Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Jun 21;8(7):647. doi: 10.3390/jof8070647

New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China

Xin-Cun Wang 1,*, Wen-Ying Zhuang 1,*
Editor: Philippe Silar1
PMCID: PMC9319149  PMID: 35887409

Abstract

Species of Talaromyces are cosmopolitan and ubiquitous, and some are of industrial and medicinal importance. Species of Talaromyces have been successively reported in China. During our examinations of samples collected from southwestern China, two new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Talaromyces ginkgonis sp. nov., isolated from a partially colonized fruit of Ginkgo biloba, differs from closely-related fungi in the combination of conidia ellipsoidal, smooth and 3.5−4 × 2−3 μm, no growth on CYA at 37 °C and sequence divergences; T. shilinensis sp. nov. is distinguished from its related allies in the combination of smooth conidia, colonies 10−11 mm diameter on CYA at 25 °C and sequence differences. Detailed descriptions and illustrations of the new taxa are given.

Keywords: DNA barcodes, fungal biodiversity, phylogeny, taxonomy

1. Introduction

Species of Talaromyces C.R. Benj. are cosmopolitan and ubiquitous, inhabiting soil, air, indoor environments, rotten food, plant debris, healthy plant as endophytes, insects, and immunodeficient humans. The beneficial and the harmful effects of Talaromyces have been well documented [1].

Seven sections have been established and widely accepted in the genus Talaromyces: Bacillispori, Helici, Islandici, Purpurei, Subinflati, Talaromyces, and Trachyspermi [2,3]. A novel section was recently proposed as sect. Tenues [4]. A total of 171 species were compiled in the genus and listed in the latest monograph [3]. Furthermore, 26 new taxa were afterwards noted [1,4,5,6,7,8,9,10,11,12]. Twenty of them are from Asia: T. albisclerotius B.D. Sun et al., T. aspriconidius B.D. Sun et al., T. aureolinus L. Wang, T. bannicus L. Wang, T. brevis B.D. Sun et al., T. chongqingensis X.C. Wang & W.Y. Zhuang, T. guizhouensis B.D. Sun et al., T. gwangjuensis Hyang B. Lee & T.T.T. Nguyen, T. haitouensis L. Wang, T. koreana Hyang B. Lee, T. nanjingensis X.R. Sun et al., T. penicillioides L. Wang, T. rosarhiza H. Zhang & Y.L. Jiang, T. rufus B.D. Sun et al., T. sparsus L. Wang, T. teleomorpha Hyang B. Lee et al., T. tenuis B.D. Sun et al., T. wushanicus X.C. Wang & W.Y. Zhuang, T. yunnanensis Doilom & C.F. Liao, and T. zhenhaiensis L. Wang; five from Europe: T. calidominioluteus Houbraken & Pyrri, T. gaditanus (C. Ramírez & A.T. Martínez) Houbraken & Soccio, T. germanicus Houbraken & Pyrri, T. pulveris Crous, and T. samsonii (Quintan.) Houbraken & Pyrri; and one from Africa, T. africanus Houbraken et al. Talaromyces sect. Talaromyces is the largest section and now with 84 species included.

Southwestern China shows various climates, altitudes, and vegetations, and it is rich in fungal biodiversity. Two species from soil in Chongqing were just described [1]. Along with more samples isolated from the area being examined, two additional new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Detailed descriptions and illustrations of the new taxa are provided.

2. Materials and Methods

2.1. Fungal Materials

The new species were associated with fungal (Pseudocosmospora sp.) or plant (Ginkgo biloba L.) materials collected in southwestern China (Sichuan and Yunnan provinces) during 2016–2017. Dried cultures were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS, Beijing, China), and the living ex-type strains were preserved in the China General Microbiological Culture Collection Center (CGMCC, Beijing, China).

2.2. Morphological Observations

Morphological characterization was conducted following standardized methods [13]. Four standard growth media were used: Czapek yeast autolysate agar (CYA, yeast extract Oxoid, Hampshire, UK), malt extract agar (MEA, Amresco, Solon, OH, USA), yeast extract agar (YES), and potato dextrose agar (PDA). The methods for inoculation, incubation, microscopic examinations, and digital recordings followed our previous studies [1,14,15,16].

2.3. Molecular Experiments

DNA was extracted from the cultures grown on PDA for 7 days, using the Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Polymerase chain reaction (PCR) amplifications of the internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) gene regions were conducted with routine methods [1,14,15,16]. The products were purified and subjected to sequencing on an ABI 3730 DNA Sequencer (Applied Biosystems, Bedford, MA, USA). Although the ITS region is proposed as the universal DNA barcode for fungi, it is not sufficient to distinguish species of Talaromyces. The ITS sequences provided in this study might be helpful for other researchers in case of need.

2.4. Phylogenetic Analyses

The forward and the reverse sequences newly generated in this study were assembled using Seqman v. 7.1.0 (DNASTAR Inc., Madison, WI, USA). The assembled sequences were deposited in GenBank. Sequences used for phylogenetic analyses were listed in Table 1. Sequences of each of the three separate datasets (BenA, CaM, and RPB2) and those that were combined were aligned using MAFFT v. 7.221 [17], and then manually edited in BioEdit v. 7.1.10 [18] and MEGA v. 6.0.6 [19]. Maximum Likelihood (ML) analyses were determined using RAxML-HPC2 [20] on XSEDE 8.2.12 on CIPRES Science Gateway v. 3.3 [21] with the default GTRCAT model. Bayesian Inference (BI) analyses were performed with MrBayes v. 3.2.5 [22]. Appropriate nucleotide substitution models and parameters were determined by Modeltest v. 3.7 [23]. The consensus trees were viewed in FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/software/%20figtree/ accessed on 1 September 2015). The type species T. trachyspermus of Talaromyces sect. Trachyspermi served as an outgroup.

Table 1.

Fungal species and sequences used in phylogenetic analyses of Talaromyces sect. Talaromyces.

Species Strain Locality Substrate ITS BenA CaM RPB2
T. aculeatus (Raper & Fennell) Samson et al., 2011 CBS 289.48 T USA textile KF741995 KF741929 KF741975 MH793099
T. adpressus A.J. Chen et al., 2016 CGMCC 3.18211 T China: Beijing indoor air KU866657 KU866844 KU866741 KU867001
T. alveolaris Guevara-Suarez et al., 2017 CBS 142379 T USA human bronchoalveolar lavage LT558969 LT559086 LT795596 LT795597
T. amazonensis N. Yilmaz et al., 2016 CBS 140373 T Colombia leaf litter KX011509 KX011490 KX011502 MN969186
T. amestolkiae N. Yilmaz et al., 2012 CBS 132696 T South Africa house dust JX315660 JX315623 KF741937 JX315698
T. angelicae S.H. Yu et al., 2013 KACC 46611 T South Korea dried root of Angelica gigas KF183638 KF183640 KJ885259 KX961275
T. annesophieae Houbraken 2017 CBS 142939 T Netherlands soil MF574592 MF590098 MF590104 MN969199
T. apiculatus Samson et al., 2011 CBS 312.59 T Japan soil JN899375 KF741916 KF741950 KM023287
T. argentinensis Jurjević & S.W. Peterson 2019 NRRL 28750 T Ghana soil MH793045 MH792917 MH792981 MH793108
T. aspriconidius B.D. Sun et al., 2020 CBS 141835 T China: Yunnan soil MN864274 MN863343 MN863320 MN863332
T. aurantiacus (J.H. Mill. et al.) Samson et al., 2011 CBS 314.59 T USA soil JN899380 KF741917 KF741951 KX961285
T. aureolinus L. Wang 2021 CGMCC 3.15865 T China: Yunnan soil MK837953 MK837937 MK837945 MK837961
T. australis Visagie et al., 2015 CBS 137102 T Australia soil under pasture KF741991 KF741922 KF741971 KX961284
T. bannicus L. Wang 2021 CGMCC 3.15862 T China: Yunnan soil MK837955 MK837939 MK837947 MK837963
T. beijingensis A.J. Chen et al., 2016 CGMCC 3.18200 T China: Beijing indoor air KU866649 KU866837 KU866733 KU866993
T. brevis B.D. Sun et al., 2020 CBS 141833 T China: Beijing soil MN864269 MN863338 MN863315 MN863328
T. calidicanius (J.L. Chen) Samson et al., 2011 CBS 112002 T China: Taiwan soil JN899319 HQ156944 KF741934 KM023311
T. californicus Jurjević & S.W. Peterson 2019 NRRL 58168 T USA air MH793056 MH792928 MH792992 MH793119
T. cnidii S.H. Yu et al., 2013 KACC 46617 T South Korea dried roots of Cnidium KF183639 KF183641 KJ885266 KM023299
T. coprophilus Guevara-Suarez et al., 2020 CBS 142756 T Spain herbivore dung LT899794 LT898319 LT899776 LT899812
T. cucurbitiradicus L. Su & Y.C. Niu 2018 ACCC 39155 T China: Beijing endophyte from root of Cucurbita moschata KY053254 KY053228 KY053246 n.a.
T. derxii Takada & Udagawa 1988 CBS 412.89 T Japan cultivated soil JN899327 JX494306 KF741959 KM023282
T. dimorphus X.Z. Jiang & L. Wang 2018 CGMCC 3.15692 T China: Hainan forest soil KY007095 KY007111 KY007103 KY112593
T. domesticus Jurjević & S.W. Peterson 2019 NRRL 58121 T USA floor swab MH793055 MH792927 MH792991 MH793118
T. duclauxii (Delacr.) Samson et al., 2011 CBS 322.48 T France canvas JN899342 JX091384 KF741955 JN121491
T. euchlorocarpius Yaguchi et al., 1999 CBM PF1203 T Japan soil AB176617 KJ865733 KJ885271 KM023303
T. flavovirens (Durieu & Mont.) Visagie et al., 2012 CBS 102801 T Spain unknown JN899392 JX091376 KF741933 KX961283
T. flavus (Klöcker) Stolk & Samson 1972 CBS 310.38 T New Zealand unknown JN899360 JX494302 KF741949 JF417426
T. francoae N. Yilmaz et al., 2016 CBS 113134 T Colombia leaf litter KX011510 KX011489 KX011501 MN969188
T. funiculosus (Thom) Samson et al., 2011 CBS 272.86 T India Lagenaria vulgaris JN899377 MN969408 KF741945 KM023293
T. fuscoviridis Visagie et al., 2015 CBS 193.69 T Netherlands soil KF741979 KF741912 KF741942 MN969156
T. fusiformis A.J. Chen et al., 2016 CGMCC 3.18210 T China: Beijing indoor air KU866656 KU866843 KU866740 KU867000
T. galapagensis Samson & Mahoney 1977 CBS 751.74 T Ecuador soil under Maytenus obovata JN899358 JX091388 KF741966 KX961280
T. ginkgonis X.C. Wang & W.Y. Zhuang sp. nov. 10725 T China: Sichuan rotten fruit of Ginkgo biloba OL638158 OL689844 OL689846 OL689848
T. haitouensis L. Wang 2022 CGMCC 3.16101 T China: Jiangsu riverside soil MZ045695 MZ054634 MZ054637 MZ054631
T. indigoticus Takada & Udagawa 1993 CBS 100534 T Japan soil JN899331 JX494308 KF741931 KX961278
T. intermedius (Apinis) Stolk & Samson 1972 CBS 152.65 T UK swamp soil JN899332 JX091387 KJ885290 KX961282
T. kabodanensis Houbraken et al., 2016 CBS 139564 T Iran hypersaline soil KP851981 KP851986 KP851995 MN969190
T. kendrickii Visagie et al., 2015 CBS 136666 T Canada forest soil KF741987 KF741921 KF741967 MN969158
T. lentulus X.Z. Jiang & L. Wang 2018 CGMCC 3.15689 T China: Shandong soil KY007088 KY007104 KY007096 KY112586
T. liani (Kamyschko) N. Yilmaz et al., 2014 CBS 225.66 T China soil JN899395 JX091380 KJ885257 KX961277
T. louisianensis Jurjević & S.W. Peterson 2019 NRRL 35823 T USA air MH793052 MH792924 MH792988 MH793115
T. macrosporus (Stolk & Samson) Frisvad et al., 1990 CBS 317.63 T South Africa apple juice JN899333 JX091382 KF741952 KM023292
T. mae X.Z. Jiang & L. Wang 2018 CGMCC 3.15690 T China: Shanghai forest soil KY007090 KY007106 KY007098 KY112588
T. malicola Jurjević & S.W. Peterson 2019 NRRL 3724 T Italy rhizosphere of an apple tree MH909513 MH909406 MH909459 MH909567
T. mangshanicus X.C. Wang & W.Y. Zhuang 2016 CGMCC 3.18013 T China: Hunan soil KX447531 KX447530 KX447528 KX447527
T. marneffei (Segretain et al.) Samson et al., 2011 CBS 388.87 T Vietnam Rhizomys sinensis JN899344 JX091389 KF741958 KM023283
T. muroii Yaguchi et al., 1994 CBS 756.96 T China: Taiwan soil MN431394 KJ865727 KJ885274 KX961276
T. mycothecae R.N. Barbosa et al., 2018 CBS 142494 T Brazil nest of Melipona scutellaris MF278326 LT855561 LT855564 LT855567
T. nanjingensis X.R. Sun et al., 2022 CCTCC M 2012167 T China: Jiangsu rhizosphere soil of Pinus massoniana MW130720 MW147759 MW147760 MW147762
T. neofusisporus L. Wang 2016 CGMCC 3.15415 T China: Tibet leaf sample KP765385 KP765381 KP765383 MN969165
T. oumae-annae Visagie et al., 2014 CBS 138208 T South Africa house dust KJ775720 KJ775213 KJ775425 KX961281
T. panamensis (Samson et al.) Samson et al., 2011 CBS 128.89 T Panama soil JN899362 HQ156948 KF741936 KM023284
T. penicillioides L. Wang 2021 CGMCC 3.15822 T China: Guizhou soil MK837956 MK837940 MK837948 MK837964
T. pinophilus (Hedgc.) Samson et al., 2011 CBS 631.66 T France PVC JN899382 JX091381 KF741964 KM023291
T. pratensis Jurjević & S.W. Peterson 2019 NRRL 62170 T USA effluent of water treatment plant MH793075 MH792948 MH793012 MH793139
T. primulinus (Pitt) Samson et al., 2011 CBS 321.48 T USA unknown JN899317 JX494305 KF741954 KM023294
T. pseudofuniculosus Guevara-Suarez et al., 2020 CBS 143041 T Spain herbivore dung LT899796 LT898323 LT899778 LT899814
T. purgamentorum N. Yilmaz et al., 2016 CBS 113145 T Colombia leaf litter KX011504 KX011487 KX011500 MN969189
T. purpureogenus (Stoll) Samson et al., 2011 CBS 286.36 T unknown unknown JN899372 JX315639 KF741947 JX315709
T. qii L. Wang 2016 CGMCC 3.15414 T China: Tibet leaf sample KP765384 KP765380 KP765382 MN969164
T. rapidus Guevara-Suarez et al., 2017 CBS 142382 T USA human bronchoalveolar lavage LT558970 LT559087 LT795600 LT795601
T. rosarhiza H. Zhang & Y.L. Jiang 2021 GUCC 190040.1 T China: Guizhou endophyte of Rosa roxburghii MZ221603 MZ333143 MZ333137 MZ333141
T. ruber (Stoll) N. Yilmaz et al., 2012 CBS 132704 T UK aircraft fuel tank JX315662 JX315629 KF741938 JX315700
T. rubicundus (J.H. Mill. et al.) Samson et al., 2011 CBS 342.59 T USA soil JN899384 JX494309 KF741956 KM023296
T. rufus B.D. Sun et al., 2020 CBS 141834 T China: Yunnan soil MN864272 MN863341 MN863318 MN863331
T. sayulitensis Visagie et al., 2014 CBS 138204 T Mexico house dust KJ775713 KJ775206 KJ775422 MN969146
T. shilinensis X.C. Wang & W.Y. Zhuang sp. nov. XCW_SN259 T China: Yunnan associated with Pseudocosmospora sp. OL638159 OL689845 OL689847 OL689849
T. siamensis (Manoch & C. Ramírez) Samson et al., 2011 CBS 475.88 T Thailand forest soil JN899385 JX091379 KF741960 KM023279
T. soli Jurjević & S.W. Peterson 2019 NRRL 62165 T USA soil MH793074 MH792947 MH793011 MH793138
T. sparsus L. Wang 2021 CGMCC 3.16003 T China: Beijing soil MT077182 MT083924 MT083925 MT083926
T. stellenboschiensis Visagie & K. Jacobs 2015 CBS 135665 T South Africa soil JX091471 JX091605 JX140683 MN969157
T. stipitatus (Thom) C.R. Benj. 1955 CBS 375.48 T USA rotting wood JN899348 KM111288 KF741957 KM023280
T. stollii N. Yilmaz et al., 2012 CBS 408.93 T Netherlands AIDS patient JX315674 JX315633 JX315646 JX315712
T. striatoconidium (R.F. Castañeda & W. Gams) Houbraken et al., 2020 CBS 550.89 T Cuba leaf litter of Pachyanthus poirettii MN431418 MN969441 MN969360 MT156347
T. thailandensis Manoch et al., 2013 CBS 133147 T Thailand forest soil JX898041 JX494294 KF741940 KM023307
T. tumuli Jurjević & S.W. Peterson 2019 NRRL 62151 T USA soil from prairie MH793071 MH792944 MH793008 MH793135
T. veerkampii Visagie et al., 2015 CBS 500.78 T Columbia soil KF741984 KF741918 KF741961 KX961279
T. verruculosus (Peyronel) Samson et al., 2011 NRRL 1050 T USA soil KF741994 KF741928 KF741944 KM023306
T. versatilis Bridge & Buddie 2013 IMI 134755 T UK unknown MN431395 MN969412 MN969319 MN969161
T. viridis (Stolk & G.F. Orr) Arx 1987 CBS 114.72 T Australia soil AF285782 JX494310 KF741935 JN121430
T. viridulus Samson et al., 2011 CBS 252.87 T Australia soil JN899314 JX091385 KF741943 JF417422
T. wushanicus X.C. Wang & W.Y. Zhuang 2021 CGMCC 3.20481 T China: Chongqing soil MZ356356 MZ361347 MZ361354 MZ361361
T. xishaensis X.C. Wang et al., 2016 CGMCC 3.17995 T China: Hainan soil KU644580 KU644581 KU644582 MZ361364
T. yunnanensis Doilom & C.F. Liao 2020 KUMCC 18-0208 T China: Yunnan rhizosphere soil MT152339 MT161683 MT178251 n.a.
T. zhenhaiensis L. Wang 2022 CGMCC 3.16102 T China: Zhejiang mudflat soil MZ045697 MZ054636 MZ054639 MZ054633
T. trachyspermus (Shear) Stolk & Samson 1973 CBS 373.48 T USA unknown JN899354 KF114803 KJ885281 JF417432

GenBank accession numbers in bold indicating the newly generated sequences. Full names of the culture collection centers: ACCC (Agricultural Culture Collection of China); CBS (Centraalbureau voor Schimmelcultures, now Westerdijk Fungal Biodiversity Institute); CCTCC (China Center for Type Culture Collection); CGMCC (China General Microbiological Culture Collection); GUCC (Culture Collection at Department of Plant Pathology, Agriculture College, Guizhou University); IMI (CABI Bioscience); KACC (Korean Agricultural Culture Collection); KUMCC (Kunming Institute of Botany Culture Collection); NRRL (USDA-ARS Culture Collection).

3. Results

3.1. Phylogenetic Analysis

To infer the phylogeny of Talaromyces sect. Talaromyces and to determine the positions of the new species, three separate datasets (BenA, CaM and RPB2) and those that were combined were compiled and analyzed. Detailed characteristics of the datasets are listed in Table 2.

Table 2.

Detailed characteristics of datasets of Talaromyces sect. Talaromyces.

Gene Fragment No. of Seq. Length of Alignment (bp) No. of Variable Sites No. of Parsimony-Informative Sites Model for BI
BenA 87 643 246 200 K81uf + I + G
CaM 87 581 305 260 SYM + I + G
RPB2 85 978 359 319 TVM + I + G
BenA + CaM + RPB2 87 2202 910 779 GTR + I + G

Full names of the used models: GTR + I + G (General Time Reversible model with unequal base frequencies with Invariable sites and Gamma distribution); K81uf + I + G (Kimura 3-parameter model with unequal base frequencies with Invariable sites and Gamma distribution); SYM + I + G (Symmetrical model with Invariable sites and Gamma distribution); TVM + I + G (Transversion model with Invariable sites and Gamma distribution).

In the BenA phylogeny (Figure S1), the strain 10725 was clustered with T. aspriconidius, T. calidicanius, T. duclauxii, T. flavus, T. haitouensis, and T. marneffei; and XCW_SN259 was grouped with T. kabodanensis and T. primulinus. In the CaM tree (Figure S2), 10725 showed as a distinct lineage, while XCW_SN259 was a sister taxon of T. primulinus. In the RPB2 phylogeny (Figure S3), the position of 10725 was similar to that shown in the BenA phylogeny with relatively weak supports, while the sister relationship between T. primulinus and XCW_SN259 was confirmed as that in the CaM phylogeny. In the phylogenetic tree of the combined three-gene dataset (Figure 1), the position of 10725 was identical with the BenA and RPB2 trees and that of XCW_SN259 was consistent in of all the trees (Figure 1 and Figures S1–S3).

Figure 1.

Figure 1

ML phylogeny of Talaromyces sect. Talaromyces inferred from the combined (BenA + CaM + RPB2) dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability.

3.2. Taxonomy

Talaromyces ginkgonis X.C. Wang & W.Y. Zhuang, sp. nov. Figure 2

Figure 2.

Figure 2

Colonial and microscopic morphology of Talaromyces ginkgonis (10725). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm, applies to C; D = 12.5 µm; E = 10 µm, applies to F and G.

Fungal Names: FN570954

Etymology: The specific epithet refers to the substrate of the fungus

in Talaromyces sect. Talaromyces

Typification: CHINA. Sichuan Province, Chengdu City, Dujiangyan City, Mount Qingcheng, 30°54′8″ N 103°33′40″ E, on a partially colonized fruit of Ginkgo biloba L., 22 August 2016, Xin-Cun Wang 10725, cultured by Xin-Cun Wang (holotype HMAS 247853, ex-type strain CGMCC 3.20698)

DNA barcodes: ITS OL638158, BenA OL689844, CaM OL689846, RPB2 OL689848

Colony diam., 7 days, 25 °C (unless stated otherwise): CYA 9–13 mm; CYA 37 °C no growth; MEA 19–21 mm; YES 12–13 mm; PDA 15–27 mm

Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, plain; margins moderately wide, fimbriate; mycelia colorless; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse greenish white.

On MEA 25 °C, 7 days: Colonies nearly circular, plain; margins wide, fimbriate; mycelia white; texture velutinous; sporulation dense; conidia en masse vivid green; soluble pigments absent; exudates absent; reverse buff but pink at centers and white at margins.

On YES 25 °C, 7 days: Colonies irregular, plain; margins narrow, fimbriate; mycelia white; texture velutinous; sporulation dense; conidia en masse bluish green; soluble pigments absent; exudates absent; reverse buff at centers, green at periphery, and white at margins.

On PDA 25 °C, 7 days: Colonies nearly circular to irregular, plain; margins wide, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse yellowish green to vivid green; soluble pigments absent; exudates absent; reverse usually pink at centers, green to buff at periphery, and white at margins.

Micromorphology: Conidiophores biverticillate, rarely terverticillate; stipes smooth-walled, 150–360 × 2.0–3.0 μm; metulae 3–5, 11.0–22.5 × 2.0–3.5 μm; phialides acerose, tapering into very thin neck, 3–5 per metula, 12.0–15.0 × 2.0–3.0 μm; conidia ellipsoidal to fusiform, smooth, 3.5–4.0 × 2.0–3.0 μm

Note: This species is phylogenetically related to T. aspriconidius, T. calidicanius, T. duclauxii, T. flavus, T. haitouensis, and T. marneffei, with strong support in the combined three-gene tree (Figure 1). Morphologically, it differs from T. aspriconidius and T. calidicanius in the smooth conidia; from T. marneffei in the ellipsoidal conidia; and from T. duclauxii, T. flavus, and T. haitouensis in the slower growth rate on MEA and YES at 25 °C (Table 3).

Table 3.

Morphological comparisons of new Talaromyces species and their closely related species.

Species CYA 25 °C (mm) CYA 37 °C (mm) MEA (mm) YES (mm) Conidiophore Conidia Shape Conidia Wall Conidia Size (µm) Reference
T. aspriconidius 22–23 22–23 36–37 28–29 biverticillate globose strikingly roughened 3–4 [4]
T. calidicanius 27–30 no growth 47–48 40–41 biverticillate ellipsoidal to fusiform finely rough to rough with spiral striations 2.5–4.5 × 2–3 [2]
T. duclauxii 25–27 3–4 48–50 43–44 biverticillate ellipsoidal smooth to finely rough 3–4 × 1.5–3.5 [2]
T. flavus 9–10 19–20 31–32 24–26 monoverticillate ellipsoidal smooth 2–3 × 1.5–2.5 [2]
T. haitouensis 22–25 18–20 48–51 25–28 biverticillate pyriform to ellipsoidal smooth 2.5–3 × 2–2.5 [10]
T. marneffei 13–25 5–10 15–27 17–25 mono- to biverticillate subglobose smooth 2.5–4 × 2–3 [2]
T. ginkgonis 9–13 no growth 19–21 12–13 biverticillate ellipsoidal to fusiform smooth 3.5–4 × 2–3 This study
T. kabodanensis 15–25 no growth 37–44 28–35 biverticillate ovoidal to fusiform finely rough to rough with spiral striations 2.5–3.5 × 1.5–2.5 [24]
T. primulinus 5–6 no growth 20–25 8–10 biverticillate ellipsoidal to fusiform smooth to finely rough 2–4 × 1.5–3 [2]
T. shilinensis 10–11 no growth 36–38 18–19 biverticillate ellipsoidal to broad fusiform smooth 2.5–3.5 × 2–2.5 This study

Talaromyces shilinensis X.C. Wang & W.Y. Zhuang, sp. nov. Figure 3

Figure 3.

Figure 3

Colonial and microscopic morphology of Talaromyces shilinensis (XCW_SN259). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm; C = 12.5 µm; D = 10 µm, applies to E and G; F = 7.5 µm.

Fungal Names: FN570955

Etymology: The specific epithet refers to the type locality

in Talaromyces sect. Talaromyces

Typification: CHINA. Yunnan Province, Kunming City, Shilin Yi Autonomous County, Gui Mountain National Forest Park, 24°38′15″ N 103°35′49″ E, isolated from a rotten twig associated with ascomata of Pseudocosmospora sp., 26 September 2017, Yi Zhang, Yu-Bo Zhang and Huan-Di Zheng 11,825, cultured by Yu-Bo Zhang, XCW_SN259 (holotype HMAS 247854, ex-type strain CGMCC 3.20699)

DNA barcodes: ITS OL638159, BenA OL689845, CaM OL689847, RPB2 OL689849

Colony diam., 7 days, 25 °C (unless stated otherwise): CYA 10–11 mm; CYA 37 °C no growth; MEA 36–38 mm; YES 18–19 mm; PDA 35–37 mm

Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, plain; margins wide, entire; mycelia colorless; texture velutinous; sporulation sparse; conidia en masse light yellowish green; soluble pigments absent; exudates absent; reverse almost colorless but light brown at centers

On MEA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins very wide, entire; mycelia colorless and white; texture velutinous, funiculose at central areas; sporulation dense; conidia en masse dull green; soluble pigments absent; exudates absent; reverse buff but pink to reddish brown at centers.

On YES 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins moderately wide, entire; mycelia colorless; texture velutinous; sporulation dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff but light brown at centers.

On PDA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins very wide, entire; mycelia colorless; texture velutinous; sporulation dense; conidia en masse dull green; soluble pigments absent; exudates absent; reverse white, pink to reddish brown at centers.

Micromorphology: Conidiophores biverticillate, rarely quaterverticillate; stipes smooth-walled, 50–110 × 2.0–3.0 μm; metulae 4–6, 8.5–12.5 × 2.5–3.0 μm; phialides acerose, tapering into very thin neck, 4–5 per metula, 9.0–13.0 × 1.8–2.5 μm; conidia ellipsoidal to broad-fusiform, smooth, 2.5–3.5 × 2.0–2.5 μm

Note: This species is a sister of T. primulinus with strong support in the phylogenies inferred from all datasets (Figure 1 and Figures S1–S3), and it also related to T. kabodanensis in the BenA and combined trees (Figure 1 and Figure S1). It has 27 pairwise nucleotide differences from T. primulinus and 23 bp from T. kabodanensis in the BenA dataset; 29 nucleotide differences from T. primulinus in CaM; and 45 nucleotide differences from T. primulinus in RPB2. Morphologically, it differs from T. kabodanensis in the smooth conidia and from T. primulinus in the faster growth rate on CYA, MEA, and YES at 25 °C (Table 3).

4. Discussion

Forty-three species of the Talaromyces have been reported as new to science based on materials collected from China. They are distributed all over the country, especially in southwestern regions, for example, T. chongqingensis and T. wushanicus are from Chongqing, T. albisclerotius, T. guizhouensis, T. penicillioides, T. resinae, T. rosarhiza, and T. tenuis are from Guizhou, T. ginkgonis is from Sichuan, T. neofusisporus and T. qii are from Tibet, and T. aspriconidius, T. aureolinus, T. bannicus, T. rufus, T. shiliensis, and T. yunnanensis are from Yunnan [1,4,6,9,10,11]. This proves that southwestern China is one of the global biodiversity hotspots. In northern China, 13 species were recorded from Beijing; in eastern parts of the country, 9 were from Jiangsu, Shandong, Shanghai, Taiwan, and Zhejiang; and a few species were occasionally found in the south, central, and northeast. This might be due to the frequency of investigations, climates, richness of plants, as well as human activities. We certainly expect to discover more species of the group in unexplored regions and even in surveyed areas in different seasons.

Along with the joining of the two new species, Talaromyces sect. Talaromyces currently possesses up to 86 species around the world. Forty species were originally described as being from Asia, of which 29 are from China, four are from Japan, two are from South Korea and Thailand, respectively, and only one was reported in India, Iran, and Vietnam; 18 taxa are from North America, including 14 from the USA and a single one from Canada, Cuba, Mexico, and Panama; 12 species are distributed in Europe (France, Italy, Netherlands, Spain, UK); six are reported in South America (Brazil, Colombia, and Ecuador); five are from Africa (Ghana and South Africa); and four are from Oceania (Australia and New Zealand). Concerning the known distribution of the genus, one may easily imagine that the biodiversity of Talaromyces may have been underrated, although it is well recognized in areas of East Asia and North America, intensive excursions covering a broad range of areas in the world should be suggested to have a better understanding of the biodiversity of this group.

Acknowledgments

The authors would like to thank Huan-Di Zheng, Yu-Bo Zhang, and Yi Zhang of the Institute of Microbiology, Chinese Academy of Sciences for jointly collecting the samples for this study.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8070647/s1, Figure S1: ML phylogeny of Talaromyces sect. Talaromyces inferred from BenA dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability; Figure S2: ML phylogeny of Talaromyces sect. Talaromyces inferred from CaM dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability; Figure S3: ML phylogeny of Talaromyces sect. Talaromyces inferred from RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability.

Author Contributions

Conceptualization, W.-Y.Z. and X.-C.W.; methodology, X.-C.W.; software, X.-C.W.; validation, X.-C.W. and W.-Y.Z.; formal analysis, X.-C.W.; investigation, X.-C.W.; resources, X.-C.W. and W.-Y.Z.; data curation, X.-C.W.; writing—original draft preparation, X.-C.W.; writing— review and editing, W.-Y.Z. and X.-C.W.; visualization, X.-C.W.; supervision, W.-Y.Z.; project administration, W.-Y.Z.; funding acquisition, W.-Y.Z. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This project was supported by the National Natural Science Foundation of China (31750001) and the Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDY-SSW-SMC029).

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Zhang Z.K., Wang X.C., Zhuang W.Y., Cheng X.H., Zhao P. New species of Talaromyces (Fungi) isolated from soil in southwestern China. Biology. 2021;10:745. doi: 10.3390/biology10080745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Yilmaz N., Visagie C.M., Houbraken J., Frisvad J.C., Samson R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014;78:175–341. doi: 10.1016/j.simyco.2014.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Houbraken J., Kocsube S., Visagie C.M., Yilmaz N., Wang X.C., Meijer M., Kraak B., Hubka V., Bensch K., Samson R.A., et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020;95:5–169. doi: 10.1016/j.simyco.2020.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Sun B.D., Chen A.J., Houbraken J., Frisvad J.C., Wu W.P., Wei H.L., Zhou Y.G., Jiang X.Z., Samson R.A. New section and species in Talaromyces. MycoKeys. 2020;68:75–113. doi: 10.3897/mycokeys.68.52092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Crous P.W., Cowan D.A., Maggs-Kolling G., Yilmaz N., Larsson E., Angelini C., Brandrud T.E., Dearnaley J.D.W., Dima B., Dovana F., et al. Fungal Planet description sheets: 1112–1181. Persoonia. 2020;45:251–409. doi: 10.3767/persoonia.2020.45.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wei S., Xu X., Wang L. Four new species of Talaromyces section Talaromyces discovered in China. Mycologia. 2021;113:492–508. doi: 10.1080/00275514.2020.1853457. [DOI] [PubMed] [Google Scholar]
  • 7.Nguyen T.T.T., Frisvad J.C., Kirk P.M., Lim H.J., Lee H.B. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. J. Fungi. 2021;7:722. doi: 10.3390/jof7090722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Pyrri I., Visagie C.M., Soccio P., Houbraken J. Re-evaluation of the taxonomy of Talaromyces minioluteus. J. Fungi. 2021;7:993. doi: 10.3390/jof7110993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zhang H., Wei T.P., Mao Y.T., Ma M.X., Ma K., Shen Y., Zheng M.J., Jia W.Y., Luo M.Y., Zeng Y., et al. Ascodesmis rosicola sp. nov. and Talaromyces rosarhiza sp. nov., two endophytes from Rosa roxburghii in China. Biodivers. Data J. 2021;9:e70088. doi: 10.3897/BDJ.9.e70088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Han P.J., Sun J.Q., Wang L. Two new sexual Talaromyces species discovered in estuary soil in China. J. Fungi. 2022;8:36. doi: 10.3390/jof8010036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Doilom M., Guo J.W., Phookamsak R., Mortimer P.E., Karunarathna S.C., Dong W., Liao C.F., Yan K., Pem D., Suwannarach N., et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front. Microbiol. 2020;11:585215. doi: 10.3389/fmicb.2020.585215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sun X.R., Xu M.Y., Kong W.L., Wu F., Zhang Y., Xie X.L., Li D.W., Wu X.Q. Fine identification and classification of a novel beneficial Talaromyces fungal species from Masson pine rhizosphere soil. J. Fungi. 2022;8:155. doi: 10.3390/jof8020155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H., Perrone G., Seifert K.A., Varga J., Yaguchi T., Samson R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014;78:343–371. doi: 10.1016/j.simyco.2014.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wang X.C., Chen K., Xia Y.W., Wang L., Li T.H., Zhuang W.Y. A new species of Talaromyces (Trichocomaceae) from the Xisha Islands, Hainan, China. Phytotaxa. 2016;267:187–200. doi: 10.11646/phytotaxa.267.3.2. [DOI] [Google Scholar]
  • 15.Wang X.C., Chen K., Qin W.T., Zhuang W.Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 2017;16:73–81. doi: 10.1007/s11557-016-1251-3. [DOI] [Google Scholar]
  • 16.Wang X.C., Chen K., Zeng Z.Q., Zhuang W.Y. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci. Rep. 2017;7:8233. doi: 10.1038/s41598-017-08697-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. [Google Scholar]
  • 19.Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
  • 21.Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8. [Google Scholar]
  • 22.Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Posada D., Crandall K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  • 24.Crous P.W., Wingfield M.J., Burgess T.I., Hardy G.E., Crane C., Barrett S., Cano-Lira J.F., Le Roux J.J., Thangavel R., Guarro J., et al. Fungal Planet description sheets: 469–557. Persoonia. 2016;37:218–403. doi: 10.3767/003158516X694499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES