Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Jul 19;8(7):747. doi: 10.3390/jof8070747

Morphological and Phylogenetic Characterization Reveals Five New Species of Samsoniella (Cordycipitaceae, Hypocreales)

Zhiqin Wang 1,2,, Yao Wang 1,2,, Quanying Dong 1,2, Qi Fan 2, Van-Minh Dao 3, Hong Yu 1,2,*
Editor: Lei Cai
PMCID: PMC9321185  PMID: 35887502

Abstract

Samsoniella is a very important fungal resource, with some species in the genus having great medical, economic and ecological value. This study reports five new species of Samsoniella from Yunnan Province and Guizhou Province in Southwestern China and Dole Province in Vietnam, providing morphological descriptions, illustrations, phylogenetic placements, associated hosts and comparisons with allied taxa. Based on morphological observations and phylogenetic analyses of combined nrSSU, nrLSU, tef-1α, rpb1 and rpb2 sequence data, it was determined that these five new species were located in the clade of Samsoniella and different from other species of Samsoniella. The five novel species had morphologies similar to those of other species in the genus, with bright orange cylindrical to clavate stromata (gregarious). The fertile part lateral sides usually had a longitudinal ditch without producing perithecia, and superficial perithecia. The phialides had a swollen basal portion, tapering abruptly into a narrow neck and oval or fusiform one-celled conidia, often in chains. The morphological characteristics of 23 species in Samsoniella, including five novel species and 18 known taxa, were also compared in the present study.

Keywords: isaria-like fungi, micromorphology, phylogenetic analyses, taxonomy

1. Introduction

Samsoniella was established by Mongkolsamrit et al. (2018) based on morphological and molecular evidence to accommodate three isaria-like species: the type species S. inthanonensis and two other species, S. alboaurantia and S. aurantia [1]. Samsoniella species were characterized by the formation of bright orange, cylindrical to clavate stromata (gregarious). The fertile part lateral sides usually had a longitudinal ditch without producing perithecia, superficial perithecia. Or the formation of anamorphic synnemata, the phialides had a swollen basal portion, tapering abruptly into a narrow neck, conidia oval to fusiform, one-celled, often in chains [1,2]. In order to account for the phylogenetic diversity of isaria-like species and to segregate these isaria-like fungi from the Akanthomyces group, the genus Samsoniella was established [1]. Isaria Pers. was one of the oldest names for asexually typified genera in Cordycipitaceae; however, many entomogenous fungi morphologically similar to Isaria could be found distributed throughout Hypocreales [3]. In 2017, Kepler et al. revealed a polyphyletic distribution of Isaria species within Cordycipitaceae, proposed the rejection of Isaria and combined 11 species of Isaria into Cordyceps Fr., owing to the confusion surrounding the application of Isaria [4]. Two isolates of I. farinosa (CBS 240.32 and CBS 262.58) that remained genetically distant from CBS 111113 were renamed S. alboaurantium [1].

The species of Samsoniella have diverse biological characteristics. The genus currently contains 18 species (http://www.indexfungorum.org, accessed on 1 May 2022), among which S. hepiali is an essential medicinal fungus [1,2]. The chemical profile of S. hepiali is very similar to the profiles of Ophiocordyceps sinensis, and recent studies show that S. hepiali performs various biological pharmacological activities such as anti-cancer, analgesic and hypoglycaemic activity, and is a good substitute for O. sinensis [5]. The related species of S. hepiali may have similar pharmacological activities. However, no research on other members of the genus has yet been reported.

During surveys of entomopathogenic fungi from different regions in Yunnan Province, Guizhou Province of Southwestern China and Dole Province of Vietnam, five Samsoniella species were found and identified. Based on morphological evidence together with multigene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence analyses, it was shown that these five new Samsoniella species were distinguished from other species of the genus. They were named S. coccinellidicola, S. farinospora, S. haniana, S. pseudotortricidae and S. sinensis. Furthermore, the morphological characteristics of 23 species in Samsoniella, comprising 5 novel species and 18 known taxa, were also compared.

2. Materials and Methods

2.1. Sample Collection and Isolation

The majority of the specimens used in this study were collected from Yunnan Province in China. Some specimens were collected from the Chu Yang Sin National Park of Dole Province in Vietnam. The specimens were noted and photographed in the fields. The sample was placed in an ice box and brought to the laboratory for preservation at 4 °C. To obtain axenic cultures, the stromata or synnemata were removed from the insect bodies and divided into 3–4 segments, each 2 mm long. The segments were immersed in 30% H2O2 for 30 s and then soaked in sterilized water for 1 minute. After drying on sterilized filter paper, the segments were inoculated onto potato dextrose agar (PDA: fresh potato 200 g/L, dextrose 20 g/L, and agar 18 g/L) plates. The conidia of cordycipitoid fungi at the conidial masses were picked using an inoculating loop and spread on PDA plates containing 0.1 g/L streptomycin and 0.05 g/L tetracycline [2]. Pure cultures were incubated at room temperature (about 25 °C). After isolation into pure cultures, they were transplanted to a PDA slant and stored at 4 °C. The specimens were deposited in the Yunnan Herbal Herbarium (YHH) at the Institute of Herb Biotic Resources, Yunnan University. The strain was deposited at the Yunnan Fungal Culture Collection (YFCC) of the Institute of Herb Biotic Resources, Yunnan University.

2.2. Morphological Observations

For descriptions of the sexual morph, fruiting bodies were photographed and measured using an Olympus SZ61 (Tokyo, Japan) stereomicroscope. Stromata were sectioned at a thickness of ca. 40 µm with a freezing microtome and mounted in water or lactic acid cotton blue on a slide for microscopic studies and photomicrography. The micro-morphological characteristics of the fungi, such as the perithecia, asci and ascospores, were examined using Olympus CX40 (Tokyo, Japan) and BX53 (Tokyo, Japan) microscopes. The circular agar blocks, circa 5 mm in diameter, from a colony were removed and placed on new PDA plates to observe the colony morphology. The colonies on PDA plates were cultured at 25 °C for 2 weeks, and the colony characteristics (size, texture and colour) were photographed with a Canon 700D camera. To observe the asexual morphological characteristics (e.g., conidiophores, phialides and conidia), Olympus CX40 and BX53 microscopes were employed.

2.3. DNA Extraction, PCR and Sequencing for Nuclear Genes

Total genomic DNA was extracted from axenic living cultures using the MiniBEST Plant Genomic DNA Extraction Kit (TaKaRa, Beijing, China), following the manufacturer’s instructions. The nuclear ribosomal small subunit (nrSSU) was amplified with the primer pair nrSSU-CoF and nrSSU-CoR [6]. The nuclear ribosomal large subunit (nrLSU) was amplified with the primer pair LR5 and LR0R [7,8]. The translation elongation factor 1α (tef-1α) was amplified with the primers EF1α-EF and EF1α-ER [9,10]. The largest and second largest subunits of RNA polymerase II (rpb1 and rpb2) were amplified with the primers RPB1-5′F and RPB1-5′R, RPB2-5′F and RPB2-5′R, respectively [9,10]. In this study, five nuclear gene loci of all the samples were amplified, and the primers used were shown in Table 1. The above five pairs were synthesized by Kunming Xiuqi Technology Co., Ltd. Each 50 µL PCR included 25 μL of 2 × Taq PCR Master Mix (Tiangen Biotech Co., Ltd., Beijing, China), 0.5 µL of each forward and reverse primer (10 μM), 1 μL of genomic DNA and 23 μL of sterilized distilled water. The polymerase chain reaction (PCR) assay was performed as described by Wang et al. [11]. The PCR products were separated by electrophoresis in 1.0% agarose gels, purified using a Gel Band Purification Kit (Bio Teke Co., Ltd., Beijing, China) and then sequenced on an automatic sequence analyser (BGI Co., Ltd., Shenzhen, China). When the PCR products could not be sequenced directly, cloning was performed using a TaKaRa PMDTM18-T vector system (TaKaRa Biotechnology Co., Ltd., Dalian, China).

Table 1.

PCR primers used in this study.

Gene Primer 5′-Sequence-3′ References
nrSSU nrSSU-CoF TCTCAAAGATTAAGCCATGC [6]
nrSSU-CoR TCACCAACGGAGACCTTG
nrLSU LR5 ATCCTGAGGGAAACTTC [7,8]
LR0R GTACCCGCTGAACTTAAGC
tef-1α EF1α-EF GCTCCYGGHCAYCGTGAYTTYAT [9,10]
EF1α-ER ATGACACCRACRGCRACRGTYTG
rpb1 RPB1-5′F CAYCCWGGYTTYATCAAGAA [9,10]
RPB1-5′R CCNGCDATNTCRTTRTCCATRTA
rpb2 RPB2-5′F CCCATRGCTTGTYYRCCCAT [9,10]
RPB2-5′R GAYGAYMGWGATCAYTTYGG

2.4. Phylogenetic Analyses

Phylogenetic analyses were performed based on the nrSSU, nrLSU, tef-1α, rpb1 and rpb2 sequences. The DNA sequences generated in this study were submitted to GenBank. Reference sequences were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/, accessed on 1 May 2022). The specimen information and GenBank accession numbers were provided in Table 2. The sequences were aligned using the Clustal X2.0 (developted by European Bioinformatics Institute, Cambridge, the United Kingdom) and MEGA v6.06 (developted by Tokyo Metropolitan University, Tokyo, Japan) software with manual adjustment [12,13]. The aligned sequences of five genes were concatenated after sequence alignment and specific processing according to Wang et al. [2]. Phylogenetic analyses were conducted using the Bayesian Inference (BI) and the Maximum Likelihood (ML) methods employing MrBayes v3.1.2 and RAxML 7.0.3 [14,15]. The BI analysis was run on MrBayes v3.1.2 for five million generations using a GTR + G + I model determined by the jModelTest version 2.1.4 (developted by The University of Vigo, Vigo, Spain) [16]. The GTR + I was selected as the optimal model for the ML analyses, with 1000 rapid bootstrap replicates performed on the five-gene datasets.

Table 2.

Names, voucher information, host and corresponding GenBank accession numbers of the taxa used in this study.

Taxon Voucher Information Host GenBank Accession Number References
nrSSU nrLSU tef-1α rpb1 rpb2
Akanthomyces attenuatus CBS 402.78 Leaf litter AF339614 AF339565 EF468782 EF468888 EF468935 [10]
coccidioperitheciatus NHJ 6709 Araneae EU369110 EU369042 EU369025 EU369067 EU369086 [17]
A. dipterigenus CBS 126.27 Hemiptera: Monophlebidae AF339605 AF339556 KM283820 KR064300 KR064303 Unpublished
A. lecanii CBS 101247 Hemiptera: Coccidae AF339604 AF339555 DQ522359 DQ522407 DQ522466 [18]
A. muscarius CBS 143.62 Hemiptera: Aleyrodidae KM283774 KM283798 KM283821 KM283841 KM283863 Unpublished
A. sabanensis ANDES-F 1024 Hemiptera: Coccidae KC633251 KC875225 KC633266   KC633249 [19]
A. sulphureus TBRC 7248 Araneae   MF140722 MF140843 MF140787 MF140812 [1]
A. waltergamsii TBRC 7252 Araneae   MF140714 MF140834 MF140782 MF140806 [1]
Amphichorda felina YFCC 850 Bird droppings MW181774 MW173986 MW168227 MW168193 MW168210 [20]
A. felina YFCC 851 Bird droppings MW181775 MW173987 MW168228 MW168194 MW168211 [20]
A. guana CGMCC 3.17908 Bat guano KY883262 KU746711 KX855211 KY883202 KY883228 [21]
A. guana CGMCC 3.17909 Bat guano KY883263 KU746712 KX855212 KY883203   [21]
Beauveria acridophila HUA 179219 Orthoptera: Acrididae   JQ895541 JQ958613 JX003857 JX003841 [22]
B. acridophila HUA 179220 Orthoptera: Acrididae JQ895527 JQ895536 JQ958614 JX003852 JX003842 [22]
B. araneola GZAC 150317 Araneae     KT961699 KT961701   [23]
B. asiatica ARSEF 4850 Coleoptera: Cerambycidae     AY531937 HQ880859 HQ880931 [24]
B. australis ARSEF 4598 Soil     HQ880995 HQ880861 HQ880933 [24]
B. bassiana YFCC 3369 Coleoptera: Scarabaeidae MN576768 MN576824 MN576994 MN576884 MN576938 [2]
B. baoshanensis CCTCC AF 2018011 Coleoptera: Chrysomelidae MG642882 MG642840 MG642897 MG642854 MG642867 [25]
B. caledonica YFCC 7025   MN576771 MN576827 MN576997 MN576887 MN576941 [2]
B. kipukae ARSEF 7032 Homoptera: Delphacidae     HQ881005 HQ880875 HQ880947 [24]
B. majiangensis YFCC 852 Hemiptera: Pentatomidae MW181776 MW173988 MW168229 MW168195 MW168212 [20]
B. polyrhachicola YFCC 859 Hymenoptera: Formicidae MW181783 MW173995 MW168236 MW168202 MW168219 [20]
B.scarabaeidicola ARSEF 5689 Coleoptera: Scarabaeidae AF339574 AF339524 DQ522335 DQ522380 DQ522431 [20]
B. varroae ARSEF 8257 Coleoptera: Curculionidae     HQ881002 HQ880872 HQ880944 [24]
Blackwellomyces cardinalis OSC 93609 Lepidoptera: Tineidae AY184973 AY184962 DQ522325 DQ522370 DQ522422 [18]
B. cardinalis OSC 93610 Lepidoptera: Tineidae AY184974 AY184963 EF469059 EF469088 EF469106 [18]
B. pseudomilitaris BCC 1919 Lepidoptera (Larva) MF416588 MF416534 MF416478   MF416440 [4]
B. pseudomilitaris BCC 2091 Lepidoptera (Larva) MF416589 MF416535 MF416479   MF416441 [4]
Cordyceps amoene-rosea CBS 107.73 Coleoptera (Pupa) AY526464 MF416550 MF416494 MF416651 MF416445 [26]
C. amoene-rosea CBS 729.73 Coleoptera: Nitidulidae MF416604 MF416551 MF416495 MF416652 MF416446 [26]
C. bifusispora EFCC 5690 Lepidoptera (Pupa) EF468952 EF468806 EF468746 EF468854 EF468909 [10]
C. bifusispora spat 08-133.1 Lepidoptera (Pupa) MF416577 MF416524 MF416469 MF416631 MF416434 [4]
C. cateniobliqua YFCC 3367 Coleoptera adult MN576765 MN576821 MN576991 MN576881 MN576935 [2]
C. exasperata MCA 2288 Lepidoptera (Larva) MF416592 MF416538 MF416482 MF416639   [4]
C. militaris YFCC 6587 Lepidoptera (Pupa) MN576762 MN576818 MN576988 MN576878 MN576932 [2]
C. militaris YFCC 5840 Lepidoptera (Pupa) MN576763 MN576819 MN576989 MN576879 MN576933 [2]
C. ninchukispora EGS 38.166 Plant (Beilschmiedia erythrophloia) EF468992 EF468847 EF468794 EF468901   [10]
C. polyarthra MCA 996 Lepidoptera MF416597 MF416543 MF416487 MF416644   [4]
C. pruinosa ARSEF 5413 Lepidoptera: Limacodidae AY184979 AY184968 DQ522351 DQ522397 DQ522451 [18]
C. pseudotenuipes YFCC 8404 Lepidoptera OL468559 OL468579 OL473527 OL739573 OL473538 [27]
C. tenuipes TBRC 7265 Lepidoptera (Pupa)   MF140707 MF140827 MF140776 MF140800 [1]
Samsoniella alboaurantium CBS 240.32 Lepidoptera (Pupa) JF415958 JF415979 JF416019 JN049895 JF415999 [1]
S. alboaurantium CBS 262.58 Soil     MF416497 MF416654 MF416448 [1]
S. alpina YFCC 5818 Hepialidae
(Hepialus baimaensis)
MN576753 MN576809 MN576979 MN576869 MN576923 [2]
S. alpina YFCC 5831 Hepialidae
(Hepialus baimaensis)
MN576754 MN576810 MN576980 MN576870 MN576924 [2]
S. antleroides YFCC 6016 Noctuidae (Larvae) MN576747 MN576803 MN576973 MN576863 MN576917 [2]
S. antleroides YFCC 6113 Noctuidae (Larvae) MN576748 MN576804 MN576974 MN576864 MN576918 [2]
S. aurantia TBRC 7271 Lepidoptera   MF140728 MF140846 MF140791 MF140818 [1]
S. aurantia TBRC 7272 Lepidoptera   MF140727 MF140845   MF140817 [1]
S. cardinalis YFCC 5830 Limacodidae (Pupa) MN576732 MN576788 MN576958 MN576848 MN576902 [2]
S. cardinalis YFCC 6144 Limacodidae (Pupa) MN576730 MN576786 MN576956 MN576846 MN576900 [2]
S. coccinellidicola YFCC 8772 Coccinellidae ON563166 ON621670 ON676514 ON676502 ON568685 This study
S. coccinellidicola YFCC 8773 Coccinellidae ON563167 ON621671 ON676515 ON676503 ON568686 This study
S. coleopterorum A19501 Curculionidae (Snout beetle)     MN101586 MT642600 MN101585 [28]
S. cristata YFCC 6021 Saturniidae (Pupa) MN576735 MN576791 MN576961 MN576851 MN576905 [2]
S. cristata YFCC 7004 Saturniidae (Pupa) MN576737 MN576793 MN576963 MN576853 MN576907 [2]
S. farinospora YFCC 8774 Araneae (Spider) ON563168 ON621672 ON676516 ON676504 ON568687 This study
S. farinospora YFCC 9051 Lepidoptera : Hepialus ON563169 ON621673 ON676517 ON676505 ON568688 This study
S. haniana YFCC 8769 Lepidoptera (pupa) ON563170 ON621674 ON676518 ON676506 ON568689 This study
S. haniana YFCC 8770 Lepidoptera (pupa) ON563171 ON621675 ON676519 ON676507 ON568690 This study
S. haniana YFCC 8771 Lepidoptera (pupa) ON563172 ON621676 ON676520 ON676508 ON568691 This study
S. hepiali ICMM 82-2 Fungi (O. sinensis) MN576738 MN576794 MN576964 MN576854 MN576908 [2]
S. hepiali YFCC 661 Fungi (O. sinensis) MN576739 MN576795 MN576965 MN576855 MN576909 [2]
S. hepiali Cor-4 Fungi (O. sinensis) MN576743 MN576799 MN576969 MN576859 MN576913 [2]
S. hymenopterorum A19521 Vespidae (Bee)     MN101588 MT642603 MT642604 [28]
S. hymenopterorum A19522 Vespidae (Bee)     MN101591 MN101589 MN101590 [28]
S. inthanonensis TBRC 7915 Lepidoptera (Pupa)   MF140725 MF140849 MF140790 MF140815 [1]
S. kunmingensis YHH 16002 Lepidoptera (Pupa) MN576746 MN576802 MN576972 MN576862 MN576916 [2]
S. lanmaoa YFCC 6148 Lepidoptera (Pupa) MN576733 MN576789 MN576959 MN576849 MN576903 [2]
S. lanmaoa YFCC 6193 Lepidoptera (Pupa) MN576734 MN576790 MN576960 MN576850 MN576904 [2]
S. pseudogunii GY407201 Lepidoptera (Larvae)   MZ827010 MZ855233   MZ855239 [29]
S. pseudogunii GY407202 Lepidoptera (Larvae)   MZ831865 MZ855234   MZ855240 [29]
S. pseudotortricidae YFCC 9052 Lepidoptera (pupa) ON563173 ON621677 ON676521 ON676509 ON568692 This study
S. pseudotortricidae YFCC 9053 Lepidoptera (pupa) ON563174 ON621678 ON676522 ON676510 ON568693 This study
S. pupicola DY101681 Lepidoptera (Pupa)   MZ827009 MZ855231   MZ855237 [29]
S. pupicola DY101682 Lepidoptera (Pupa)   MZ827635 MZ855232   MZ855238 [29]
S. ramosa YFCC 6020 Limacodidae (Pupa) MN576749 MN576805 MN576975 MN576865 MN576919 [2]
S. sinensis YFCC 8766 Lepidoptera (Larvae) ON563175 ON621679 ON676523 ON676511 ON568694 This study
S. sinensis YFCC 8767 Dermaptera ON563176 ON621680 ON676524 ON676512 ON568695 This study
S. sinensis YFCC 8768 Dermaptera ON563177 ON621681 ON676525 ON676513 ON568696 This study
S. tortricidae YFCC 6013 Tortricidae (Pupa) MN576751 MN576807 MN576977 MN576867 MN576921 [2]
S. tortricidae YFCC 6131 Tortricidae (Pupa) MN576750 MN576806 MN576976 MN576866 MN576920 [2]
S. yunnanensis YFCC 1527 Fungi (Cordyceps cicadae) MN576756 MN576812 MN576982 MN576872 MN576926 [2]
S. yunnanensis YFCC 1824 Fungi (Cordyceps cicadae) MN576757 MN576813 MN576983 MN576873 MN576927 [2]
Simplicillium formicae MFLUCC 18-1379 Hymenoptera: Formicidae MK765046 MK766512 MK926451 MK882623   [30]
S. lamellicola CBS 116.25 Fungi (Agaricus bisporus) AF339601 AF339552 DQ522356 DQ522404 DQ522462 [18]
S. lanosoniveum CBS 704.86 Fungi (Hemileia vastatrix) AF339602 AF339553 DQ522358 DQ522406 DQ522464 [18]
S. lanosoniveum CBS 101267 Fungi (Hemileia vastatrix) AF339603 AF339554 DQ522357 DQ522405 DQ522463 [18]
S. obclavatum CBS 311.74 Air above sugarcane field AF339567 AF339517 EF468798     [10]
S. yunnanense YFCC 7133 Fungi (A. waltergamsii) MN576728 MN576784 MN576954 MN576844   [2]
Trichoderma deliquescens ATCC 208838 On decorticated conifer wood AF543768 AF543791 AF543781 AY489662 DQ522446 [31]
T. stercorarium ATCC 62321 Cow dung AF543769 AF543792 AF543782 AY489633 EF469103 [31]

Boldface: data generated in this study.

3. Results

3.1. Sequencing and Phylogenetic Analyses

The 92 taxa of eight genera—Akanthomyces, Amphichorda, Beauveria, Blackwellomyces, Cordyceps, Samsoniella, Simplicillium and Trichoderma—were used for the ML and BI phylogenetic analyses. Two Trichoderma strains (Trichoderma deliquescens ATCC 208838 and Trichoderma stercorarium ATCC 62321) were designated as the outgroup. The concatenated sequence dataset of the five genes consisted of 4642 bp of sequence data (1055 bp for nrSSU, 897 bp for nrLSU, 969 bp for tef-1α, 756 bp for rpb1 and 965 bp for rpb2). Both phylogenetic trees from the BI and ML analyses exhibited similar topologies that had seven recognized, statistically well-supported clades in Cordycipitaceae, designated as Akanthomyces, Amphichorda, Beauveria, Blackwellomyces, Cordyceps, Samsoniella and Simplicillium (Figure 1). Most of the well-resolved genera and lineages in Cordycipitaceae shared similar relationships with previous analyses [1,4,10]. The 12 samples of five undescribed species also clustered in the genus Samsoniella clade based on the phylogenetic analyses of the combined dataset and were clearly distinct from S. hepiali and 16 described species, viz., S. alboaurantia, S. alpina, S. antleroides, S. aurantia, S. cardinalis, S. coleopterorum, S. cristata, S. hymenopterorum, S. inthanonensis, S. kunmingensis, S. lanmaoa, S. pseudogunii, S. pupicola, S. ramosa, S. tortricidae and S. yunnanensis (Figure 1). Similarly, phylogenetic relationships between the genus Samsoniella and closely related species, based on multigene dataset (nrLSU, nrSSU, tef-1α, rpb1 and rpb2) (see Figure 2). Both phylogenetic trees from the BI and ML analyses exhibited similar topologies and the five undescribed species also clustered in the genus Samsoniella clade that were clearly distinct from S. hepiali and 16 described species.

Figure 1.

Figure 1

Phylogenetic tree of Cordycipitaceae inferred from multigene dataset (nrLSU, nrSSU, tef-1α, rpb1 and rpb2) based on maximum likelihood (ML) and Bayesian inference (BI) analyses. Statistical support values greater than 50% are shown at the nodes for BI posterior probabilities/ML bootstrap proportions. Isolates in bold type are those analysed in this study.

Figure 2.

Figure 2

Phylogenetic relationships between the genus Samsoniella and closely related species, based on multigene dataset (nrLSU, nrSSU, tef-1α, rpb1 and rpb2). Statistical support values greater than 50% are shown at the nodes for BI posterior probabilities/ML bootstrap proportions. Isolates in bold type are those analysed in this study.

SYNOPTIC KEYS

Samsoniella

  1. Samsoniella alboaurantium

  2. Samsoniella alpina

  3. Samsoniella antleroides

  4. Samsoniella aurantia

  5. Samsoniella cardinalis

  6. Samsoniella coccinellidicola

  7. Samsoniella coleopterorum

  8. Samsoniella cristata

  9. Samsoniella farinospora

  10. Samsoniella haniana

  11. Samsoniella hepiali

  12. Samsoniella hymenopterorum

  13. Samsoniella inthanonensis

  14. Samsoniella kunmingensis

  15. Samsoniella lanmaoa

  16. Samsoniella lepidopterorum

  17. Samsoniella pseudogunii

  18. Samsoniella pseudotortricidae

  19. Samsoniella pupicola

  20. Samsoniella ramosa

  21. Samsoniella sinensis

  22. Samsoniella tortricidae

  23. Samsoniella yunnanensis

Teleomorph characters
 
Insect host
 
1. Lepidoptera (pupa,larva) .................................................................................................3, 5, 8, 13, 14, 15, 18, 20, 22
 
Stromata
 
1. Number
a. Fasciculate ................................................................................................................................................3, 13, 20, 22
b. Several ...................................................................................................................................................................5
c. Solitary or two ........................................................................................................................................................8
d. Solitary or Several ...................................................................................................................................................18
e. Solitary ....................................................................................................................................................................14
f. Two to five ................................................................................................................................................................15
 
2. Size (long)
a. 10~20 mm ..................................................................................................................................................................... 5
b. 15~40 mm .......................................................................................................................................................8, 14, 20
c. 20~70 mm ..............................................................................................................................................3, 13, 15, 18, 22
 
3. Shape
a. Cylindrical to clavate, branches .........................................................................................................................3, 13
b. Cylindrical, unbranches .............................................................................................................................................5
c. Cylindrical, unbranches or dichotomous ..............................................................................................................18
d. Crista-like, much branched .......................................................................................................................................8
e. Cylindrical to clavate, bifurcated ...........................................................................................................................14
f. Palmately branched ..................................................................................................................................................15
g. Fascicular, multi-branched, often confluent at the base .....................................................................................20
h. Unbranched or dichotomous ...................................................................................................................................22
 
Fertile parts
 
1. Shape
a. Clavate to fake-like ....................................................................................................................................................3
b. Clavate ...............................................................................................................................................................5, 14, 15
c. Clavate to subulate ....................................................................................................................................................18
d. Crista-like or subulate .........................................................................................................................................8, 22
e. Having no obvious boundary with stipes, with a tapering sterile part ...........................................................20
 
2. Colour
a. Orange red ................................................................................................................................................................13
b. Orange to orange red ................................................................................................................................................3
c. Scarlet ..........................................................................................................................................................................5
d. Reddish orange ........................................................................................................................................8, 14, 15, 18
e. White to pale brown ..........................................................................................................................................20, 22
 
Perithecia
 
1. shape
a. Superficial, ovoid ........................................................................................................................................................13
b. Superficial, fusiform ................................................................................................................................................3
c. Superficial, oblong-ovate to fusiform ...................................................................................................................5
d. Superficial, narrowly ovoid ..................................................................................................................................8
e. Superficial, narrowly ovoid to fusiform ....................................................................................14, 15, 18, 20, 22
 
2. Length
a. 280~450 µm ................................................................................................................................................3, 14, 18, 20
b. 330~470 µm ..........................................................................................................................................................15, 22
c. 370~490 µm ........................................................................................................................................................5, 8, 13
 
3. Width
a. 110~210 µm ......................................................................................................................................... 14, 15, 18, 20
b. 130~250 µm ................................................................................................................................................3, 5, 8, 22
c. 200~260 µm ..............................................................................................................................................................13
 
Asci
 
1. Shape
a. Cylindrical, eight-spored, hyaline ...........................................................................................3, 5, 8, 13, 14, 15, 22
 
2. Length
a. 150~300 µm ............................................................................................................................................3, 13, 14, 22
b. 160~360 µm .....................................................................................................................................................5, 8, 15
 
3. Width
a. 2~3 µm ................................................................................................................................................................3, 13
b. 2.5~4 µm .................................................................................................................................................................22
c. 3~5 µm .......................................................................................................................................................5, 8, 14, 15
 
Ascospores
 
1. Shape
a. Bola-shaped, septate, central part fliform, terminal part narrowly fusiform .....................3, 5, 8, 13, 14, 15, 22
 
2. Length
a. 110~185 µm ................................................................................................................................................................3
b. 120~300 µm .....................................................................................................................................5, 8, 13, 14, 15, 22
 
3. Width
a. 0.5~1.0 µm ......................................................................................................................................................... 5, 13
b. 0.8~1.5 µm ............................................................................................................................................3, 8, 14, 15, 22
 
Anamorph characters
 
Insect host
 
1. Lepidoptera (pupa, larva) .................................................................................1, 2, 4, 9, 10, 11, 16, 17, 19, 21, 23
2. Dermaptera ................................................................................................................................................................21
3. Coleoptera (Snout beetle) .....................................................................................................................................6, 7
4. Hymenoptera (bee) ....................................................................................................................................................12
5. Araneae .......................................................................................................................................................................9
 
Synnemata
1. Present ......................................................................................................................................2, 4, 6, 10, 11, 21, 23
Irregularly branched ................................................................................................................................2, 4, 6, 10, 21
b. Branched or unbranched ........................................................................................................................................11
c. Gregarious ................................................................................................................................................................23
 
2. Not observed ..............................................................................................................................1, 7, 9, 12, 16, 17, 19
 
Cultural characteristics on PDA
1. Growth rate on PDA at 25 °C at 2 wk
a. Relatively rapid (>60 mm diam) ..........................................................................................................................12
b. Moderate (30–60 mm diam) ...........................................................................................2, 6, 7, 9, 11, 16, 17, 21, 23
c. Slow (<30 mm diam) ......................................................................................................................................4, 10, 19
 
2. Conidiophores
a. Biverticillate ............................................................................................................................................................2
b. Solitary .............................................................................................................................................................11, 19
c. Solitary or verticillate .........................................................................................................6, 7, 9, 10, 12, 16, 21, 23
d. Verticillate .......................................................................................................................................................1, 4, 17
 
3. Phialides number in a whorls
a. 2–4 ..............................................................................................................................................................1, 4, 7, 9, 16
b. 2–5 ...........................................................................................................................................................6, 10, 11, 21
c. 2–7 .......................................................................................................................................................................2, 23
b. 2–9 .....................................................................................................................................................................17, 19
e. 3–4 .............................................................................................................................................................................12
 
4. Shape of conidia
a. fusiform or oval ............................................................................................................................2, 4, 6, 10, 11, 12, 23
b. fusiform, ellipsoidal or subglobose ..........................................................................................................................7
c. fusiform to subglobose ............................................................................................................................................16
d. fusiform ..............................................................................................................................................................17, 19
e. ellipsoidal to fusiform, sometimes lemon-shaped ...................................................................................................1
f. oblong to cylindrical ..................................................................................................................................................9
g. spherical, elliptical or fusiform .................................................................................................................................21
 
Key to Samsoniella species
 
Sexual state present .........................................................................................................................................................1
Sexual state not observed ................................................................................................................................................5
  1a. Stromata fasciculate ...................................................................................................................................................2
  1b. Stromata not fasciculate ...........................................................................................................................................4
  2a. Stromata cylindrical to clavate, branches ..........................................................................................................................3
  2b. Stromata fascicular, multi-branched, often confluent at the base ..................................................................S. ramosa
  2c. Stromata unbranched or dichotomous .........................................................................................................S. tortricidae
  3a. Fertile parts clavate to fake-like, orange to orange red; Perithecia superficial, fusiform .......................S. antleroides
  3b. Fertile parts clavate, orange red; Perithecia superficial, ovoid ..............................................................S. inthanonensis
  4a. Stromata several, cylindrical, unbranches; Fertile parts clavate, scarlet .....................................................S. cardinalis
  4b. Stromata solitary or two, crista-like, much branched; Fertile parts crista-like or subulate, reddish orange; Ascospores 155–290 × 1.0–1.3 μm ...................................................................................................................................S. cristata
  4c. Stromata solitary or several, cylindrical, unbranches or dichotomous; Fertile parts clavate to subulate, reddish orange; No mature ascospores were observed ........................................................................................S. pseudotortricidae
  4d. Stromata solitary, cylindrical to clavate, bifurcated; Fertile parts clavate, reddish orange; Ascospores 127–190 × 0.5–1.5 μm ..........................................................................................................................................................S. kunmingensis
  4e. Stromata two to five, palmately, branched; Fertile parts clavate, reddish orange; Ascospores 135–260 × 0.9–1.4 μm .................................................................................................................................................................................S. lanmaoa
  5a. Synnemata Present .................................................................................................................................................................6
  5b. Synnemata not observed ......................................................................................................................................................11
  6a. Synnemata irregularly branched ..........................................................................................................................................7
  6b. Synnemata branched or unbranched; Conidiophores solitary, with phialides in whorls of two to five ...................................................................................................................................................................................S. hepiali
  6c. Synnemata gregarious; Conidiophores solitary or verticillate, with phialides in whorls of two to seven .....................................................................................................................................................................S. yunnanensis
  7a. Colonies on PDA at 25 °C at 2 wk growing moderate (30–60 mm diam) ......................................................................8
  7b. Colonies on PDA at 25 °C at 2 wk growing slow (<30 mm diam) ................................................................................10
  8a. Conidiophores biverticillate....................................................................................................................................S. alpina
  8b. Conidiophores solitary or verticillate ................................................................................................................................9
  9a. Conidia fusiform or oval, 1.8–3.0 × 1.3–2.0 μm .....................................................................................S. coccinellidicola
  9b. Conidia spherical, elliptical or fusiform, 2.0–3.1 × 1.3–1.9 μm .........................................................................S. sinensis
  10a. Conidiophores solitary or verticillate, with phialides in whorls of two to five; Conidia fusiform or oval, 2.3–3.7 × 1.2–2.8 μm ...................................................................................................................................................................S. haniana
  10b. Conidiophores verticillate, with phialides in whorls of two to four; Conidia fusiform or oval, 2.5–3.5 × 1.5 μm .................................................................................................................................................................................S. aurantia
  11a. Colonies on PDA at 25 °C at 2 wk growing relatively rapid (>60 mm diam) ..............................S. hymenopterorum
  11b. Colonies on PDA at 25 °C at 2 wk growing moderate (30–60 mm diam) ..................................................................12
  11c. Colonies on PDA at 25 °C at 2 wk growing slow (<30 mm diam) ...............................................................S. pupicola
  12a. Conidiophores verticillate ...............................................................................................................................................13
  12b. Conidiophores solitary or verticillate ............................................................................................................................14
  13a. Have phialides in whorls of two to four; Conidia ellipsoidal to fusiform, sometimes lemon-shaped, 2.0–3.0 × 1.0–1.8 μm ..........................................................................................................................................................S. alboaurantium
  13b. Have phialides in whorls of two to nine; Conidia fusiform, 2.8–3.2 × 1.7–2.1 μm .............................S. pseudogunii
  14a. Conidia fusiform, ellipsoidal or subglobose, 1.7–2.5 × 1.2–1.8 μm ...................................................S. coleopterorum
  14b. Conidia oblong to cylindrical, 1.6–2.8 × 0.6–1.2 μm ..................................................................................S. farinospora
  14c. Conidia fusiform to subglobose, 2.0–2.5 × 1.2–2.0 μm .......................................................................S. lepidopterorum

3.2. Taxonomy

The key morphological characteristics that distinguish the current Samsoniella species were summarized in the literature (Table 3 and Table 4). Including the five new species, there were 23 species of Samsoniella involved in the current study, among which we compared 9 species of the sexual morphs in Samsoniella (Table 3) and 22 species of the asexual morphs in Samsoniella (Table 4).

Table 3.

Comparison between the sexual morphs in Samsoniella.

Species Stromata (mm) Fertile Part (mm) Perithecia (μm) Asci (μm) Ascospores (μm) Reference
Samsoniella antleroides fasciculate, antler-like, cylindrical to clavate, long 22.3–57.8, oblate terminal branches, long 4.6–26.2 clavate to fake-like, lateral sides have a longitudinal ditch without producing perithecia, 6.3–9.5 × 0.6–2.3 superficial, fusiform,
294–442 × 131–216
cylindrical, 8-spored,
160–248 × 2.1–2.7
bola-shaped, septate, 110–184 × 0.8–1.3 [2]
S. cardinalis several, cylindrical, long 11.5–18.6 clavate, lateral sides have a longitudinal ditch without producing perithecia, 2.5–6.8 × 0.5–2.6 superficial, oblong-ovate to fusiform, 370–485 × 140–238 cylindrical, 8-spored, 163–320 × 3.2–4.3 bola-shaped, septate, 165–230 × 0.5–0.9 [2]
S. cristata solitary or two, crista-like, long 25–40, much branched crista-like or subulate, 3.1–18.5 × 0.9–8.0 superficial, narrowly ovoid, 370–485 × 150–245 cylindrical, 8-spored, 180–356 × 3.0–4.8 bola-shaped, septate, 155–290 × 1.0–1.3 [2]
S. inthanonensis gregarious, cylindrical to clavate, long 20–50, 1–1.5 broad 8–15 long, 1.5–2 broad superficial, ovoid, (380–)417.5–474.5(–500) × (150–)205–260(–265) cylindrical, 8-spored, 300 × 2–2.5 bola-shaped, 3 or 4septate,
221.5–267 × 0.5–1
[1]
S. kunmingensis solitary, cylindrical to clavate, long 23, bifurcated, clavate, lateral sides usually have a longitudinal ditch without producing perithecia, 3.3–4.2 × 0.8–1.2 superficial, narrowly ovoid to fusiform,
330–395 × 110–185
cylindrical, 8-spored,
150–297 × 3.0–4.6
bola-shaped, septate, 127–190 × 0.8–1.5 [2]
S. pseudotortricidae solitary to several, long 20–65, unbranched or dichotomous clavate to subulate, lateral side usually have a longitudinal section without producing perithecia, 10–17 × 1.5–4.2 superficial, narrowly ovoid to fusiform, 285.7–313.2 × 149.2–154.9     This study
S. lanmaoa two to five, orange, long 38–69, palmately branched clavate, lateral sides usually have a longitudinal ditch without producing perithecia, 8.5–11.2 × 0.6–2.3 superficial, narrowly ovoid to fusiform,
360–467 × 124–210
cylindrical, 8-spored,
160–325 × 3.3–4.8
bola-shaped, septate, 135–260 × 0.9–1.4 [2]
S. ramosa fascicular, 15–32 × 0.8–1.5, multi-branched, often confluent at the base having no obvious boundary with stipes superficial, narrowly ovoid to fusiform, 340–435 × 130–197     [2]
S. tortricidae gregarious, long 25–60, unbranched or dichotomous clavate to subulate, lateral side usually has a longitudinal section without producing perithecia, 5–15 × 1.2–2.3 superficial, narrowly ovoid to fusiform, 350–468 × 140–225 cylindrical, 8-spored, 170–285 × 2.8–4.0 bola-shaped, septate, 120–235 × 0.8–1.3 [2]

Boldface: data generated in this study.

Table 4.

Comparison between the asexual morphs in Samsoniella.

Species Synnemata (mm) Conidiophores (μm) Phialides Phialides Size (μm) Conidia (μm) References
Samsoniella alboaurantium   30–400 × 2–2.5
  5–8 × 2, tapering fairly abruptly at the tip ovate to lemon-shaped, 2.3–2.5(–3) × 1.5–1.8 [32]
S. alpina irregularly branched, 3–20 long, cylindrical or clavate stipes with white powdery heads 3.1–6.5 × 1.6–2.8 verticillate on conidiophores, solitary or verticillate on hyphae 4.7–9.5 × 1.9–3.1, wide (apex) 0.5–1.1, basal portion cylindrical to narrowly lageniform, tapering abruptly toward the apex fusiform or oval,
2.0–3.1 × 1.3–2.1
[2]
S. antleroides   3.5–9.7 × 1.3–3.2 verticillate, in whorls of 2 to 9, sometimes solitary on hyphae 3.5–16.3 × 1.7–2.9, wide (apex) 0.5–1.0, basal portion cylindrical to narrowly lageniform, tapering abruptly toward the apex fusiform or oval,
2.3–3.5 × 1.6–2.5
[2]
S. aurantia irregularly branched starting 15–40 above the ground and continuously to the apex, 25–75 × 1–1.5   verticillate, in whorls of 2 to 4 (5–)5.5–8.5(–13) × 2–3, basal portion cylindrical to ellipsoidal, neck 2–4 × 1 fusiform,
(2–)2.5–3.5(–4) × (1–)1.5(–2)
[1]
S. cardinalis   3.1–9.5 × 1.3–2.0 verticillate, in whorls of 2 to 5, sometimes solitary on hyphae 4.1–43.5 × 1.3–2.4, wide (apex) 0.6–1.2, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval,
2.4–3.2 × 1.4–2.2
[2]
S. coccinellidicola I rregularly branched, starting 2–2.5 above the cocoons of insect host, 15–25 × 0.8–1.2 4.8–15 × 1.0–1.9 verticillate, usually in whorls of 2 to 5, or solitary on hyphae 6.0–14.1 × 1.0–2.0 wide (apex) 0.3–0.8, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 1.8–3.0 × 1.3–2.0 This study
S. coleopterorum     verticillate, in whorls of 2 to 4 5.4–9.7 × 1.2–1.8, a cylindrical to ellipsoidal basal portion, tapering into a short distinct neck fusiform, ellipsoidal or subglobose,
1.7–2.5 × 1.2–1.8
[28]
S. cristata   3.6–11.5 × 1.7–2.5 verticillate, in whorls of 2 to 5, usually solitary on hyphae 4.5–23.2 × 1.6–2.7, wide (apex) 0.5–1.1, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 2.4–3.2 × 1.6–2.3 [2]
S. farinospora   2.4–14.0 × 0.9–1.8 verticillate, usually in whorls of 2 to 4, or solitary on hyphae 3.0–13.5 × 0.6–1.6, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex oblong to cylindrical, 1.6–2.8 × 0.6–1.2 This study
S. haniana usually unbranched or irregularly branched at the apex, 20–40 × 1–1.8 3.8–10.2 × 1.1–2.9 verticillate, usually in whorls of 2 to 5, or solitary on hyphae 5.4–12.1 × 1.2–2.9, wide (apex) 0.3–1.1 basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval , 2.3–3.7 × 1.2–2.8 This study
S. hepiali branched or unbranched, 5–41 long 4.0–7.6 × 1.4–2.2 verticillate, in whorls of 2 to 5, solitary or opposite on hyphae 3.5–13.6 × 1.3–2.1, wide (apex) 0.5–1.0, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 1.8–3.3 × 1.4–2.2 [2]
S. hymenopterorum     Verticillate, in whorls of 3 to 4 6.5–10.6 × 1.2–2.0, a cylindrical basal portion, tapering to a distinct neck fusiform to ovoid,
1.9–2.5 × 1.5–2.1
[28]
S. inthanonensis     verticillate in whorls of 2 to 5, sometimes solitary on hyphae (4–)6.5–10(–12) × (1–)1.5–2(–3), cylindrical basal portion, tapering into a long neck, (1–)2.5(–4) × 0.5–1 short fusiform,
(2–)3(–3.5) × 1.5–2
[1]
S. lanmaoa   3.8–13.3 × 1.5–2.1 verticillate, in whorls of 2 to 6, usually solitary on hyphae 3.5–20.7 × 1.7–2.6, wide (apex) 0.5–1.1, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 1.9–2.7 × 1.4–2.0 [2]
S. lepidopterorum     Verticillate, in whorls of 2 to 4 5.2–8.5 (–13.1) × 1.1–1.7, ellipsoidal basal portion, tapering into a distinct neck fusiform to subglobose,
2.0–2.5 × 1.2–2.0
[28]
S. pseudotortricidae   6.6–26.5 × 1.1–2.5 verticillate, in whorls of 2 to 5, usually solitary on hyphae 5.4–6.9 × 1.0–1.6, wide (apex) 0.5–0.8 basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 0.9–1.5 × 0.8–1.3 This study
S. pseudogunnii     solitary or in whorls of 2 to 9 6.8–11.0 × 2.2–2.4, cylindrical basal portion, tapering into a short distinct neck fusiform
2.8–3.2 × 1.7–2.1
[29]
S. pupicola     solitary or in whorls of 2 to 9 7.0–9.2 × 2.5–3.3, a cylindrical basal portion, tapering into a short distinct neck fusiform,
2.5–3.3 × 2.2–2.6
[29]
S. ramosa   4.3–10.5 × 1.3–2.4
verticillate, in whorls of 2 to 6, usually solitary on hyphae 5.3–14.6 × 1.3–2.8, wide (apex) 0.6–1.2, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval,
2.0–3.6 × 1.5–2.2
[2]
S. sinensis 3.5 5 long , branched, conidia in abundance at the apex. 6.4–10.5 × 1.7–2.1 verticillate, in whorls of 2 to 5, sometimes solitary on hyphae 5.6–9.3 × 1.5–2.1, wide (apex) 0.6–1.0 basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex spherical, elliptical or fusiform, 2.0 3.1 × 1.3–1.9 This study
S. tortricidae   4.2–12.5 × 1.4–2.4 verticillate, in whorls of 2 to 5, usually solitary on hyphae 3.6–42.4 × 1.1–2.6, wide (apex) 0.4–0.9, basal portion cylindrical to narrowly
lageniform, tapering gradually or abruptly toward the apex
fusiform or oval, 2.1–3.0 × 1.3–1.7 [2]
S. yunnanensis gregarious, flexuous, fleshy, 4–18 long, with terminal branches of 3–7 × 1.0–2.0 4.2–23.5 × 1.4–2.3 verticillate, in whorls of 2 to 7, usually solitary on hyphae 4.5–11.6 × 1.2–2.4, wide (apex) 0.6–1.0, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex fusiform or oval, 2.0–3.3 × 1.1–2.2 [2]

Boldface: data generated in this study.

Samsoniella coccinellidicola H. Yu, Y. Wang & Z.Q. Wang, sp. nov. (Figure 3).

Figure 3.

Figure 3

Morphology of Samsoniella coccinellidicola. (A) Coccinellidae infected by S. coccinellidicola. (B) Culture character on PDA medium. (C–E) Conidiogenous cells (conidiophores, phialides) and conidia on PDA. (F) Conidia on PDA. Scale A: 5 mm; B: 10 mm; CE: 10 µm; F: 5 µm.

MycoBank: MB 844383.

Etymology: “coccinellidicola” refers to the host (Coleoptera: Coccinellidae).

Holotype: China, Yunnan Province, Kunming City, Xishan Forest Park. On the Coccinellidae buried in soil, 12 August 2017, Yao Wang, (YHH 20178, holotype; YFCC 8772, ex-holotype living culture).

Sexual morph: Undetermined.

Asexual morph: Two synnemata arising from oval cocoons of insect host. Synnemata erect, irregularly branched, starting 2–2.5 mm above the oval cocoons of insect host, 15–25 × 0.8–1.2 mm, pale yellow, isaria-like morph producing a mass of conidia along the synnemata, powdery and floccose. Colonies on PDA fast-growing, 49–52 mm diameter in 14 days at 25 °C, white, cottony, sporulating abundantly, reverse white to pale yellow. Hyphae smooth-walled, branched, septate, hyaline, 0.7–2.1 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 4.8–15 × 1.0–1.9 µm. Phialides verticillate, usually in whorls of two to five, or solitary on hyphae, 6.0–14.1 µm long, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex, from 1.0–2.0 µm wide (base) to 0.3–0.8 µm wide (apex). Conidia smooth and hyaline, fusiform or oval, one-celled, 1.8–3.0 × 1.3–2.0 µm, often in chains. Size and shape of phialides and conidia similar in culture and on natural substratum.

Host: Coccinellidae.

Habitat: On the adults of Coccinellidae sp. buried in soil.

Distribution: Currently only known in Kunming City, Yunnan Province, China.

Other material examined: China, Yunnan Province, Kunming City, Xishan Forest Park. On the Coccinellidae buried in soil, 12 August 2017, Yao Wang (YHH 20179; YFCC 8773, living culture).

Notes: The phylogenetic analysis of five genes showed that S. coccinellidicola was closely related to S. pupicola. Morphologically, the new species S. coccinellidicola was distinctly different from S. pupicola due to its longer phialides (6.0–14.1 µm), smaller conidia (1.8–3.0 × 1.3–2.0 µm) and conidia shape. Moreover, S. coccinellidicola was found to occur on an adult beetle (Coleoptera: Coccinellidae), while S. pupicola was found on a Lepidopteran pupa. Based on the previous studies of cordycipitaceous isaria-like fungi as well as our study, there were two species of parasitic Samsoniella in the order Coleoptera, i.e., S. coccinellidicola and S. coleopterorum. However, S. coccinellidicola was easily distinguished from S. coleopterorum by its longer phialides (6.0–14.1 µm).

Samsoniella farinospora H. Yu, Y. Wang & Z.Q. Wang, sp. nov. (Figure 4).

Figure 4.

Figure 4

Morphology of Samsoniella farinospora. (A) Spider infected by S. farinospora. (B,C) Culture character on PDA medium. (DF) Conidiogenous cells (conidiophores, phialides) and conidia on PDA. (G) Conidia on PDA. Scale A: 2 mm; B,C: 20 mm; D,E: 5 µm; F,G: 3 µm.

MycoBank: MB 844384.

Etymology: The species name refers to the farinose conidia covering the host.

Holotype: Vietnam, Dole Province, Chu Yang Sin National Park. On a spider on the back of fresh leaves, 22 October 2017, Hong Yu (YHH 20180, holotype; YFCC 8774, ex-holotype living culture).

Sexual morph: Undetermined.

Asexual morph: Mycosed hosts covered by dense white to lavender mycelia, produces numerous white, powdery conidia. Colonies on PDA fast-growing, 47–50 mm in diameter after 14 days at 25 °C, villiform, light yellow in the middle with a white edge, middle hyphae thickening, reverse light yellow. Hypha smooth-walled, hyaline, septate, 0.7–1.8 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 2.4–14.0 × 0.9–1.8 µm. Phialides verticillate, usually in whorls of two to four or solitary on hyphae, 3.0–13.5 µm long, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex, from 0.6–1.6 µm wide (base). Conidia smooth and hyaline, oblong to cylindrical, one-celled, 1.6–2.8 × 0.6–1.2 µm, often in chains. Size and shape of phialides and conidia similar in culture and on natural substratum.

Host: Spider, larva of Hepialus.

Habitat: On a spider on the back of fresh leaves, with a larva of Hepialus clinging to fallen leaves.

Distribution: Currently only known in Chu Yang Sin National Park, Dole Province, Vietnam.

Other material examined: Vietnam, Dole Province, Chu Yang Sin National Park. On a larva of Hepialus clinging to fallen leaves, 26 October 2017, Hong Yu (YHH 20188; YFCC 9051, living culture).

Notes: Morphologically, S. farinospora resembled the phylogenetically sister species S. hepiali. They had the same host, the Hepialid larva, and isaria-like asexual conidiogenous structures, producing synnemata with powdery conidia at the apex. However, S. farinospora was also found to occur on a spider. Parasitic Samsoniella species on spiders had rarely been reported. In addition, our morphological observation revealed a significant difference in conidia sizes between S. farinospora (1.6–2.8 × 0.6–1.2 µm) and S. hepiali (1.8–3.3 × 1.4–2.2 µm). Both the morphological study and phylogenetic analyses of combined nrSSU, nrLSU, tef-1α, rpb1 and rpb2 sequence data supported the idea that this fungus was a distinctive species in the genus of Samsoniella.

Samsoniella haniana H. Yu, Y. Wang & Z.Q. Wang, sp. nov. (Figure 5).

Figure 5.

Figure 5

Morphology of Samsoniella haniana. (A,B) Pupa of Lepidoptera infected by S. haniana. (C) Culture character on PDA medium. (DG) Conidiogenous cells (conidiophores, phialides) and conidia on PDA. Scale A,B: 10 mm; C: 20 mm; D,E: 10 µm; F,G: 5 µm.

MycoBank: MB 844385.

Etymology: The haniana was named after the Hani nationality, living in Yunnan.

Holotype: China, Yunnan Province, Yuanyang County, Xinjie Town, Duoyishuxia Village. On a pupa of Lepidoptera in cocoons buried in soil, 15 December 2021, Yao Wang (YHH 20175, holotype; YFCC 8769, ex-holotype living culture).

Sexual morph: Undetermined.

Asexual morph: Synnemata arising from every part of the body of the insect host. Synnemata erect, usually irregularly branched at the apex, 20–40 × 1–1.8 mm, pale orange. isaria-like morph producing a mass of conidia at the branch apex, powdery and floccose. Colonies derived from germinating conidia. Colonies on PDA growing well, 24–29 mm diameter in 14 days at 25 °C, white, cottony, sporulating abundantly, reverse light orange. Hyphae smooth-walled, branched, septate, hyaline, 0.8–2.8 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 3.8–10.2 × 1.1–2.9 µm. Phialides verticillate, usually in whorls of two to five, or solitary on hyphae, 5.4–12.1 µm long, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex, from 1.2–2.9 µm wide (base) to 0.3–1.1 µm wide (apex). Conidia smooth and hyaline, fusiform or oval, one-celled, 2.3–3.7 × 1.2–2.8 µm, often in chains. Size and shape of phialides and conidia similar in culture and on natural substratum.

Host: Pupae of Lepidoptera.

Habitat: On the pupae of Lepidoptera in cocoons buried in soil.

Distribution: Currently only known in Yuanyang County, Yunnan Province, China; Puer City, Yunnan province, China.

Other material examined: China, Yunnan Province, Yuanyang County, Xinjie Town, Duoyishuxia Village. On a pupa of Lepidoptera in cocoons buried in soil, 15 December 2021, Yao Wang (YHH 20176; YFCC 8770, living culture); China, Yunnan province, Puer City, Simao District, Simao Gang Town, Dajiu Village. On a pupa of Lepidoptera in a cocoon buried in soil, 23 August 2021, Zhi-Qin Wang (YHH 20177; YFCC 8771, living culture).

Notes: Phylogenetically, S. haniana was identified as a Samsoniella species based on the phylogenetic analyses and was closely related to S. pseudogunii and S. coleopterorum (Figure 1). However, three samples of S. haniana were clustered together with strong statistical support and formed a separate clade. Morphologically, S. haniana differed from S. pseudogunii due to its several synnemata (usually irregularly branched at the apex) and oval conidia. Samsoniella haniana was distinguished from S. coleopterorum with several synnemata (irregularly branched at the apex), longer phialides (5.4–12.1 µm) and larger conidia (2.3–3.7 × 1.2–2.8 µm).

Samsoniella pseudotortricidae H. Yu, Y. Wang & Z.Q. Wang, sp. nov. (Figure 6).

Figure 6.

Figure 6

Morphology of Samsoniella pseudotortricidae. (A,B) Stromata of fungus arising from lepidopteran pupa. (C) Fertile part. (D) Perithecia. (E) Culture character on PDA medium. (FH) Conidiogenous cells (conidiophores, phialides) and conidia on PDA. Scale A,B: 10 mm; C: 1 mm; D: 300 µm; E: 1 cm; FH: 10 µm.

MycoBank: MB 844386.

Etymology: Referring to macromorphological resemblance of S. tortricidae and S. pseudotortricidae but phylogenetically distinct.

Holotype: China, Yunnan Province, Kunming City, Wild Duck Lake Forest Park. On a pupa of Lepidoptera in cocoons buried in soil, 12 August 2017, Hong Yu (YHH 20174, holotype; YFCC 9052, ex-holotype living culture).

Sexual morph: Stromata arising from insect cocoon, solitary to several, up to 20–65 mm long, unbranched or dichotomous. Stipes fleshly, flexuous, orange, cylindrical to clavate, 10–43 × 1.1–3.3 mm. Fertile parts reddish orange, clavate to subulate, lateral side usually have a longitudinal section without producing perithecia, 10–17 × 1.5–4.2 mm. Perithecia crowded, superficial, narrowly ovoid to fusiform, 285.7–313.2 × 149.2–154.9 µm. No mature asci or ascospores were observed.

Asexual morph: isaria-like. Colonies on PDA grow well, 30–36 mm diameter in 14 days at 25 °C, white, cottony, sporulating abundantly, reverse light orange. Hyphae smooth-walled, branched, septate, hyaline, 1.1–1.5 µm wide. Conidiophores smooth-walled, cylindrical, solitary or verticillate, 6.6–26.5 × 1.1–2.5 µm. Phialides verticillate, in whorls of two to five, usually solitary on hyphae, 5.4–6.9 µm long, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex, from 1.0–1.6 µm wide (base) to 0.5–0.8 µm wide (apex). Conidia smooth and hyaline, oblong, fusiform or oval, one-celled, 0.9–1.5 × 0.8–1.3 µm, often in chains.

Host: Pupae of Lepidoptera.

Habitat: On pupae of Lepidoptera in cocoons buried in soil.

Distribution: Currently only known in Kunming City, Yunnan Province, China.

Other material examined: China, Yunnan Province, Kunming City, Wild Duck Lake Forest Park. On a pupa of Lepidoptera in cocoons buried in soil, 12 August 2017, Hong Yu (YHH 20189, holotype; YFCC 9053, ex-holotype living culture).

Notes:Samsoniella pseudotortricidae was similar to its phylogenetically closely related species S. tortricidae in macromorphology. The stromata were both unbranched or dichotomous, both fertile parts were clavate to subulate, and reddish orange, and the lateral side usually had a longitudinal section without producing perithecia. However, S. pseudotortricidae was easily distinguished by its smaller ascus (285.7–313.2 × 149.2–154.9 µm), smaller phialides (5.4–6.9 × 1.0–1.6 µm) and smaller conidia (0.9–1.5 × 0.8–1.3 µm). It could be easily distinguished phylogenetically from S. tortricidae.

Samsoniella sinensis H. Yu, Y. Wang & Z.Q. Wang, sp. nov. (Figure 7).

Figure 7.

Figure 7

Morphology of Samsoniella sinensis. (A,B) Larva of Lepidoptera infected by S. sinensis. (C) Dermaptera infected by S. sinensis. (D) Culture character on PDA medium. (E–H) Conidiogenous cells (conidiophores, phialides) and conidia on PDA. Scale A,B: 5 mm; C: 3 mm; D: 10 mm; EH: 10 µm.

MycoBank: MB 844387.

Etymology: Named after China (Yunnan and Guizhou provinces), where the species is distributed.

Holotype: China, Yunnan Province, Kunming City, Xishan Forest Park. On a larva of Lepidoptera clinging to fallen leaves, 12 August 2018, Hong Yu (YHH 20170, holotype; YFCC 8766, ex-holotype living culture).

Sexual morph: Undetermined.

Asexual morph: Synnemata arising from the host, 3.5–5 mm long, irregularly branched, conidia in abundance at the apex. Colonies fast-growing on PDA, 35–40 mm in 14 days at 25 °C, floccose, crater-shaped, white to pale pink, sporulating abundantly at the centrum, forming a white concentric ring. Reverse pale brown. Hyphae smooth-walled, branched, septate, hyaline, 1.3–3.1 µm wide. Conidiophores cylindrical, solitary or verticillate, 6.4–10.5 × 1.7–2.1 µm. Phialides verticillate, in whorls of two to five, sometimes solitary on hyphae, 5.6–9.3 µm long, basal portion cylindrical to narrowly lageniform, tapering gradually or abruptly toward the apex, from 1.5–2.1 µm wide (base) to 0.6–1.0 µm wide (apex). Conidia smooth and hyaline, spherical, elliptical or fusiform, one-celled, 2.0–3.1 × 1.3–1.9 µm, often in chains. Size and shape of phialides and conidia similar in culture and on natural substratum.

Host: Larvae of Lepidoptera, Dermaptera.

Habitat: On the larvae of Lepidoptera clinging to fallen leaves or on Dermaptera clinging to fallen leaves.

Distribution: Currently only known in Kunming City and Chuxiong City, Yunnan Province, China, and Guiyang City, Guizhou Province, China.

Other material examined: China, Yunnan Province, Kunming City, Kunming Wild Duck Lake Forest Park. On a pupa of Dermaptera clinging to fallen leaves, 13 August 2017, Yao Wang (YHH 20171; YFCC 8767, living culture); China, Yunnan Province, Chuxiong City, Zixi Mountain. On Dermaptera clinging to fallen leaves, 13 August 2016, Yao Wang (YHH 20172; YFCC 8768, living culture); China, Guizhou Province, Guiyang City. On a larva of Lepidoptera, 13 August 2017, Yao Wang (YHH 20173).

Notes: Regarding phylogenetic relationships, S. sinensis formed a distinct lineage and was closely related to S. hymenopterorum. Morphologically, synnemata were observed in S. sinensis, and synnemata were not observed in S. hymenopterorum. The phialides of S. sinensis (5.6–9.3 µm) were shorter than those of S. hymenopterorum (6.5–10.6 µm). The conidia of S. hymenopterorum were fusiform to ovoid, 1.9–2.5 × 1.5–2.1 µm, but those of S. sinensis were spherical, elliptical or fusiform, 2.0–3.1 × 1.3–1.9 µm. Samsoniella sinensis was also easily distinguished from S. hymenopterorum by its host. Samsoniella sinensis was found to occur on Lepidoptera and Dermaptera, while S. hymenopterorum was only found to occur on Hymenopterous insects.

4. Discussion

The macromorphology and micromorphology of some Samsoniella species were very similar, and thus, the species were not easy to distinguish using only morphological characteristics [1,2]. In addition, Samsoniella, Beauveria and Cordyceps shared many similar morphological characteristics of sexual morphs, viz., fleshy stromata, red to orange colours, superficial perithecia, cylindrical asci with thickened ascus apex and usually cylindrical and multiseptate ascospores. Samsoniella, Akanthomyces and Cordyceps species produced similar isaria-like asexual conidiogenous structures, such as flask-shaped phialides produced in whorls and conidia with divergent chains [2]. It was more difficult to identify individual Samsoniella species. In the present study, a comprehensive morphological and phylogenetic investigation was conducted in most of the lineages of Samsoniella. The microscopic observations were compared with those for other known species in the genus, revealing some obvious differences, although the morphological features generally overlapped (Table 3 and Table 4). In comparison with other known species, parasitic S. coccinellidicola on adult beetles possessed relatively long phialides, S. farinospora had oblong to cylindrical conidia, S. haniana produced larger conidia, S. pseudotortricidae had smaller conidia and S. sinensis produced a variety of shapes of conidia (viz., spherical, elliptical or fusiform). Based on the five-gene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) dataset, molecular phylogenetic analyses also supported the existence of the five distinct species in the genus, emphasizing the importance of micromorphology and molecular identification (Figure 1).

Samsoniella hepiali has a great medical value due to its therapeutic effects in cardiovascular, respiratory, immunomodulatory, hyposexuality, hyperglycaemia and renal disorder conditions as well as its antitumor properties [2,33,34,35,36,37,38,39]. The Ministry of Health of the People’s Republic of China issued File No. 84 on 23 March 2001 and approved S. hepiali mycelia for use as a standalone preparation or a component of health foods (equivalent to dietary supplements in other countries) [40]. Thus, over 260 healthcare products have been developed with S. hepiali as a raw material in the global market, especially the Jinshuibao capsule [2]. To date, S. hepiali has been widely used as an edible and medicinal fungus, generating an impressive economic value of approximately RMB 10 billion a year in China [2]. It seemed to us that the related species of S. hepiali with similar genetic traits should have similar pharmacological activities. In this study, the S. farinospora strain YFCC 9051, isolated from a larva of Hepialus, and the other isolate, such as YFCC 8774, formed an independent clade apart from their allied species of Samsoniella and were further grouped with S. hepiali (see Figure 1). It was suggested that the two species should have a close genetic relationship. Morphologically, the strain YFCC 9051 was very similar to S. hepiali. They shared the same host of the hepialid larva, and both possessed an isaria-like asexual conidiogenous structure, producing synnemata with powdery conidia at the apex. Moreover, the main components in the mycelium of S. farinospora were similar to those in the mycelium of S. hepiali, involving adenosine, alkaloids, amino acids, ergosterol, mannitol, organic acids and polysaccharides (unpublished data). The strains of S. farinospora will be further determined to develop a raw material for healthcare products in future.

Previous studies of cordycipitaceous isaria-like fungi showed that species of Samsoniella were globally distributed generalist entomopathogen that were soilborne and had relatively complicated hosts, including Lepidoptera (Hepialidae, Noctuidae, Limacodidae, Saturniidae and Tortricidae), Coleoptera (Curculionidae), Hymenoptera (Formicidae and Vespidae) and two fungi (O. sinensis and C. cicadae) [1,2,41]. Here, an extension of the host range was identified, also including Araneae, Dermaptera and Coccinellidae of Coleoptera, as shown in Figure 1 and Table 2. Among the hosts of Samsoniella species, Lepidoptera was the major order (Table 2). Because of their broad host range and wide geographical distribution, some species of Samsoniella may have high potential for the interspecific transmission and biological control of pest insects. Additional research is needed to determine the effectiveness of isolates in the field.

Author Contributions

Conceptualization, Z.W., Y.W. and H.Y.; methodology, Y.W.; software, Z.W.; validation, Z.W., Y.W. and H.Y.; formal analysis, Q.D.; investigation, Z.W., Y.W., Q.D., Q.F., V.-M.D. and H.Y.; resources, Y.W., Q.D., Q.F., V.-M.D. and H.Y.; data curation, Y.W.; writing—original draft preparation, Z.W.; writing—review and editing, Y.W. and H.Y.; visualization, H.Y.; supervision, H.Y.; project administration, H.Y.; funding acquisition, H.Y. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: http://www.ncbi.nlm.nih.gov, accessed on 1 May 2022.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This work was supported by the National Natural Science Foundation of China (No. 31870017).

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Mongkolsamrit S., Noisripoom W., Thanakitpipattana D., Wutikhun T., Spatafora J.W., Luangsa-ard J. Disentangling cryptic species with Isaria-like morphs in Cordycipitaceae. Mycologia. 2018;110:230–257. doi: 10.1080/00275514.2018.1446651. [DOI] [PubMed] [Google Scholar]
  • 2.Wang Y.B., Wang Y., Fan Q., Duan D.E., Zhang G.D., Dai R.Q., Dai Y.D., Zeng W.B., Chen Z.H., Li D.D., et al. Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Divers. 2020;103:1–46. doi: 10.1007/s13225-020-00457-3. [DOI] [Google Scholar]
  • 3.Luangsa-ard J.J., Hywel-Jones N.L., Samson R.A. The order level polyphyletic nature of Paecilomyces sensu lato as revealed through 18S-generated rRNA phylogeny. Mycologia. 2004;96:773–780. doi: 10.1080/15572536.2005.11832925. [DOI] [PubMed] [Google Scholar]
  • 4.Kepler R.M., Luangsa-ard J.J., Hywel-Jones N.L., Quandt C.A., Sung G.H., Rehner S.A., Aime M.C., Henkel T.W., Sanjuan T., Zare R., et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales) IMA Fungus. 2017;8:335–353. doi: 10.5598/imafungus.2017.08.02.08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Wang L.P., Xu J.Y., Li H.C., Song L.P., Feng C.Q. The complete mitochondrial genome of Paecilomyces hepiali (Ascomycota, Eurotiomycetes) Mitochondrial DNA J. Dna Mapp. Seq. Anal. 2014;27:916–917. doi: 10.3109/19401736.2014.926484. [DOI] [PubMed] [Google Scholar]
  • 6.Wang Y.B., Yu H., Dai Y.D., Wu C.K., Zeng W.B., Yuan F., Liang Z.Q. Polycephalomyces agaricus, a new hyperparasite of Ophiocordyceps sp. infecting melolonthid larvae in southwestern China. Mycol. Prog. 2015;14:70. doi: 10.1007/s11557-015-1090-7. [DOI] [Google Scholar]
  • 7.Vilgalys R., Hester M. Rapid genetic identifcation and mapping of enzymatically amplifed ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol. Res. 1994;98:625–634. doi: 10.1016/S0953-7562(09)80409-7. [DOI] [Google Scholar]
  • 9.Bischof J.F., Rehner S.A., Humber R.A. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. favoviride Complex. Mycologia. 2006;98:737–745. doi: 10.1080/15572536.2006.11832645. [DOI] [PubMed] [Google Scholar]
  • 10.Sung G.H., Hywel-Jones N.L., Sung J.M., Luangsa-Ard J.J., Shrestha B., Spatafora J.W. Phylogenetic classifcation of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007;57:5–59. doi: 10.3114/sim.2007.57.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wang Y.B., Yu H., Dai Y.D., Chen Z.H., Zeng W.B., Yuan F., Liang Z.Q. Polycephalomyces yunnanensis (Hypocreales), a new species of Polycephalomyces parasitizing Ophiocordyceps nutans and stink bugs (Hemipteran adults) Phytotaxa. 2015;208:34–44. doi: 10.11646/phytotaxa.208.1.3. [DOI] [Google Scholar]
  • 12.Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  • 13.Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. [DOI] [PubMed] [Google Scholar]
  • 15.Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
  • 16.Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: Moremodels, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Johnson D., Sung G.H., Hywel-Jones N.L., Luangsa-Ard J.J., Bischoff J.F., Kepler R.M., Spatafora J.W. Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota) Mycol. Res. 2009;113:279–289. doi: 10.1016/j.mycres.2008.09.008. [DOI] [PubMed] [Google Scholar]
  • 18.Spatafora J.W., Sung G.H., Hywel-Jones N.L., White J.F. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 2007;16:1701–1711. doi: 10.1111/j.1365-294X.2007.03225.x. [DOI] [PubMed] [Google Scholar]
  • 19.Chiriví-Salomón J.S., Danies G., Restrepo S., Sanjuan T. Lecanicillium sabanense sp. nov. (Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa. 2015;234:63–74. doi: 10.11646/phytotaxa.234.1.4. [DOI] [Google Scholar]
  • 20.Wang Y., Fan Q., Wang D., Zou W.Q., Tang D.X., Hongthong P., Yu H. Species Diversity and Virulence Potential of the Beauveria bassiana Complex and Beauveria scarabaeidicola Complex. Front. Microbiol. 2022;13:841604. doi: 10.3389/fmicb.2022.841604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhang Z.F., Liu F., Zhou X., Liu X.Z., Liu S.J., Cai L. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Pers. Mol. Phylogeny Evol. Fungi. 2017;39:1–31. doi: 10.3767/persoonia.2017.39.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Sanjuan T., Tabima J., Restrepo S., Læssøe T., Spatafora J.W., FrancoMolano A.E. Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto) Mycologia. 2014;106:260–275. doi: 10.3852/13-020. [DOI] [PubMed] [Google Scholar]
  • 23.Chen W.H., Han Y.F., Liang Z.Q., Jin D.C. A new araneogenous fungus in the genus Beauveria from Guizhou, China. Phytotaxa. 2017;302:57–64. doi: 10.11646/phytotaxa.302.1.5. [DOI] [Google Scholar]
  • 24.Rehner S.A., Minnis A.M., Sung G.H., Luangsa-ard J.J., Devotto L., Humber R.A. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia. 2011;103:1055–1073. doi: 10.3852/10-302. [DOI] [PubMed] [Google Scholar]
  • 25.Chen Z.H., Chen K., Dai Y.D., Zheng Y., Xu L. Beauveria species diversity in the Gaoligong Mountains of China. Mycol. Prog. 2019;18:933–943. doi: 10.1007/s11557-019-01497-z. [DOI] [Google Scholar]
  • 26.Luangsa-ard J.J., Hywel-Jones N.L., Manoch L., Samson R.A. On the relationships of Paecilomyces sect. Isarioidea species. Mycol. Res. 2005;109:581–589. doi: 10.1017/S0953756205002741. [DOI] [PubMed] [Google Scholar]
  • 27.Dong Q.Y., Wang Y., Wang Z.Q., Tang D.X., Zhao Z.Y., Wu H.J., Yu H. Morphology and phylogeny reveal five novel species in the genus Cordyceps (Cordycipitaceae, Hypocreales) from Yunnan, China. Front. Microbiol. 2022;13:846909. doi: 10.3389/fmicb.2022.846909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Chen W.H., Han Y.F., Liang J.D., Tian W.Y., Liang Z.Q. Morphological and phylogenetic characterisations reveal three new species of Samsoniella (Cordycipitaceae, Hypocreales) from Guizhou, China. MycoKeys. 2020;74:1–15. doi: 10.3897/mycokeys.74.56655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Chen W.H., Liang J.D., Ren X.X., Zhao J.H., Han Y.F., Liang Z.Q. Cryptic diversity of isaria-like species in Guizhou, China. Life. 2021;11:1093. doi: 10.3390/life11101093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wei D.P., Wanasinghe D.N., Hyde K.D., Mortimer P.E., To-Anun C. The genus Simplicillium. MycoKeys. 2019;60:69–92. doi: 10.3897/mycokeys.60.38040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Currie C.R., Wong B., Stuart A.E., Schultz T.R., Rehner S.A., Mueller U.G., Sung G.H., Spatafora J.W., Straus N.A. Ancient Tripartite Coevolution in the Attine Ant-Microbe Symbiosis. Science. 2003;299:386–388. doi: 10.1126/science.1078155. [DOI] [PubMed] [Google Scholar]
  • 32.Smith G. Some new and interesting species of micro-fungi. Trans. Br. Mycol. Soc. 1957;40:481–488. doi: 10.1016/S0007-1536(57)80054-0. [DOI] [Google Scholar]
  • 33.Lou Y.Q., Liao X.M., Lu Y.C. Cardiovascular pharmacological studies of ethanol extracts of Cordyceps mycelia and Cordyceps fermentation solution. Chin. Tradit. Herb. Drugs. 1986;17:17–21. [Google Scholar]
  • 34.Huang M.M., Zhang J.F., Pang L., Jiang Z., Wang D.W. Studies on immunopharmacology of Cordyceps (Fr.) Link IV. Observations on the immunosuppressive activity of artifcial substance of Paecilomyces hapiali Chen. Acta Univ. Med. Tongji. 1988;5:329–331. [Google Scholar]
  • 35.Wang D.W., Huang M.M. Studies on immunopharmacology of Cordyceps (Fr.) Link V. Infuence of artifcial fermentative substance of Paecilomyces hapiali Chen on the function of T cell and its subgroup in mice. Acta Univ. Med. Tongji. 1988;5:332–334. [Google Scholar]
  • 36.Dai R.Q., Lan J.L., Chen W.H., Li X.M., Chen Q.T., Shen C.Y. Research on Paecilomyces hepiali Chen et Dai, sp. nov. Acta Agric. Univ. Pekin. 1989;15:221–224. [Google Scholar]
  • 37.Zou W.P., Huang M.M. Primary studies on the mechanism of Paecilomyces hepiali Chen against the rejection reaction. Acta Univ. Med. Tongji. 1993;22:282–284. [Google Scholar]
  • 38.Xiang M., Tang J., Chu T., Zhang C.L., Zou X.L. Hypoglycemic effect and mechanism study on streptozocin induced diabetes in mice by Paecilomyces hepiali Chen mycelium. Chin. J. Hosp. Pharm. 2006;26:556–559. [Google Scholar]
  • 39.Jiang L., Bao H.Y., Yang M. Antitumor activity of a petroleum ether extract from Paecilomyces hepiali mycelium. Acta Edulis Fungi. 2010;17:58–60. [Google Scholar]
  • 40.Dai R.Q., Shen C.Y., Li X.M., Lan J.L., Lin S.F., Shao A.J. Response to neotypification of Paecilomyces hepiali (Hypocreales) (Wang & al., 2015) Taxon. 2018;67:784–786. doi: 10.12705/674.7. [DOI] [Google Scholar]
  • 41.Samson R.A. Paecilomyces and some allied hyphomycetes. Stud. Mycol. 1974;6:1–119. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: http://www.ncbi.nlm.nih.gov, accessed on 1 May 2022.


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES