsizygus marmoreus
DAOM167678 AY865641 KJ842214 [99]
GJS99-149 JN175589 JN175536 [17]
GJSNS19 JN175588 JN175535
T. pseudolacteum Lentinula edodes TUFC61496 JX238494 JX238479 [100]
TUFC61502 JX238480 JX238471
T. samuelsii Hymenochaete sp. S5 = CBS130537 JN715651 JN715599 [101]
S42 JN715652 JN715598
T. songyi Tricholoma matsutake TC556 KX266244 KX266250 [102]
TC480 KX266243 KX266249
T. stilbohypoxyli Stilbohypoxylon moelleri Hypo256 = CPK1977 FJ860702 FJ860592 [23]
T. stromaticum Agaricus bisporus GJS97-181 AY937447 HQ342227 [59]
GJS07-88 HQ342195 HQ342258 [103]
GJS03-47 HQ342201 HQ342264
GJS00-107 HQ342202 HQ342265
T. sulphureum Laetiporus sulphureus CBS119929 FJ860710 FJ179620 [18]
CPK1593 FJ860709 FJ860599
Thelephora sp. GJS95-135 = CBS114237 AY392006 AY391958 [53]
T. tsugarense Lentinula edodes TAMA203 (T) AB807647 AB807659 [76]
T. viride Lentinula edodes T13 [83]
Pleurotus ostreatus [82]
Tremella fuciformis TGc040905 [75]
Ganoderma sichuanense TFl080706 [75]
Flammulina filiformis TFj10010 [75]
Cyclocybe aegerita TGc040905 [75]
Phallus indusiatus TFl080706 [75]
Tremella fuciformis TGc040905 [75]
Agaricus bisporus [88]
Pleurotus eryngii [69]
TRS575 KP008931 KP009081 In GenBank
LESF115 KT278989 KT278921 [46]
T. virens Agaricus bisporus [88]
Pleurotus eryngii
DIS162 FJ463367 FJ442696 In GenBank
DIS328A FJ463363 FJ442738 In GenBank
T. cf. virens Pleurotus eryngii KACC40783 [69]
Pleurotus ostreatus TUCIM2558 KX655776 [104]
T. viridarium Steccherinum ochraceum GJS89-142 AY376049 EU241495 [51]
Nemania sp. GJS98-182 DQ307511 EU252011 [23]
Protocrea farinosa CBS121551 EU703889 EU703935 [105]
Protocrea pallida CBS121552 EU703897 EU703944

The type sequences are marked with (T), the new sequences are shown in bold.

An MP phylogram was constructed with PAUP 4.0b10 [106] from the combined sequences of TEF1 and RPB2, using 1000 replicates of a heuristic search with random addition of sequences and subsequent tree bisection and reconnection (tbr) branch swapping. Analyses were performed with all characters treated as unordered and unweighted, and gaps treated as missing data. The topological confidence of the resulting trees was tested by maximum parsimony bootstrap proportion (MPBP) with 1000 replications, each with 10 replicates of random addition of taxa. An ML phylogram was constructed with Raxmlgui 2.0 [107] with the sequence after alignment. The ML + Rapid bootstrap program and 1000 repeats of the GTRGAMMAI model were used to evaluate the bootstrap proportion (BP) of each branch for constructing the phylogenetic tree. The BI analysis was conducted using MrBayes 3.2.7 [108] using a Markov Chain Monte Carlo (MCMC) algorithm. Nucleotide substitution models were determined using MrModeltest 2.3 [109]. The best model for combined sequences was HKY + I + G.

3. Results

3.1. Molecular Phylogeny

Species recognition: The dataset for the new species phylogenetic analyses included sequences from 100 taxa (Table 1). Multi-locus data were concatenated, which comprised 2321 characters, with TEF1 1293 characters and RPB2 1028 characters. Estimated base frequencies were as follows: A = 0.231650, C = 0.281772, G = 0.234671, and T = 0.251907; substitution rates were as follows: AC = 1.069464, AG = 4.197119, AT = 0.935747, CG = 0.993621, CT = 4.979475, and GT = 1.000000. The MP and ML trees showed similar topologies with high statistical support values. The MP tree was selected as the representative phylogeny. In Bayesian analysis, the average standard deviation of split frequencies at the end of the total MCMC generations was calculated as 0.008946, which is less than 0.01. Most of the tree topologies resulting from three analyses were nearly the same. In the resulting tree (Figure 1), the combined phylogenetic analyses using TEF1-α and RPB2 showed that the six strains of T. ganodermatigerum represent phylogenetically distinct species with high statistical supports (MPBP/MLBP/BIBP = 100%/100%/1.0), and clustered together with the species in the Harzianum clade [16]. The new species is most related to the clade that contains T. amazonicum, T. pleuroticola, T. hengshanicum, and T. pleuroti. Two collections of CCMJ5253 and CCMJ5254 clustered with T. koningiopsis with high support (MPBP/MLBP = 100/100) (Figure 2).

Figure 1.

Figure 1

Phylogeny of Trichoderma using MP analysis based on combined TEF1 and RPB2 sequences. MPBP ≥ 50%, MLBP ≥ 50%, and BIPP ≥ 0.9 are shown on the branches (MPBP/MLBP/BIPP). The sequences in bold are the new species.

Figure 2.

Figure 2

Phylogeny of Trichoderma associated with mushrooms using MP analysis based on concatenated TEF1 and RPB2 sequences. Branches are labeled with MPBP ≥ 50% and MLBP ≥ 50%. The biological agents are marked in red, and the new sequences in this study are in bold.

Phylogenetic structure: Some sections could be found among the Trichoderma strains associated with mushrooms and are mainly concentrated in the Harzianum clade (Figure 2). Trichoderma longibrachiatum, T. citrinoviride, T. pseudokoningii, and T. ghanense are from section Longibrachiatum, whose members are best known as producers of cellulose-hydrolyzing enzymes [74,110,111]. Trichoderma atroviride, T. viride, T. koningii, T. hamatum, T. minutisporum, T. polysporum, T. viride, and T. asperellum are from section Trichoderma or the Viride clade [36,111].

The phylogenetic structure according to ecology: Species in the Harzianum clade are commonly fungicolous, living in different types of habitats [112,113]. They are most commonly isolated from soil or found on decomposing plant material where they occur cryptically or parasitize other fungi [18,53,114], and those species are possibly the most common endophytic “species” in wild trees [115,116]. There is usually no apparent host specialization [117]. However, some exceptions to this trend exist. Clade I in the Harzianum clade of the tree is a collection of species with relatively narrow host ranges, or in other words, a strong host preference. Trichoderma atrobrunneum was found in soil or on decaying wood, clearly or cryptically parasitizing other fungi. Trichoderma pleuroti, just like T. aggressivum, has thus far never been isolated from areas outside of mushroom farms [118]. Furthermore, T. epimyces has only been reported on Polyporus umbellatus [49], and T. priscilae has been reported from basidiomes of Crepidotus and Stereum [20].

Some other species such as T. atroviride, T. asperellum, T. harzianum, and T. longibrachiatum were also found in significant proportions in Agaricus compost [119]. Trichoderma stromaticum and its Hypocrea teleomorph are only known from cocoa and are often associated with tissue infected with the basidiomycetous pathogen Crinipellis perniciosa [55].

Although some of these pathogenic Trichoderma species (e.g., species gathered in or near Clade II) have been explored as biocontrol agents for plant diseases, T. atroviride, T. viride, T. koningii, T. koningiopsis, and T. asperellum serve as pathogens with broad host ranges on mushrooms. Trichoderma sulphureum, T. protopulvinatum, T. pulvinatum, and T. austriacum coalesce into a subclade (Clade III), and each of these species has been reported on a particular fungus [18,19].

3.2. Taxonomy

Trichoderma ganodermatigerum X.Y. An & Y. Li, sp. nov. Figure 3A–L.

Figure 3.

Figure 3

Morphological characteristics of T. ganodermatigerum. (AC) diseased fruitbody; (DF) colony on PDA, CMD, and SNA; (GJ) conidiophores and phialides; (K,L) conidia; (MP) interactions of G. sichuanense and T. ganodermatigerum; (M) Trichoderma hyphae and conidia are filled in the Ganoderma tissue, causing the tissue to become rough or even depressed; (N) Trichoderma hyphae covered with Ganoderma tissue; (O) clinged Trichoderma hyphae and healthy Ganoderma spores; (P) abnormal Ganoderma spores in diseased tissue. Bars: G, Q = 20 µm; H–J, M–P = 10 µm; K = 50 µm; L = 5 µm. The yellow arrows indicate the tissues and spores of G. sichuanense, and the red arrows indicate the hyphae and spores of T. ganodermatigerum.

MycoBank: MB 843898.

Diagnosis: Phylogenetically, T. ganodermatigerum formed a distinct clade and is related to T. amazonicum (Figure 1). Both T. amazonicum and T. ganodermatigerum form dense concentric rings, pyramidal branching patterns, and branches toward the tip; mycelium grows slowly or does not grow at 35 °C; conidia globose, smooth, and green. As for T. amazonicum, there is no diffusing pigmentation on CMD media and a slightly fruity odor; a brown diffusing pigmentation of the agar is formed in some strains on PDA media [50]. Phylogenetic analysis of TEF1 and RPB2 gene sequences also revealed that T. ganodermatigerum was phylogenetically distinct not only from T. amazonicum but also from other previously reported Trichoderma species.

Etymology: The name refers to the host genus “Ganoderma” from which it was isolated.

Typification: CHINA. Jilin Province, Panshi City, Songshan County, from Ganoderma sichuanense, alt. 310 m, 126°56′ E, 42°77′ N, 18 August 2021, Xiaoya An, HMJAU59014, preserved in Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi of Jilin Agricultural University. Ex-type culture CCMJ5245. Sexual morph: Undetermined. (ITS: ON399102, TEF1: ON567195, and RPB2: ON567189).

Teleomorph: Unknown.

Description: The optimum temperature was 25 °C, and the colony radius on CMD was 7–9 mm at 15 °C, 19–23 mm at 20 °C, 43–52 mm 25 °C, and 32–36 mm at 30 °C, with no growth at 35 °C, and mycelium covering the plate after ten days at 25 °C (Figure 3E). Colony hyaline, thin, and radiating, white in the initial stage, and gradually turned to light green with slight zonate. Mycelia were sparse and delicate, hard to be observed, and aerial hyphae were inconspicuous. Conidiation starting after six days, formed in pustules. Pustules were spreading near the original inoculum or at the edge of the colony, distributed loosely in the plate, white in the initial stage and then turned green. No chlamydospores were observed. No distinct odor and no diffusing pigment were observed.

Colony radius on SNA after 72 h 5–8 mm at 15 °C,13–15 mm at 20 °C, 42–43 mm at 25 °C, and 25–28 mm at 30 °C, and can hardly see the growth at 35 °C. Mycelium covering the plate after six days at 25 °C (Figure 3F). Colony hyaline, thin, irregular, surface mycelium scant. Aerial hyphae are inconspicuous and short. Conidiation starting after three days, formed in loose pustules. Pustules initially white, loose distribution, later turn aggregated and green. No chlamydospores were observed. No distinct odor and no diffusing pigment were observed.

On PDA, the colony radius was 9–12 mm at 15 °C, 22–28 mm at 20 °C, 38–44 mm at 25 °C, and 30–40 mm at 30 °C, with no growth at 35 °C after 72 h, and mycelium covering the plate after 5–6 days at 25 °C (Figure 3D). The colony was circular, spreading in several concentric rings; aerial hyphae were common, dense, and green; the margin was relatively loose and whitish under the alternative light situations. However, mycelia were aerated and white, and only green appeared near the inoculation site under the condition of total darkness. Conidiation starting after 3–4 days, formed on aerial hyphae, spreading in a circle around the original inoculum. Conidiophores are typically tree-like, straight, or slightly curved, comprising a distinct main axis with side branches paired or unilateral and often terminating in whorls of 3–4 divergent phialides, rarely with a terminal solitary phialide (Figure 3G–J), branches densely disposed, arising at mostly vertical angles upwards, rebranching 1–3 times; the distance between two neighboring branches is (6.6–) 10.0–30.0 (–35.6) μm. Phialides formed paired or in whorls of 3–5, lageniform, spindly, usually arising at an acute angle to the axis, rarely solitary (Figure 3F), (1.1–) 2.8–12.3 (–16) μm× (0.2–) 1.9–3.4 (–3.6) μm, l/w ratio (1.6–) 1.7–5.9 (–7.0), (0.2–) 1.4–2.6 (–2.8) μm wide at the base. Conidia one-celled, green, smooth-walled, globose to subglobose, sometimes ellipsoid, (3.4–) 3.6–4.8 (–5.3) μm× (2.9–) 3.2–4.3 (–4.6) μm, l/w ratio 1.1–1.5. No chlamydospores were observed. No distinct odor and no diffusing pigment were observed.

Distribution: Jilin, Shandong, and Heilongjiang Provinces, China.

Additional specimen examined: China, Jilin Province, Panshi city, Songshan County, from Ganoderma sichuanense, alt. 310 m, 126°56′ E, 42°77′ N, 11 Oct. 2021, Xiaoya An, HMJAU59013.

Notes: Fungicolous on the fruiting body of G. sichuanense in terrestrial habitats. It produces extremely tree-like main axes and branches and green, globose conidia (Figure 3N). The results of the phylogenetic tree strongly support its status as a new taxon (Figure 1), indicating its affinity to the Harzianum clade [16]. The species was related to T. amazonicum and T. pleuroticola. Regarding T. amazonicum, it is a host-specific endophyte and might have potential for biocontrol of Hevea diseases [50]. Phylogenetically, T. ganodermatigerum is related to T. pleuroticola in the mycoparasite group. Morphologically, both species grow rapidly and form broad concentric rings on PDA. Conidiation formed small pustules, and the green spores cause the colony to change from light to dark green [120]. The difference is that the new species starts with white, aerial mycelia and spores are more spherical or nearly spherical, with obvious green color, while the spores of T. pleuroticola are light green, subglobose to broadly ellipsoidal conidia, slightly smaller than T. ganodermatigerum, and reported more on Pleurotus ostreatus, Pleurotus eryngii var. ferulae, Lentinula edodes, and Cyclocybe aegerita [69,73,83,120].

Trichoderma koningiopsis Samuels, Carm. Suárez & H.C. Evans 2006.

Description: Fungicolous, colonized the fruiting body of G. sichuanense, causing green mold disease and occurring mostly from June to September. It is very difficult to distinguish the mycelium in the early stage, and only scattered spots present under the cap. Then, white mycelium appeared, with radiating growth. The edge of the colony is often accompanied by a yellow or brown line. A large number of green spores were produced in the late stage. Young basidiomes were inoculated with T. koningiopsis, which reproduced the original signs; the same pathogen was isolated again from the diseased fruitbody.

On PDA, the colony was radial, first whitish, became dark green with fluffy hyphae after ten days. Aerial hyphae were common and dense, but no concentric rings were observed. Mycelia often appear white in complete darkness, and light stimulates spore production, resulting in a green colony. Conidia formed in pustules, spreading near the original inoculum, white, turning green later. On CMD, mycelium covering the plate after ten days at 25 °C, loose and slim, aerial hyphae were absent. Conidia were formed in pustules, which were only produced at the edge of a colony. On SNA media, concentric rings of light yellow or green appeared, and spores were produced in four days. Conidiophore branches arose at right angles, and primary branches arose singly or in pairs. Conidia were ellipsoidal to oblong-shaped, green, 2.8–7.3 × 2.5–7.0 µm. No chlamydospores, no distinct odor, and no diffusing pigment were observed.

Material examined: CHINA, Jilin Province, on a fruiting body of Ganoderma, 4 August 2020; Xiaoya An, HMJAU59012, living culture CCMJ5253, CCMJ5254 (ITS: ON385996, ON385947; TEF1: ON567187, ON567188, and RPB2: ON567201, ON567202, respectively).

Notes: Trichoderma koningiopsis is found throughout tropical America, as well as East Africa, Europe, Canada, and eastern North America [23]. This species is mainly found in soil, twigs, and decayed leaves, and the sexual type is mostly found in wood. At present, T. koningiopsis has been reported to cause green mold of Phaiius rubrovolvata [91], and to our knowledge, this is the first time that it has caused green mold on G. sichuanense. Our sequences had high similarity to the T. koningiopsis sequence after BLAST, and the results of the phylogenetic tree also confirmed the correctness of the classification (Figure 2).

4. Discussion

Edible and medicinal mushrooms have become a very important crop and are grown commercially in many countries [1,121], but the production, including the yield and quantity, is challenged by fungal diseases [2,24]. Trichoderma ganodermatigerum is a new species of Trichoderma. The results from the phylogenetic analyses separate the new species from other closely related and morphologically similar species. The sequences indicate it belongs to the Harzianum clade. To date, more than forty Trichoderma species have been reported to be associated with mushroom green mold disease. Trichoderma atroviride, T. harzianum, T. koningii, T. longibrachiatum, T. pseudokoningii, and T. viride are the six most commonly cited species causing disease on edible mushrooms (Table 2), all of which could infect six to eleven species of cultivated mushrooms [61,64,68,73,83,91,119,122,123]. Before this study, there were seven known species that could cause G. sichuanense diseases, namely, T. koningii, T. longibrachiatum, T. pseudokoningii, T. viride, T. atrobrunneum, T. ganodermatis [47], and T. hengshanicum [87], while T. orientale can cause disease on G. applanatum [124].

Trichoderma green mold infection in edible basidiomycetes has a long history [125]. There are many types of interactions between mushrooms and Trichoderma [126,127,128,129]. Similar to T. aggressivum, the causal agent of Agaricus green mold disease [130], no obvious biting phenomenon was observed between pathogen and mushroom in this study. Through SEM observation, in the interaction zone between G. sichuanense and T. ganodermatigerum, the tissue surface of Ganoderma became uneven with irregular holes (Figure 3K), the pores on the Ganoderma spores became larger, and the double-layer structure was damaged, resulting in spore invagination (Figure 3L), which was similar to the interaction between Trichoderma and shiitake [83]. We can at least suspect that the cell-wall-degrading enzymes play an important role in the process according to the symptoms of soft tissue with holes or even oozing liquid of Ganoderma. In addition, T. songyi could have great biological potential because it is closely related to the biological agents (Figure 2, Clade II).

The application of the Trichoderma species as biocontrol agents began in 1934 when Weindling first discovered that Trichoderma could be parasitic on the hyphae of Rhizoctonia solani, and since then, an increasing amount of research has focused on this field [131]. Because many Trichoderma species are symbiotic and fungal parasitoids, they need to produce degradation enzymes or secondary metabolites to obtain nutrients from the host, so they have been developed as biocontrol agents for plant diseases [50,55,112,132,133]. Among the species associated with mushrooms, nine species are used as biological agents already. Trichoderma koningiopsis, the new pathogen for G. sichuanense in this study, has been a biocontrol agent for a long time [134]. Since T. ganodermatigerum can infect cultivated Ganoderma, leading to growth stagnation or the cessation of sporulation of Ganoderma, it could be a potential biocontrol agent for plant disease. Therefore, the parasitic characteristics and compounds should be further studied.

Acknowledgments

We would like to express our gratitude to the staff of the Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, including Lan Yao, Yu-Kun Ma, and Ye-Tong Li for their help during molecular experiments, Meng-Le Xie for his help during the phylogenetic analyses and taxonomy process, and Chang-Tian Li and Yong-Ping Fu (Plant Protection College of Jilin Agricultural University) for the sample collection in Jilin and Heilongjiang. We also thank Zhuang Li (Plant Protection College of Shandong Agricultural University, China) for his kind help during the sample collection in Shandong.

Author Contributions

X.-Y.A., D.L. and Y.L. conceived and designed the study. X.-Y.A., G.-H.C. and X.-F.L. collected specimens from China. X.-Y.A., G.-H.C. and H.-X.G. generated the DNA sequence data, checked the specimens, and analyzed the data. X.-Y.A., Y.Y., D.L. and Y.L. checked issues related to nomenclatural articles. X.-Y.A. wrote the manuscript draft. X.-Y.A., G.-H.C., H.-X.G., D.L. and Y.L. revised the draft, and all authors approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research was funded by the National Natural Science Foundation of China (No. U20A2046), China Agriculture Research System (No. CARS-20), Central Public-interest Scientific Institution Basal Research Fund (No.1630042022003), the Creation of Ganoderma Germplasm resources and breeding and development of new varieties under the grant (No. GF20190034), Central Public-interest Scientific Institution Basal Research Fund (No. 1630042022020), and Overseas Expertise Introduction Project for Discipline Innovation (111 Center) (No. D17014).

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Dong C.H., Guo S.P., Wang W.F., Liu X.Z. Cordyceps industry in China. Mycology. 2015;6:121–129. doi: 10.1080/21501203.2015.1043967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zhang J.X., Chen Q., Huang C.Y., Gao W., Qu J.B. History, current situation and trend of edible mushroom industry development. Mycosystema. 2015;34:524–540. doi: 10.13346/j.mycosystema.150076. [DOI] [Google Scholar]
  • 3.Andri Wihastuti T., Sargowo D., Heriansyah T., Eka Aziza Y., Puspitarini D., Nur Iwana A., Astrida Evitasari L. The reduction of aorta histopathological images through inhibition of reactive oxygen species formation in hypercholesterolemia rattus norvegicus treated with polysaccharide peptide of Ganoderma lucidum. Iran. J. Basic Med. Sci. 2015;18:514–519. [PMC free article] [PubMed] [Google Scholar]
  • 4.Nguyen V.T., Tung N.T., Cuong T.D., Hung T.M., Kim J.A., Woo M.H., Choi J.S., Lee J.H., Min B.S. Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochem. Lett. 2015;12:69–74. doi: 10.1016/j.phytol.2015.02.012. [DOI] [Google Scholar]
  • 5.Cao Y., Wu S., Dai Y. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 2012;56:49–62. doi: 10.1007/s13225-012-0178-5. [DOI] [Google Scholar]
  • 6.Kim S., Song J., Choi H.T. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration. FEMS Microbiol. Lett. 2004;233:201–204. doi: 10.1111/j.1574-6968.2004.tb09483.x. [DOI] [PubMed] [Google Scholar]
  • 7.Vitak T.Y., Wasser S.P., Nevo E., Sybirna N.O. The effect of the medicinal mushrooms Agaricus brasiliensis and Ganoderma lucidum (higher Basidiomycetes) on the erythron system in normal and streptozotocin-induced diabetic rats. Int. J. Med. Mushrooms. 2015;17:277–286. doi: 10.1615/IntJMedMushrooms.v17.i3.70. [DOI] [PubMed] [Google Scholar]
  • 8.Zhao L.Y., Dong Y.H., Chen G.T., Hu Q.H. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2010;80:783–789. doi: 10.1016/j.carbpol.2009.12.029. [DOI] [Google Scholar]
  • 9.Lu B., Zuo B., Liu X., Feng J., Wang Z., Gao J. Trichoderma harzianum causing green mold disease on cultivated Ganoderma lucidum in Jilin province, China. Plant Dis. 2016;100:2524. doi: 10.1094/PDIS-04-16-0422-PDN. [DOI] [Google Scholar]
  • 10.Yan Y.H., Zhang C.L., Moodley O., Zhang L., Xu J.Z. Green mold caused by Trichoderma atroviride on the Lingzhi medicinal mushroom, Ganoderma lingzhi (Agaricomycetes) Int. J. Med. Mushrooms. 2019;21:515–521. doi: 10.1615/IntJMedMushrooms.2019030352. [DOI] [Google Scholar]
  • 11.Zuo B., Lu B., Liu X., Wang Y., Ma G., Gao J. First report of Cladobotryum mycophilum causing cobweb on Ganoderma lucidum cultivated in Jilin province, China. Plant Dis. 2016;100:1239. doi: 10.1094/PDIS-12-15-1431-PDN. [DOI] [Google Scholar]
  • 12.Persoon C.H. Neuer versuch einer systematischen eintheilung der schwämme. Römer’s Neues Mag. Bot. 1794;1:63–128. doi: 10.3931/e-rara-37279. [DOI] [Google Scholar]
  • 13.Barrera V.A., Iannone L., Romero A.I., Chaverri P. Expanding the Trichoderma harzianum species complex: Three new species from Argentine natural and cultivated ecosystems. Mycologia. 2021;113:1136–1155. doi: 10.1080/00275514.2021.1947641. [DOI] [PubMed] [Google Scholar]
  • 14.Bissett J., Gams W., Jaklitsch W., Samuels G.J. Accepted Trichoderma names in the year 2015. IMA Fungus. 2015;6:263–295. doi: 10.5598/imafungus.2015.06.02.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cai F., Druzhinina I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021;107:1–69. doi: 10.1007/s13225-020-00464-4. [DOI] [Google Scholar]
  • 16.Chaverri P., Castlebury L.A., Samuels G.J., Geiser D.M. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol. 2003;27:302–313. doi: 10.1016/S1055-7903(02)00400-1. [DOI] [PubMed] [Google Scholar]
  • 17.Druzhinina I.S., Komoń-Zelazowska M., Ismaiel A., Jaklitsch W., Mullaw T., Samuels G.J., Kubicek C.P. Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet. Biol. 2012;49:358–368. doi: 10.1016/j.fgb.2012.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Jaklitsch W.M. European species of Hypocrea Part I. The green-spored species. Stud. Mycol. 2009;63:1–91. doi: 10.3114/sim.2009.63.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Jaklitsch W.M. European species of Hypocrea part II: Species with hyaline ascospores. Fungal Divers. 2011;48:1–250. doi: 10.1007/s13225-011-0088-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Jaklitsch W.M., Voglmayr H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 2015;80:1–87. doi: 10.1016/j.simyco.2014.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kullnig-Gradinger C.M., Szakacs G., Kubicek C.P. Phylogeny and evolution of the genus Trichoderma: A multigene approach. Mycol. Res. 2002;106:757–767. doi: 10.1017/S0953756202006172. [DOI] [Google Scholar]
  • 22.Pani S., Kumar A., Sharma A. Trichoderma harzianum: An overview. Bull. Environ. Pharmacol. Life Sci. 2021;10:32–39. [Google Scholar]
  • 23.Samuels G.J., Dodd S.L., Lu B.S., Petrini O., Schroers H.J., Druzhinina I.S. The Trichoderma koningii aggregate species. Stud. Mycol. 2006;56:67–133. doi: 10.3114/sim.2006.56.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sun J.Z., Liu X.Z., McKenzie E.H.C., Jeewon R., Liu J.K., Zhang X.L., Zhao Q., Hyde K.D. Fungicolous fungi: Terminology, diversity, distribution, evolution, and species checklist. Fungal Divers. 2019;95:337–430. doi: 10.1007/s13225-019-00422-9. [DOI] [Google Scholar]
  • 25.Zhu Z.X., Zhuang W.Y. Trichoderma (Hypocrea) species with green ascospores from China. Persoonia. 2015;34:113–129. doi: 10.3767/003158515X686732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zhu Z.X., Zhuang W.Y., Li Y. A new species of the Longibrachiatum Clade of Trichoderma (Hypocreaceae) from Northeast China. Nova Hedwigia. 2018;106:441–453. doi: 10.1127/nova_hedwigia/2017/0444. [DOI] [Google Scholar]
  • 27.Atanasova L., Druzhinina I.S., Jaklitsch W.M. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee P.K., Horwitz B.A., Singh U.S., Mukherjee M., Schmoll M., editors. Trichoderma: Biology and Applications. CABI Publishing; Croydon, UK: 2013. pp. 10–42. [Google Scholar]
  • 28.Bissett J. A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot. 1991;69:2357–2372. doi: 10.1139/b91-297. [DOI] [Google Scholar]
  • 29.Bissett J. A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can. J. Bot. 1991;69:2418–2420. doi: 10.1139/b91-299. [DOI] [Google Scholar]
  • 30.Aamir M., Kashyap S.P., Zehra A., Dubey M.K., Singh V.K., Ansari W.A., Upadhyay R.S., Singh S. Trichoderma erinaceum bio-priming modulates the WRKYs defense programming in tomato against the Fusarium oxysporum f. sp. lycopersici (Fol) challenged condition. Front. Plant Sci. 2019;10:911. doi: 10.3389/fpls.2019.00911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Erazo J.G., Palacios S.A., Pastor N., Giordano F.D., Rovera M., Reynoso M.M., Venisse J.S., Torres A.M. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol. Control. 2021;164:104774. doi: 10.1016/j.biocontrol.2021.104774. [DOI] [Google Scholar]
  • 32.John R.P., Tyagi R.D., Prévost D., Brar S.K., Pouleur S., Surampalli R.Y. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 2010;29:1452–1459. doi: 10.1016/j.cropro.2010.08.004. [DOI] [Google Scholar]
  • 33.Wonglom P., Ito S., Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa) Fungal Ecol. 2020;43:100867. doi: 10.1016/j.funeco.2019.100867. [DOI] [Google Scholar]
  • 34.Chomnunti P., Hongsanan S., Aguirre-Hudson B., Tian Q., Peršoh D., Dhami M.K., Alias A.S., Xu J.C., Liu X.Z., Stadler M., et al. The sooty moulds. Fungal Divers. 2014;66:1–36. doi: 10.1007/s13225-014-0278-5. [DOI] [Google Scholar]
  • 35.Nirenberg H.I. Neuerscheinung. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola, von Dr. Helgard Nirenberg (Inst. f. Mykologie) Z. Pflanzenernahr. Bodenkd. 1977;140:243. doi: 10.1002/jpln.19771400220. [DOI] [Google Scholar]
  • 36.Jaklitsch W.M., Samuels G.J., Dodd S.L., Lu B.S., Druzhinina I.S. Hypocrea rufa/Trichoderma viride: A reassessment, and description of five closely related species with and without warted conidia. Stud. Mycol. 2006;56:135–177. doi: 10.3114/sim.2006.56.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Rifai M.A. A revision of the genus Trichoderma. Mycol. Pap. 1969;116:1–56. [Google Scholar]
  • 38.White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods And Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322. [Google Scholar]
  • 39.Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. doi: 10.1080/00275514.1999.12061051. [DOI] [Google Scholar]
  • 40.Jaklitsch W.M., Komon M., Kubicek C.P., Druzhinina I.S. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 2005;97:1365–1378. doi: 10.1080/15572536.2006.11832743. [DOI] [PubMed] [Google Scholar]
  • 41.Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. [DOI] [PubMed] [Google Scholar]
  • 42.Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. doi: 10.14601/PHYTOPATHOL_MEDITERR-14998U1.29. [DOI] [Google Scholar]
  • 43.Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Samuels G.J., Dodd S.L., Gams W., Castlebury L.A., Petrini O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia. 2002;94:146–170. doi: 10.1080/15572536.2003.11833257. [DOI] [PubMed] [Google Scholar]
  • 46.Montoya Q.V., Meirelles L.A., Chaverri P., Rodrigues A. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa. Antonie Van Leeuwenhoek. 2016;109:633–651. doi: 10.1007/s10482-016-0666-9. [DOI] [PubMed] [Google Scholar]
  • 47.Chen K., Zhuang W.Y. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci. Rep. 2017;7:9090. doi: 10.1038/s41598-017-07807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Chaverri P., Castlebury L.A., Overton B.E., Samuels G.J. Hypocrea/Trichoderma: Species with conidiophore elongations and green conidia. Mycologia. 2003;95:1100–1140. doi: 10.1080/15572536.2004.11833023. [DOI] [PubMed] [Google Scholar]
  • 49.Jaklitsch W.M., Kubicek C.P., Druzhinina I.S. Three European species of Hypocrea with reddish brown stromata and green ascospores. Mycologia. 2008;100:796–815. doi: 10.3852/08-039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Chaverri P., Gazis R.O., Samuels G.J. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia. 2011;103:139–151. doi: 10.3852/10-078. [DOI] [PubMed] [Google Scholar]
  • 51.Hanada R.E., de Jorge Souza T., Pomella A.W.V., Hebbar K.P., Pereira J.O., Ismaiel A., Samuels G.J. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol. Res. 2008;112:1335–1343. doi: 10.1016/j.mycres.2008.06.022. [DOI] [PubMed] [Google Scholar]
  • 52.Inglis P.W., Mello S.C.M., Martins I., Silva J.B.T., Macêdo K., Sifuentes D.N., Valadares-Inglis M.C. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS ONE. 2020;15:e0228485. doi: 10.1371/journal.pone.0228485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Chaverri P., Samuels G.J. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Stud. Mycol. 2003;48:1–116. [Google Scholar]
  • 54.Jaklitsch W.M., Lechat C., Voglmayr H. The rise and fall of Sarawakus (Hypocreaceae, Ascomycota) Mycologia. 2014;106:133–144. doi: 10.3852/13-117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chaverri P., Branco-Rocha F., Jaklitsch W., Gazis R., Degenkolb T., Samuels G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. 2015;107:558–590. doi: 10.3852/14-147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Gazis R., Rehner S., Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol. Ecol. 2011;20:3001–3013. doi: 10.1111/j.1365-294X.2011.05110.x. [DOI] [PubMed] [Google Scholar]
  • 57.Hoyos-Carvajal L., Orduz S., Bissett J. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol. 2009;46:615–631. doi: 10.1016/j.fgb.2009.04.006. [DOI] [PubMed] [Google Scholar]
  • 58.Kim C.S., Yu S.H., Nakagiri A., Shirouzu T., Sotome K., Kim S.C., Maekawa N. Re-evaluation of Hypocrea pseudogelatinosa and H. pseudostraminea isolated from shiitake mushroom (Lentinula edodes) cultivation in Korea and Japan. Plant Pathol. J. 2012;28:341–356. doi: 10.5423/PPJ.OA.05.2012.0068. [DOI] [Google Scholar]
  • 59.Samuels G. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology. 2006;96:195–206. doi: 10.1094/PHYTO-96-0195. [DOI] [PubMed] [Google Scholar]
  • 60.Ospina-Giraldo M.D., Royse D.J., Chen X., Romaine C.P. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology. 1999;89:308–313. doi: 10.1094/PHYTO.1999.89.4.308. [DOI] [PubMed] [Google Scholar]
  • 61.Qiu Z.H., Wu X.L., Zhang J.X., Huang C.Y. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PLoS ONE. 2017;12:e0187055. doi: 10.1371/journal.pone.0187055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Liu X.M., Wu X.L., Chen Q., Qiu Z.H., Zhang J.X., Huang C.Y. Effects of heat stress on Pleurotus eryngii mycelial growth and its resistance to Trichoderma asperellum. Mycosystema. 2017;36:1566–1574. doi: 10.13346/j.mycosystema.160255. [DOI] [Google Scholar]
  • 63.Jiang H., Zhang L., Zhang J.Z., Ojaghian M.R., Hyde K.D. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J. Zhejiang Univ. Sci. B. 2016;17:271–281. doi: 10.1631/jzus.B1500243. [DOI] [Google Scholar]
  • 64.Sun J.Z., Liu X.Z., Jeewon R., Li Y.L., Lin C.G., Tian Q., Zhao Q., Xiao X.P., Hyde K.D., Nilthong S. Fifteen fungicolous Ascomycetes on edible and medicinal mushrooms in China and Thailand. Asian J. Mycol. 2019;2:129–169. doi: 10.5943/ajom/2/1/7. [DOI] [Google Scholar]
  • 65.Rees H.J., Bashir N., Drakulic J., Cromey M.G., Bailey A.M., Foster G.D. Identification of native endophytic Trichoderma spp. for investigation of in vitro antagonism towards Armillaria mellea using synthetic- and plant-based substrates. J. Appl. Microbiol. 2021;131:392–403. doi: 10.1111/jam.14938. [DOI] [PubMed] [Google Scholar]
  • 66.Kredics L., Kocsubé S., Nagy L., Komoń-Zelazowska M., Manczinger L., Sajben E., Nagy A., Vágvölgyi C., Kubicek C.P., Druzhinina I.S., et al. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol. Lett. 2009;300:58–67. doi: 10.1111/j.1574-6968.2009.01765.x. [DOI] [PubMed] [Google Scholar]
  • 67.Kosanović D., Potocnik I., Duduk B., Vukojevic J., Stajic M., Rekanovic E., Milijašević-Marčić S. Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Ann. Appl. Biol. 2013;163:218–230. doi: 10.1111/aab.12048. [DOI] [Google Scholar]
  • 68.Ma X.L., Fan X.L., Wang G.Z., Xu R.P., Yan L.L., Zhou Y., Gong Y.H., Xiao Y., Bian Y.B. Enhanced expression of thaumatin-like protein gene (LeTLP1) endows resistance to Trichoderma atroviride in Lentinula edodes. Life. 2021;11:863. doi: 10.3390/life11080863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Lee S.H., Jung H.J., Hong S.B., Choi J.I., Ryu J.S. Molecular markers for detecting a wide range of Trichoderma spp. that might potentially cause green mold in Pleurotus eryngii. Mycobiology. 2020;48:313–320. doi: 10.1080/12298093.2020.1785754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Úrbez-Torres J.R., Tomaselli E., Pollaed-Flamand J., Boule J., Gerin D., Pollastro S. Characterization of Trichoderma isolates from southern Italy, and their potential biocontrol activity against grapevine trunk disease fungi. Phytopathol. Mediterr. 2020;59:425–439. doi: 10.14601/Phyto-11273. [DOI] [Google Scholar]
  • 71.Dodd S.L., Lieckfeldt E., Samuels G.J. Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia. 2003;95:27–40. doi: 10.1080/15572536.2004.11833129. [DOI] [PubMed] [Google Scholar]
  • 72.Smith A., Beltrán C.A., Kusunoki M., Cotes A.M., Motohashi K., Kondo T., Deguchi M. Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. J. Gen. Plant Pathol. 2013;79:74–85. doi: 10.1007/s10327-012-0419-1. [DOI] [Google Scholar]
  • 73.Choi I.Y., Choi J.N., Sharma P.K., Lee W.H. Isolation and identification of mushroom pathogens from Agrocybe aegerita. Mycobiology. 2010;38:310–315. doi: 10.4489/MYCO.2010.38.4.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Samuels G.J., Ismaiel A., Mulaw T.B., Szakacs G., Druzhinina I.S., Kubicek C.P., Jaklitsch W.M. The Longibrachiatum Clade of Trichoderma: A revision with new species. Fungal Divers. 2012;55:77–108. doi: 10.1007/s13225-012-0152-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Yan Y.H. Master Thesis. Fujian Agriculture and Forestry University; Fuzhou, China: 2011. Research on Identification of Trichoderma of Mushrooms and Control of Trichoderma, Mycogone cervine. [Google Scholar]
  • 76.Yabuki T., Miyazaki K., Okuda T. Japanese species of the Longibrachiatum Clade of Trichoderma. Mycoscience. 2014;55:196–212. doi: 10.1016/j.myc.2013.08.006. [DOI] [Google Scholar]
  • 77.Kim J.Y., Kwon H.W., Lee D.H., Ko H.K., Kim S.H. Isolation and characterization of airborne mushroom damaging Trichoderma spp. from indoor air of cultivation houses used for oak wood mushroom production using sawdust media. Plant Pathol. J. 2019;35:674–683. doi: 10.5423/PPJ.FT.10.2019.0261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Tomah A.A., Abd Alamer I.S., Li B., Zhang J.Z. A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol. Control. 2020;145:104261. doi: 10.1016/j.biocontrol.2020.104261. [DOI] [Google Scholar]
  • 79.Samuels G.J., Suarez C., Solis K., Holmes K.A., Thomas S.E., Ismaiel A., Evans H.C. Trichoderma theobromicola and T. paucisporum: Two new species isolated from cacao in South America. Mycol. Res. 2006;110:381–392. doi: 10.1016/j.mycres.2006.01.009. [DOI] [PubMed] [Google Scholar]
  • 80.Bissett J. A revision of the genus Trichoderma. III. Section Pachybasium. Can. J. Bot. 1991;69:2373–2417. doi: 10.1139/b91-298. [DOI] [Google Scholar]
  • 81.Górski R., Sobieralski K., Siwulski M., Frąszczak B., Sas-Golak I. The effect of Trichoderma isolates, from family mushroom growing farms, on the yield of four Agaricus bisporus (Lange) Imbach strains. J. Plant Prot. Res. 2014;54:102–105. doi: 10.2478/jppr-2014-0016. [DOI] [Google Scholar]
  • 82.Xu Y.B., Wen C.J. Studies of contaminative fungi in the substituted cultivation of Pleurotus ostreatus and Lentinus edodes. Edible Fungi China. 2004;23:45–47. [Google Scholar]
  • 83.Wang G.Z., Cao X.T., Ma X.L., Guo M.P., Liu C.H., Yan L.L., Bian Y.B. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. MicrobiologyOpen. 2016;5:709–718. doi: 10.1002/mbo3.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Reper C., Penninckx M.J. Inhibition of Pleurotus ostreatus growth and fructification by a diffusible toxin from Trichoderma hamatum. J. Food Sci. Technol. 1987;20:291–292. [Google Scholar]
  • 85.He Z.D., Sun H.Q., Gao Y.F. Identification of Trichoderma species on mushrooms. J. Hebei Norm. Univ. Sci. Technol. 2008;22:41–45. [Google Scholar]
  • 86.Zhou Y., Wang J., Laying Y., Guo L.J., He S.T., Zhou W., Huang J.S. Development of species/genus specific primers for identification of three Trichoderma species and for detection of Trichoderma genus. Research Square. 2021. preprint . [DOI]
  • 87.Cai M.Z., Idrees M., Zhou Y., Zhang C.L., Xu J.Z. First report of green mold disease caused by Trichoderma hengshanicum on Ganoderma lingzhi. Mycobiology. 2020;48:427–430. doi: 10.1080/12298093.2020.1794230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Song X.X., Wang Q., Jun J.X., Zhang J.J., Chen H., Chen M.J., Huang J.C., Xie B.Q. Study on accurate identification of four Trichoderma diseases in Agaricus bisporus in factory cultivation. Edible Fungi. 2019;41:67–72. [Google Scholar]
  • 89.Zhu Z.X., Zhuang W.Y. Three new species of Trichoderma with hyaline ascospores from China. Mycologia. 2015;107:328–345. doi: 10.3852/14-141. [DOI] [PubMed] [Google Scholar]
  • 90.Jaklitsch W.M., Samuels G.J., Ismaiel A., Voglmayr H. Disentangling the Trichoderma viridescens complex. Persoonia. 2013;31:112–146. doi: 10.3767/003158513X672234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Chen X.Y.L., Zhou X.H., Zhao J., Tang X.L., Pasquali M., Migheli Q., Berg G., Cernava T. Occurrence of green mold disease on Dictyophora rubrovolvata caused by Trichoderma koningiopsis. J. Plant Pathol. 2021;103:981–984. doi: 10.1007/s42161-021-00861-x. [DOI] [Google Scholar]
  • 92.Samuels G.J., Ismaiel A. Trichoderma evansii and T. lieckfeldtiae: Two new T. hamatum-like species. Mycologia. 2009;101:142–156. doi: 10.3852/08-161. [DOI] [PubMed] [Google Scholar]
  • 93.Choi I.Y., Joung G.T., Ryu J., Choi J.S., Choi Y.G. Physiological characteristics of green mold (Trichoderma spp.) isolated from oyster mushroom (Pleurotus spp.) Mycobiology. 2003;31:139–144. doi: 10.4489/MYCO.2003.31.3.139. [DOI] [Google Scholar]
  • 94.Kim C.S., Shirouzu T., Nakagiri A., Sotome K., Nagasawa E., Maekawa N. Trichoderma mienum sp. nov., isolated from mushroom farms in Japan. Antonie Van Leeuwenhoek. 2012;102:629–641. doi: 10.1007/s10482-012-9758-3. [DOI] [PubMed] [Google Scholar]
  • 95.Błaszczyk L., Siwulski M., Sobieralski K., Frużyńska-Jóźwiak D. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol. 2013;58:325–333. doi: 10.1007/s12223-012-0214-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Lee H.M., Bak W.C., Lee B.H., Park H., Ka K.H. Breeding and screening of Lentinula edodes strains resistant to Trichoderma spp. Mycobiology. 2008;36:270–273. doi: 10.4489/MYCO.2008.36.4.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Al-Rubaiey W., Al-Juboory H.H. Molecular identification of Trichoderma longibrachiatum causing green mold in Pleurotus eryngii culture media. Plant Archives. 2020;20:181–184. doi: 10.13140/RG.2.2.31424.35842. [DOI] [Google Scholar]
  • 98.Choi I.Y., Lee W., Choi J.S. Forest green mold disease caused by Trichoderma pseudokoningii in winter mushroom, Flammulina velutipes. Korean J. Mycol. 1998;26:531–537. [Google Scholar]
  • 99.Druzhinina I.S., Kopchinskiy A.G., Komoń M., Bissett J., Szakacs G., Kubicek C.P. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 2005;42:813–828. doi: 10.1016/j.fgb.2005.06.007. [DOI] [PubMed] [Google Scholar]
  • 100.Kim C.S., Shirouzu T., Nakagiri A., Sotome K., Maekawa N. Trichoderma eijii and T. pseudolacteum, two new species from Japan. Mycol. Prog. 2012;12:739–753. doi: 10.1007/s11557-012-0886-y. [DOI] [Google Scholar]
  • 101.Jaklitsch W.M., Stadler M., Voglmayr H. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia. 2012;104:925–941. doi: 10.3852/11-327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Park M.S., Oh S.Y., Cho H.J., Fong J.J., Cheon W.J., Lim Y.W. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake) Antonie Van Leeuwenhoek. 2014;106:593–603. doi: 10.1007/s10482-014-0230-4. [DOI] [PubMed] [Google Scholar]
  • 103.Samuels G.J., Ismaiel A., de Souza J., Chaverri P. Trichoderma stromaticum and its overseas relatives. Mycol. Prog. 2012;11:215–254. doi: 10.1007/s11557-011-0743-4. [DOI] [Google Scholar]
  • 104.Choi I.Y., Hong S.B., Yadav M.C. Molecular and morphological characterization of green mold, Trichoderma spp. isolated from oyster mushrooms. Mycobiology. 2003;31:74–80. doi: 10.4489/MYCO.2003.31.2.074. [DOI] [Google Scholar]
  • 105.Jaklitsch W.M., Põldmaa K., Samuels G.J. Reconsideration of Protocrea (Hypocreales, Hypocreaceae) Mycologia. 2008;100:962–984. doi: 10.3852/08-101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Swofford D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) Sinauer Associates; Sunderland, UK: 2002. Version 4.0b10. [Google Scholar]
  • 107.Edler D., Klein J., Antonelli A., Silvestro D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 2021;12:373–377. doi: 10.1111/2041-210X.13512. [DOI] [Google Scholar]
  • 108.Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Nylander J.A.A. Ph.D. Thesis. Uppsala University; Uppsala, Sweden: 2004. MrModeltest v2. Program Distributed by the Author. [Google Scholar]
  • 110.Harman G.E., Kubicek C.P. Trichoderma and Gliocladium, Volume 2: Enzymes, Biological Control and Commercial Applications. 1st ed. CRC Press; London, UK: 1998. [Google Scholar]
  • 111.Kubicek C.P., Mikus M., Schuster A., Schmoll M., Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels. 2009;2:19. doi: 10.1186/1754-6834-2-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Chaverri P., Samuels G.J. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution. 2013;67:2823–2837. doi: 10.1111/evo.12169. [DOI] [PubMed] [Google Scholar]
  • 113.Samuels G.J. Trichoderma: A review of biology and systematics of the genus. Mycol. Res. 1996;100:923–935. doi: 10.1016/S0953-7562(96)80043-8. [DOI] [Google Scholar]
  • 114.Li Q.R., Tan P., Jiang Y.L., Hyde K.D., McKenzie E., Bahkali A., Kang J.C., Wang Y. A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycol. Prog. 2012;12:167–172. doi: 10.1007/s11557-012-0821-2. [DOI] [Google Scholar]
  • 115.Evans H.C., Holmes K.A., Thomas S.E. Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol. Prog. 2003;2:149–160. doi: 10.1007/s11557-006-0053-4. [DOI] [Google Scholar]
  • 116.Gazis R., Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol. 2010;3:240–254. doi: 10.1016/j.funeco.2009.12.001. [DOI] [Google Scholar]
  • 117.Rossman A.Y., Samuels G.J., Rogerson C.T., Lowen R. Genera of bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes) Stud. Mycol. 1999;42:1–248. [Google Scholar]
  • 118.Hatvani L. Ph.D. Thesis. University of Szeged; Szeged, Hungary: 2008. Mushroom Pathogenic Trichoderma Species, Occurrence, Biodiversity, Diagnosis and Extracellular Enzyme Production. [Google Scholar]
  • 119.Castle A., Speranzini D., Rghei N., Alm G., Rinker D., Bissett J. Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl. Environ. Microbiol. 1998;64:133–137. doi: 10.1128/AEM.64.1.133-137.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Park M.S., Bae K.S., Yu S.H. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology. 2006;34:111–113. doi: 10.4489/MYCO.2006.34.3.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Fletcher J.T., Gaze R.H. Mushroom Pest and Disease Control: A Color Handbook. 1st ed. CRC Press; London, UK: 2007. [Google Scholar]
  • 122.Mamoun M.L., Lapicco R., Savoie J.M., Olivier J.M. Green mould disease in France: Trichoderma harzianum Th2 and other species causing damages on mushroom farms; Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi; Maastricht, The Netherlands. 15–19 May 2000. [Google Scholar]
  • 123.Kim C.S., Park M.S., Kim S.C., Maekawa N., Yu S.H. Identification of Trichoderma, a competitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes and Trichoderma species in Korea. Plant Pathol. J. 2012;28:137–148. doi: 10.5423/PPJ.2012.28.2.137. [DOI] [Google Scholar]
  • 124.Jaklitsch W.M., Voglmayr H. New combinations in Trichoderma (Hypocreaceae, Hypocreales) Mycotaxon. 2013;126:143–156. doi: 10.5248/126.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Sinden J.W., Hauser E. Nature and control of three mildew diseases of mushrooms in America. Mushroom Sei. 1953;2:177–180. [Google Scholar]
  • 126.Elad Y. Biocontrol of foliar pathogens: Mechanisms and application. Commun Agric. Appl. Biol. Sci. 2003;68:17–24. [PubMed] [Google Scholar]
  • 127.Mumpuni A., Sharma H.S.S., Brown A.E. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl. Environ. Microbiol. 1998;64:5053–5056. doi: 10.1128/AEM.64.12.5053-5056.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Neethling D., Nevalainen H. Mycoparasitic species of Trichoderma produce lectins. Can. J. Microbiol. 1996;42:141–146. doi: 10.1139/m96-022. [DOI] [PubMed] [Google Scholar]
  • 129.Williams J., Clarkson J.M., Mills P.R., Cooper R.M. Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl. Environ. Microbiol. 2003;69:4192–4199. doi: 10.1128/AEM.69.7.4192-4199.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Abubaker K.S., Sjaarda C., Castle A.J. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus. Can. J. Microbiol. 2013;59:417–424. doi: 10.1139/cjm-2013-0173. [DOI] [PubMed] [Google Scholar]
  • 131.Weindling R. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology. 1934;24:1153–1179. [Google Scholar]
  • 132.Castrillo M.L., Bich G.A., Zapata P.D., Villalba L.L. Biocontrol of Leucoagaricus gongylophorus of leaf-cutting ants with the mycoparasitic agent Trichoderma koningiopsis. Mycosphere. 2016;7:810–819. doi: 10.5943/mycosphere/7/6/12. [DOI] [Google Scholar]
  • 133.Kubicek C.P., Herrera-Estrella A., Seidl-Seiboth V., Martínez D., Druzhinina I.S., Thon M.R., Zeilinger S., Casas-Flores S., Horwitz B.A., Mukherjee P.K., et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12:R40. doi: 10.1186/gb-2011-12-4-r40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Yu C., Luo X. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biol. Control. 2020;150:104352. doi: 10.1016/j.biocontrol.2020.104352. [DOI] [Google Scholar]

Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES