Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Jul 1;8(7):702. doi: 10.3390/jof8070702

Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China

Qian Zeng 1, Yi-Cong Lv 1, Xiu-Lan Xu 1,2, Yu Deng 1, Fei-Hu Wang 1, Si-Yi Liu 1, Li-Juan Liu 1, Chun-Lin Yang 1,*, Ying-Gao Liu 1,*
Editor: Jian Kui Liu
PMCID: PMC9325152  PMID: 35887458

Abstract

In the present study, we surveyed the ascomycetes from bamboo of Phyllostachys across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A novel genus Paralloneottiosporina is introduced to accommodate Pa. sichuanensis that was collected from leaves of Phyllostachys violascens. Moreover, the newly introduced species Bifusisporella sichuanensis was isolated from leaves of P. edulis, and five species were newly recorded on bamboos, four species belonging to Apiospora, viz. Ap. yunnana, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. hydei, and the last species, Seriascoma yunnanense, isolated from dead culms of P. heterocycla. Morphologically similar and phylogenetically related taxa were compared. Comprehensive descriptions, color photo plates of micromorphology are provided.

Keywords: bambusicolous fungi, molecular phylogeny, one new genus, systematics, two new species

1. Introduction

Bamboo is currently classified in the subfamily Bambusoideae of the extensive grass family Poaceae, and distributed worldwide. It comprises circa 1000 to 1500 species in up to 90 genera [1] and more than 70 species in Phyllostachys (Bambusoideae, Poaceae) [2,3]. Most bamboos are distributed in Southeast Asia, with China as the distribution center [4]. There are about 21 species of Phyllostachys in Sichuan, including Phyllostachys edulis (Carriere) J. Houzea, P. heteroclada Oliver, and P. violascens ‘Prevernalis’ S.Y. Chen et C.Y. Yao. Bamboos of Phyllostachys play an important role in native economy and ecology. They are used in furniture, and construction (e.g., fishing rods, flutes, flooring materials, chairs.) [5,6]. Bamboo shoots are used as food for humans and animals such as pandas [7,8]. In addition, it is an important ornamental plant for the landscape in China because of its evergreen and graceful appearance [9].

A review of the literature on bamboo-associated fungi reveals that nearly 1500 species have been described or recorded worldwide [10], including economically important pathogenic fungi, and a large number of saprobic and endophytic fungi [1,11,12,13]. Most bambusicolous fungi have been reported from Asia, especially Japan and Thailand, a few known from India and South America [1,12,14,15,16,17,18]. However, few studies have investigated the diversity and phylogeny on bamboo in China. The taxonomic studies on bambusicolous fungi are of great significance [19,20,21]. According to the literature review, about 85 species associated with Phyllostachys have been recorded. Teng [22] first reported the fungus Oedocephalum glomerulosum (Bull.) Sacc. on Phyllostachys in 1932. Tai listed 36 species of Phyllostachys from bamboo based on the reports on Chinese fungal resource until 1973 [23]. Chen investigated the phytogeography of forest fungi in China, North America, and Siberia, from which 33 species were found associated with Phyllostachys [24]. However, most of those identifications were conducted lacking molecular data and detailed micromorphology, and as most bamboos are unidentified, the relationship of bambusicolous fungi with bamboo species is not clear.

Due to the high fungal diversity on Phyllostachys, an ongoing investigation was conducted in several main producing or planting areas of bamboo Phyllostachys in Sichuan Province, China, including Ya’an City, Qionglai City, Chengdu City, and Yibin City. In this study, we provide detailed taxonomic features combining morphology and phylogeny on the fungi associated with Phyllostachys from Sichuan Province, China, which is a fundamental task for the bioresource collection on bambusicolous fungi.

2. Materials and Methods

2.1. Specimen Collection and Morphological Study

From 2020 to 2021, the specimens were collected from leaves, branches, and culms. The samples were kept in plastic bags and taken back to the laboratory after being photographed with a Sony DSC-HX3 digital camera. The fungi were isolated into pure culture based on single spore isolation [25]. Glass slide specimens were prepared by free-hand slicing with double-sided blades for morphologic observation. Morphological characteristics of ascomata and sporodochia were observed using a dissecting microscope, the NVT-GG (Shanghai Advanced Photoelectric Technology Co. Ltd., Shanghai, China), and photographed with a VS-800C micro-digital camera (Shenzhen Weishen Times Technology Co. Ltd., Shenzhen, China). An Olympus BX43 compound microscope with an Olympus DP22 digital camera was used to observe and photograph the microstructure of asci, ascospores, conidiophores, and conidia. Measurements were performed using Tarosoft® Image Frame Work v.0.9.7 (Tarosoft (R), Nontha Buri, Thailand). Specimens were deposited at the Herbarium of Sichuan Agricultural University, Chengdu, China (SICAU), and pure cultures were deposited at the Culture Collection in Sichuan Agricultural University (SICAUCC).

2.2. DNA Extraction, PCR Amplification, and Nucleotide Sequencing

Genomic DNA was extracted from fresh mycelia which was cultured on PDA at 25 °C for 15–30 days, using a TreliefTM Plant Genomic DNA Kit. Primers ITS5/ITS4 [26], NS1/NS4 [26], LR0R/LR5 [27], T1/Bt2b [28,29], RPB1-Ac/RPB1-Cr [30,31], and fRPB2-5F/fRPB2-7cR [32] were used for the amplification of internal transcribed spacers (ITS), the partial small subunit nuclear rDNA (SSU), the partial large subunit nuclear rDNA (LSU), the β-tubulin gene (tub2), the large subunit of RNA polymerase I (rpb1), and RNA polymerase II second largest subunit (rpb2) genes, respectively. Primers EF1-983F/EF1-2218R [33] and EF1-728F/EF2 [34,35] were employed for translation elongation factor 1-alpha (tef1-α) genes.

Amplification reactions were performed in 25 µL of total reaction that contained 22 µL Master Mix (Beijing TsingKe Biotech Co., Ltd., Beijing, China), 1 µL each of forward and reverse (10 µM) primers and 1 µL of DNA template. The amplification reactions were performed as described by Dai et al. [16] and Wang et al. [36]. PCR products were purified and sequenced at TsingKe Biological Technology Co., Ltd. (Chengdu, China). The resulting sequences were submitted to GenBank.

2.3. Sequence Alignment and Phylogenetic Analyses

Based on blast searches in GenBank, using ITS, LSU, SSU, tef1-α, tub2, rpb1, or rpb2 sequence data, separate phylogenetic analyses were carried out to determine the placements of each fungal group (Table 1). Sequences for phylogenetic analyses were selected mainly from recently published literature and phylogenetic related sequences based on BLAST searches in GenBank (Table A1). Datasets were aligned using MAFFT v.7.407 [37], and ambiguous regions were excluded with BioEdit version 7.0.5.3 [38]. Maximum likelihood (ML) and Bayesian inference (BI) were constructed as described in Xu et al. [39]. The phylogram was visualized with FigureTree v. 1.4.3 and edited using Adobe Illustrator CS6 (Adobe Systems Inc., San Jose, CA, USA).

Table 1.

Selected genes for polymerase chain reaction of each genus.

Genera Sequences Dataset
Apiospora ITS, LSU, tub2, tef1-α
Bifusisporella ITS, LSU, tef1-α, rpb1
Paralloneottiosporina ITS, LSU, SSU, tef1-α
Seriascom ITS, LSU, SSU, tef1-α, rpb2

3. Results

3.1. Phylogenetic Analyses

A combined dataset (ITS, LSU, tef1-α, tub2) comprising 138 taxa within Apiosporaceae, which is rooted with Pestalotiopsis chamaeropis (CBS 237.38) and Pe. colombiensis (CBS 118553) (Pestalotiopsidaceae, Amphisphaeriales), was used for the phylogenetic analyses. The alignment contained 5875 characters (ITS = 999, LSU = 1382, tef1-α = 1651, tub2 = 1844), including gaps. The best scoring RAxML tree with a final likelihood value of −36198.939448 is presented. The matrix had 2337 distinct alignment patterns, with 64.85% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.237208, C = 0.257370, G = 0.253511, T = 0.251911, with substitution rates AC = 1.104968, AG = 2.746651, AT = 1.143208, CG = 0.910079, CT = 4.335389, GT = 1.000000. The gamma distribution shape parameter α = 0.269105, and the tree length = 3.509694. In the phylogenetic trees generated from ML and BI analyses, the strain SICAUCC 22-0032 clustered with the known species Apiospora hydei (KUMCC 16-0204, CBS 114990) in a clade with 97% ML and 0.99 BYPP support value, strain SICAUCC 22-0070 clustered with Ap. jiangxiensis (CGMCC 3.18381, LC4578) with high support values (100% ML and 1.00 BYPP), strain SICAUCC 22-0071 clustered with Ap. neosubglobosa (JHB006, JHB007) in a clade with 100% ML and 1.00 BYPP support value, and strain SICAUCC 22-0072 clustered with the Ap. yunnana (MFLUCC 15-0002) in a clade with 100% ML and 1.00 BYPP support values (Figure 1).

Figure 1.

Figure 1

Figure 1

Phylogram generated from RAxML analysis based on combined ITS, LSU, tub2, and tef1-α sequence data of Apiosporaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red. Arthrinium species with yellow background were temporarily not combined to Apiospora.

Phylogenetic analyses of a concatenated aligned dataset (ITS, LSU, rpb1, tef1-α), including 70 taxa within Magnaporthaceae and Pyriculariaceae, were conducted and rooted with Ophioceras dolichostomum (CBS 114926) and O. leptosporum (CBS 894.70) (Ophioceraceae, Magnaporthales). The alignment contained 4094 characters (ITS = 899, LSU = 1105, rpb1 = 1047, tef1-α = 1043), including gaps. The best scoring RAxML tree with a final likelihood value of −31022.648763 is presented. The matrix had 1923 distinct alignment patterns, with 36.77% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.243596, C = 0.275654, G = 0.281915, T = 0.198836, with substitution rates AC = 1.103727, AG = 2.292134, AT = 1.431191, CG = 0.918700, CT = 5.773674, GT = 1.000000. The gamma distribution shape parameter α = 0.319184, and the tree length = 3.313974. In the phylogenetic tree (Figure 2), the novel species Bifusisporella sichuanensis constitutes a highly supported independent lineage (ML = 100%, BYPP = 1.00) with B. sorghi (URM 7864, URM 7442).

Figure 2.

Figure 2

Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb1, and tef1-α sequence data of Magnaporthaceae and Pyriculariaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.

The concatenated aligned dataset of ITS, LSU, SSU, tef1-α sequences, including 124 ingroup taxa within Phaeosphaeriaceae and two outgroup taxa in Leptosphaeriaceae, were used for the phylogenetic analyses of Paralloneottiosporina. The alignment contained 5851 characters (ITS = 1469, LSU = 1433, SSU = 1548, tef1-α = 1401), including gaps. The best scoring RAxML tree with a final likelihood value of −46908.078740 is presented. The matrix had 2382 distinct alignment patterns, with 55.68% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.246158, C = 0.236637, G = 0.264322, T = 0.252883, with substitution rates AC = 1.087661, AG = 2.657942, AT = 2.045792, CG = 0.863381, CT = 6.106747, GT = 1.000000. The gamma distribution shape parameter α = 0.263651, and the tree length = 7.503091. In the phylogenetic tree generated from ML and BI analyses, the novel species Paralloneottiosporina sichuanensis (SICAUCC 22-0074, SICAUCC 22-0075) constitutes a moderately supported independent lineage (63% ML/0.99 BYPP statistical support) with the species Alloneottiosporina thailandica (MFLUCC 15-0576) (Figure 3).

Figure 3.

Figure 3

Figure 3

Phylogram generated from RAxML analysis based on combined ITS, LSU, SSU, and tef1-α sequence data of Phaeosphaeriaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red.

A combined dataset (ITS, LSU, SSU, tef1-α, rpb2) comprising 25 taxa within Bambusicolaceae, Biatriosporaceae, Roussoellaceae, Torulaceae, and Paradictyoarthriniaceae was used for phylogenetic analyses of Seriascoma, and the Westerdykella ornata (CBS 379.55) (Sporormiaceae) was used as outgroup taxon. The alignment contained 6569 characters (LSU = 1383, SSU = 1741, tef1-α = 1346, rpb2 = 2099), including gaps. The best scoring RAxML tree with a final likelihood value of −22606.776997 is presented. The matrix had 1406 distinct alignment patterns, with 48.40% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.250203, C = 0.247742, G = 0.269455, T = 0.232600, with substitution rates AC = 1.348170, AG = 4.119625, AT = 1.278817, CG = 1.296090, CT = 9.080955, GT = 1.000000. The gamma distribution shape parameter α = 0.146142, and the tree length = 1.192279. According to the phylogenetic tree (Figure 4), the strain (SICAUCC 22-0059) clustered with Seriascoma yunnanense (MFLU 19-0690) in a clade with 100% ML and 1.00 BYPP statistical support.

Figure 4.

Figure 4

Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb2, and tef1-α sequence data of isolates within Bambusicolaceae and other representative species in Biatriosporaceae, Roussoellaceae, Torulaceae, and Paradictyoarthriniaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.

3.2. Taxonomy

Apiosporaceae K.D. Hyde, J. Fröhl., Joanne E. Taylor & M.E. Barr, Sydowia. 50 (1): 23 (1998).

Apiospora hydei (Crous) Pintos & P. Alvarado, Fungal Systematics and Evolution. 7: 206 (2021) (Figure 5).

Figure 5.

Figure 5

Apiospora hydei (SICAU 22-0032). (a) Ascostromata developing on bamboo branches. (b) Vertical sections of ascostromata. (c) Peridium. (d) Paraphyses. (e,f) Asci. (g,h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (b) = 50 μm, (ci) = 10 μm.

Arthrinium hydei Crous, IMA Fungus 4(1): 142 (2013).

Saprobic on dead culms of Phyllostachys nigra (Lodd. ex Lindl.) Munro. Sexual morph: Ascostromata 421–1343 × 174–387 × 176–245 μm (x¯ = 705 × 267 × 198 μm, n = 30), solitary to gregarious, immersed, fusiform to ellipsoid, dark brown to black, multi-loculate, with long axis. Peridium 17–46 μm wide, composed of 8–15 layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 2–6.5 μm wide, composed of dense, long, septate, and unbranched paraphyses. Asci 81–123 × 16–23 μm, (x¯ = 116 × 180 μm, n = 50), 8–spored, unitunicate, broadly cylindrical, slightly curved, with a short pedicel, apically rounded. Ascospores 24–30 × 7–11 μm, (x¯ = 26 × 10 μm, n = 50), 2-seriate, elliptical, 1–septate, with a large, curved upper cell and small lower cell, with narrowly rounded ends, hyaline, guttules, smooth-walled, surrounded by gelatinous sheath. Asexual morph: see Crous et al. [40].

Material examined: China, Sichuan Province, Chengdu City, Wenjiang District (19°30′42.22″ N, 103°51′19″ E, Alt. 528 m), on dead culms of Phyllostachys nigra, 14 March 2021, Yi-cong Lv, LYC202103003 (SICAU 22-0032), living culture SICAUCC 22-0032.

Culture characters: Ascospores germinate within 24 h. Colonies grow fast on PDA, reaching 6 cm after one week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white from above and light yellow below, with irregular edge.

Notes: Apiospora hydei was introduced based on the asexual morph characters and phylogeny analyses by Crous et al. [40]. Morphological comparisons were impossible due to the lack of sexual morph between our isolates and the ex-type strain (CBS 114990), but it is similar to A. hydei in sexual descriptions provided by Dai et al. [41]. Nucleotide comparisons of ITS, LSU, tef1-α and tub2 (SICAUCC 22-0033) showed high homology with the sequences of A. hydei (CBS 114990), similarities are 100% (528/528, 0 gaps), 99.77% (896/898, 0 gaps), 99.71% (355/356, 0 gaps), and 98.82% (754/763, 0 gaps), respectively.

Apiospora jiangxiensis (M. Wang & L. Cai) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 6).

Figure 6.

Figure 6

Apiosporajiangxiensis (SICAU 22-0070). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (dk) = 10 μm.

Arthrinium jiangxiense M. Wang & L. Cai, in Wang, Tan, Liu & Cai, MycoKeys 34(1): 14 (2018).

Saprobic on dead culms of Phyllostachys heteroclada Oliver. Sexual morph: Ascostromata 575–1334 × 274–444 × 134–157 μm (x¯ = 876 × 355 × 143 μm, n = 30), solitary to gregarious, multi-loculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. Peridium 9.0–44 μm wide (x¯ = 21 μm, n = 25), composed of several layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 4.0–11 μm wide, composed of dense, long, septate, unbranched, paraphyses. Asci 83–114 × 18–28 μm (x¯ = 104 × 23 μm, n = 50), 8–spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. Ascospores 32–37 × 9.6–11 μm (x¯ = 34 × 10 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Wang et al. [36].

Material examined: China, Sichuan Province, Luzhou City, Xuyong District (27°53′28″ N, 105°16′36″ E, Alt. 1350 m), on dead culm of Phyllostachys heteroclada, 26 July 2021, Qian Zeng, ZQ202107133 (SICAU 22-0070), living culture SICAUCC 22-0070.

Culture characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, white, circular, with irregular edge.

Notes: Specimen in our study shared similar morphology with the original description of Apiospora jiangxiensis by Wang et al. [36]. Nucleotide comparisons of ITS, LSU, and tub2 (SICAUCC 22-0070) showed high homology with the sequences of Ap. jiangxiensis (CGMCC 3.18381), similarities are 100% (541/541, 0 gaps), 99.09% (436/440, 0 gaps), and 98.22% (717/730, 0 gaps), respectively. However, the latter lack tef1-α sequences for further comparisons.

Apiospora neosubglobosa (D.Q. Dai & H.B. Jiang) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 7).

Figure 7.

Figure 7

Apiosporaneosubglobosa (SICAU 22-0071). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i) Ascospores. (j) Germinating ascospore. (k,l) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 50 μm, (dj) = 10 μm.

Arthrinium neosubglobosum D.Q. Dai & H.B. Jiang, Mycosphere 7(9): 1337 (2017).

Saprobic on dead culms of Phyllostachys bissetii McClure. Sexual morph: Ascostromata 330–1092 × 198–354 × 134–224 μm (x¯ = 632 × 250 × 174 μm, n = 30), gregarious, immersed, multi-loculate, fusiform to ellipsoid, dark brown to black, with long axis broken at the top. Peridium 17.0–46 μm wide (x¯ = 19 μm, n = 25), composed of several layers of brown to hyaline, cells of textura angularis to prismatica. Hamathecium 3.5–6.0 μm wide, composed of dense, long, septate, unbranched, paraphyses. Asci 94–137 × 23–40 μm (x¯ = 125 × 31 μm, n = 50), 8-spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. Ascospores 28–36 × 13–15 μm (x¯ = 32 × 14 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Dai et al. [16].

Material examined: CHINA, Sichuan Province, Luzhou City, Xuyong District (27°52′5″ N, 105°16′23″ E, Alt. 1470 m), on dead culm of Phyllostachys bissetii, 26 July 2021, Qian Zeng, ZQ202107128 (SICAU 22-0071), living culture SICAUCC 22-0071.

Cultural characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 4 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, initially white, then brown, with regular edge.

Notes: Apiospora neosubglobosa was described by Dai et al. based on the morphological characteristics and molecular phylogeny [16]. Strain SICAUCC 22-0071 clustered with ex–type strain (JHB007) with high bootstrap support (100% ML and 1.00 BYPP). Nucleotide comparisons of ITS and LSU (SICAUCC 22-0071) showed high homology with the sequences of Ap. neosubglobosa (JHB007), similarities are 99.84% (649/650, 0 gaps), 100% (1173/1173, 0 gaps), respectively.

Apiospora yunnana (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 207 (2021) (Figure 8).

Figure 8.

Figure 8

Apiosporayunnana (SICAU 22-0072). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (df) = 10 μm, (gk) = 20 μm.

Arthrinium yunnanum D.Q. Dai & K.D. Hyde, Fungal Diversity 82: 69 (2016).

Saprobic on culms of Phyllostachys aurea Carr. ex A. et C. Riv. Sexual morph: Ascostromata 624–1307 × 253–510 × 165–211 μm (x¯ = 892 × 359 × 188 μm, n = 30), gregarious, multi-loculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. Peridium 8.5–43 μm wide (x¯ = 17 μm, n = 25), composed of several layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 3.5–8.0 μm wide, composed of dense, long, septate, unbranched paraphyses. Asci 89–144 × 18–40 μm (x¯ = 120 × 32 μm, n = 50), 8–spored, unitunicate, broadly cylindrical to long clavate, no pedicel, slightly curved, apically rounded. Ascospores 30–42 × 10–13 μm (x¯ = 36 × 12 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and a small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Dai et al. [16].

Material examined: China, Sichuan Province, Yibin City, Changning District (28°28′8″ N, 105°0′16″ E, Alt. 890 m), on dead culm of Phyllostachys aurea, 23 July 2021, Qian Zeng, ZQ202107027 (SICAU 22-0072), living culture, SICAUCC 22-0072.

Culture characters: Ascospores germinate on PDA within 24 h and germ tubes produced from sides. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white with irregular edge.

Notes: The sexual and asexual morph of Apiospora yunnana was reported by Dai et al. [16]. Morphologically, our observations were identical to the sexual descriptions provided by Daiet et al. [16]. Nucleotide comparisons of ITS and LSU (SICAUCC 22-0072) showed high homology with the sequences of Ap. yunnana (MFLUCC 15-0002), similarities are 99.85% (667/668, 0 gaps), 100% (847/847, 0 gaps), respectively. However, the latter lack tef1-α and tub2 sequences for further comparisons.

Magnaporthales Thongkantha, Vijaykrishna & K.D. Hyde. Fungal Diversity. 34: 157–173 (2009).

Magnaporthaceae P.F. Cannon, Systema Ascomycetum 13: 26 (1994).

Bifusisporella R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva, Mycological Progress 18(6): 852 (2019).

Type species: Bifusisporella sorghi R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva.

Description: Endophytic and parasitic fungi on Poaceae. Sexual morph: Ascomata separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular. Peridium with hyaline to brown cells of textura angularis. Hamathecium hyaline, with distinct septa, wider at the base, tapering towards the apex. Asci 8–spored, cylindrical, with a J-, apical ring, developing from the base and periphery of the ascomata, with a short pedicel. Ascospores biseriate, hyaline, fusiform, with distinct septa, with narrowly rounded ends, without appendages. Asexual morph: Found in Bifusisporella sorghi cultures by Silva et al. [42].

Notes: Bifusisporella was introduced as a new genus to accommodate B. sorghi based on morphology and phylogeny. At present, Bifusisporella comprises only the ex-type species B. sorghi, and no records on its sexual morph. The new species B. sichuanensis is well-supported within Bifusisporella, which suggests that there is a need to amend the morphological circumscriptions of the genus.

Bifusisporella sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figure 9).

Figure 9.

Figure 9

Bifusisporella sichuanensis (SICAU 22-0073). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fi) Asci. (j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (b) = 500 µm, (c) = 100 µm, (dk) = 10 µm.

Index Fungorum: IF559625

Etymology: Refers to the region from where the fungus was collected.

Holotype: SICAU 22-0073

Parasitic on living leaves of Phyllostachys edulis (Carriere) J. Houzeau. Sexual morph: Ascostromata 536–1672 × 332–849 × 125–245 μm (x¯ = 1103 × 591 × 193 μm, n = 30), separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular, glabrous. Peridium 14–34 μm wide (x¯ = 20 μm, n = 30), composed of 3–9 layers, with hyaline to brown cells of textura angularis. Hamathecium, hyaline, cellular, with distinct septa. Asci 79–126 × 9.5–13 μm (x¯ = 99 × 11 μm, n = 30), 8–spored, bitunicate, cylindrical, with an apical chamber and a short pedicel. Ascospores 22–35 × 5.0–6.5 μm (x¯ = 29 × 5.5 μm, n = 50), overlapping, biseriate, hyaline, fusiform, 3–septate, rarely constricted at septate, with narrowly rounded ends, smooth-walled, guttules, without gelatinous sheath. Asexual morph: Undetermined.

Material examined: China, Sichuan Province, Yibin City, Xingwen District (28°15′22″ N, 105°6′29″ E, Alt. 850 m), on living to nearly dead leaves of Phyllostachys edulis, 25 July 2021, Qian Zeng, ZQ202107111 (SICAU 22-0073 holotype), ex-type living culture, SICAUCC 22-0073.

Culture characters: Ascospores germinate in sterilized water within 12 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2 cm in 30 days at 25 °C, under 12 h light/12 h dark, and are irregular, black, frilly with white margin, and black on the back of colonies.

Notes: Bifusisporella sichuanensis is phylogenetically close (100% ML and 1.00 BYPP) to B. sorghi (URM 7442) introduced by Silva et al. [42], which is described with asexual morph. However, striking base-pair differences are noted, viz. 11.43% (55/481, 0 gaps), 3.36% (27/803, 0 gaps), 5.11% (24/469, 0 gaps), 9.04% (64/708, 0 gaps) in the ITS, LSU, tef1-α and rpb1, respectively. Hence, our collection is proposed as a new species.

Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).

Phaeosphaeriaceae M.E. Barr, Mycologia 71: 948 (1979).

Paralloneottiosporina Q. Zeng, Y.C. Lv & C.L. Yang, gen. nov.

Index Fungorum: IF559626.

Type species: Paralloneottiosporina sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang.

Etymology: Name reflects the morphological similarity to the genus Alloneottiosporina.

Parasitic on living to nearly dead leaves of Phyllostachys violascens ‘Prevernalis’ S.Y. Chen et C.Y. Yao. Sexual morph: Ascomata visible as raised to superficial on host, gregarious, globose to subglobose or dome shape, dark brown to black, unilocular, glabrous. Ostiole single, circular, centrally located. Peridium multi-layered, brown to dark brown cells of textura angularis. Hamathecium hyaline, numerous, septate, often constricted at septa. Asci 8-spored, bitunicate, rounded at apex, cylindrical, curved, with a short pedicel. Ascospores hyaline, fusiform, 1–2 septate, constricted at the septum, guttules, smooth-walled, with narrowly rounded ends. Asexual morph: Conidiomata brown to dark brown, globose to long ellipsoid, coriaceous, semi-immersed, unilocular, gregarious, glabrous. Conidiomatal wall comprising multi-layered, dark brown to black cells of textura angularis. Conidia ellipsoid to ovoid, 1–septate, slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a truncated base, guttules.

Notes: Paralloneottiosporina resembles Alloneottiosporina in asexual status having semi-immersed, unilocular, gregarious, glabrous conidiomata, but Paralloneottiosporina differs in absent of microconidia, conidia without mucoid appendages, bigger conidia, fewer layers of conidiomatal wall. The macroconidia of Alloneottiosporina species are usually accompanied with mucoid appendages at both ends, and microconidia are produced near the ostiolar channel. Moreover, colonies are whitish to bright orange-pink on PDA in Paralloneottiosporina, but olivaceous-black in Alloneottiosporina [43]. Based on morphological characteristics and molecular phylogeny, the new genus is introduced in Phaeosphaeriaceae.

Paralloneottiosporina sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figure 10 and Figure 11).

Figure 10.

Figure 10

Paralloneottiosporina sichuanensis (SICAU 22-0074, holotype). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (eg) Asci. (h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (a) = 1 mm, (b) = 500 µm, (c,d) = 20 µm, (ei) = 10 µm.

Figure 11.

Figure 11

Paralloneottiosporina sichuanensis (SICAU 22-0075, paratype). (a,b) Conidiomata on the host. (c) Vertical sections of conidiomata. (d) Peridium. (e) Conidiogenous cells and developing conidia. (f) Conidia. (g) Germinating conidium. (h,i) Cultures on PDA. Scale bars: (a) = 500 µm, (b) = 200 µm, (c) = 20 µm, (dg) = 10 µm.

Index Fungorum: IF559627.

Etymology: In reference to Sichuan Province where the specimens were collected.

Holotype: SICAU 22-0074.

Associated with leaf blight on living to nearly dead leaves of Phyllostachys violascens (Poaceae). Sexual morph: Ascomata 106–343 × 39–196 × 55–112 μm (x¯ = 168 × 111 × 89 μm, n = 30), separate, gregarious to confluent, globose to subglobose, dark brown to black, superficial, unilocular, glabrous. Ostiole single, circular, centrally located. Peridium 17–38 μm wide (x¯ = 29 μm, n = 30), composed of 7–12 layers, with brown cells of textura angularis. Hamathecium hyaline, dense, cellular, with distinct septa. Asci 49–97 × 8.5–19 μm (x¯ = 71 × 13 μm, n = 30), 8-spored, bitunicate, cylindrical, curved, with a short pedicel. Ascospores 15–21 × 5.0–7.5 μm (x¯ = 18 × 6.0 μm, n = 50), overlapping biseriate, straight, hyaline, fusiform, 1–2 septate, constricted at the septum, smooth-walled, with narrowly rounded ends. Asexual morph: Conidiomata 90–191 × 61–132 × 81–123 μm (x¯ = 132 × 102 × 105 μm, n = 30), globose to long ellipsoid, coriaceous, semi-immersed, black, unilocular, gregarious, glabrous. Conidiomatal wall 7.5–21 μm wide (x¯ = 13 μm), comprising 3–6 layers, brown cells of textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cell 3.0–6.5 × 2.5–5.0 μm (x¯ = 5.0 × 3.5 μm, n = 20), hyaline, ampulliform to subcylindrical, smooth. Conidia 11–20 × 4.0–6.5 μm (x¯ = 17 ×5.0 μm, n = 50), ellipsoid to ovoid, 1–septate, slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a truncated base.

Material examined: China, Sichuan Province, Ya’an City, Yucheng District (29°56′49.54″ N, 102°56′46.03″ E, Alt. 807 m), on living to nearly dead leaves of Phyllostachys violascens, 13 May 2020, Qian Zeng, ZQ202005002 (SICAU 22-0074, holotype), ex-type living culture, SICAUCC 22-0074; CHINA, Sichuan Province, Qionglai City, Linjiang Town (30°19′4.42″ N, 103°17′23.06″ E, Alt. 518 m), on living leaves of Ph. violascens, 8 November 2020, Qian Zeng, ZQ202011012 (SICAU 22-0075, paratype), living culture, SICAUCC 22-0075.

Culture characteristics: Ascospores germinate in sterilized water within 24 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2.5 cm in 30 days at 25 °C, circular, white aerial mycelium, whitish to bright orange-pink on the surface, and brown on the back.

Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).

Bambusicolaceae D.Q. Dai & K.D. Hyde, Fungal Diversity. 63 (1): 49 (2013).

Seriascoma yunnanense Rathnayaka & K.D. Hyde, Asian Journal of Mycology 2(1): 250 (2019) (Figure 12).

Figure 12.

Figure 12

Seriascoma yunnanense (SICAU 22-0059). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (c) = 50 µm, (dk) = 10 µm.

Saprobic on dead culm of Phyllostachys edulis (Carriere) J. Houzeau. Sexual morph: Ascostromata 110–200 × 120–150 × 120–140 μm (x¯ = 160 × 140 × 130 μm, n = 20), solitary to gregarious, immersed, globose to subglobose, coriaceous, dark brown to black. Peridium 12–26 μm wide (x¯ = 4.0 μm, n = 20), composed of 4–9 layers of brown to hyaline cells of textura angularis. Hamathecium 1.5–2.0 μm wide, composed of dense, branched, long, septate. Asci 52–80 × 12–16 μm, (x¯ = 60 × 14 μm, n = 50), 8-spored, bitunicate, broadly cylindrical, with a short pedicel, straight or slightly curved, with an apical chamber. Ascospores 20–30 × 6.0–7.5μm (x¯ = 23 × 7.0 μm, n = 50), 2–seriate, 1–septate, slightly constricted at the septum, fusiform, narrowly acute at both ends, straight to curved, hyaline, smooth-walled, surrounded by a gelatinous sheath. Asexual morph: Undetermined.

Material examined: China, Sichuan Province, Chengdu City, Jin’niu District (30°45′57″ N, 104°7′34″ E, Alt. 539 m), on dead culm of Phyllostachys edulis, 8 April 2021, Yicong Lv, LYC202104043 (SICAU 22-0059), living culture SICAUCC 22-0059.

Culture characteristics: Ascospores germinate in sterile water within 12 h at 25 °C. Colonies grow slowly on PDA, and reach 6 cm after 30 days at 25 °C, circular, brown to dark brown.

Notes: On the morphology, our observations were identical to the descriptions of Seriascoma yunnanense provided by Rathnayaka et al. [44]. Nucleotide comparisons of SSU, LSU, tef1-α and rpb2 (SICAUCC 22-0059) showed high homology with the sequences of S. yunnanense (MFLU 19-0690), similarities are 98.37% (847/861, 0 gaps), 100% (841/841, 0 gaps), 96.59% (396/410, 0 gaps), 99.65% (855/858, 0 gaps), respectively. We report our collection as S. yunnanense.

4. Discussion

In this study, we confirmed seven species of saprophyte or parasitism from leaves and culms of Phyllostachys, corresponding to four genera. Microfungi are abundant on culms and leaves of bamboo as pointed out by Dai et al. [45]. Ascomycetes are the most abundant species on bamboo, with about 1150 taxa having been recorded [45]. Furthermore, the number of saprophytic fungi is more than that of pathogenic fungi [16,36].

The genus Apiospora Sacc. was recognized and described by Saccardo considering Ap. montagnei designated as the type species [46]. Apiospora has been widely accepted as a synonym for Arthrinium after Ellis [47]. Crous and Groenewald combined Apiospora species to be sexual morphs of Arthrinium species and synonymized under Arthrinium [40]. However, Pintos and Alvarado found that the morphological and ecological differences between Apiospora and Arthrinium are sufficient to support the taxonomic separation of the two genera. As a result, fifty-five species of Arthrinium were combined to Apiospora [48]. In this study, given the phylogenetic analysis with species of Apiospora and Arthrinium, in which 10 species of Arthrinium (Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. mori, Ar. phaeospermum, Ar. pusillispermum, Ar. sargassi, Ar. taeanense, Ar. marinum) are clustered in a well-supported clade within Apiospora, future studies are needed to better understand the combination of previous Arthrinium species with Apiospora. Apiospora species have a worldwide distribution and can be found on various hosts. Most species occurred on the plants in Poaceae, although some were known from Amaranthaceae, Juncaceae, Euphorbiaceae, Cyperaceae, Restionaceae, Fagaeaeand, even seaweeds [48,49]. To date, more than 25 species have been found on bamboo, most species were saprobic on dead bamboo culms, and a few species have been reported as pathogens. For example, Ap. arundinis causes brown culm streak of Phyllostachys praecox, and Ap. kogelbergensis causes blight disease of Bambusa intermedia [16,41,50,51]. Apiospora. hydei, Ap. neosubglobosa, and Ap. jiangxiensis were saprophytic on unidentified bamboo culms and leaves [41,52]. Apiospora yunnansis has been reported on bamboo culms of Phyllostachys nigra and P. heteroclada, which can cause bamboo blight disease of P. heteroclada [53,54]. In this study, four known species, Apiospora hydei, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. yunnansis, were newly recorded on Phyllostachys nigra, P. heteroclada, P. bissetii, and P. aurea respectively.

At present, Bifusisporella only comprises the ex-type species B. sorghi. In this study, we provide taxonomic details for another new species, B. sichuanensis, that was collected from living leaves of Phyllostachys edulis. B. sorghi was isolated as an endophyte from healthy sorghum leaves in Brazil by Silva et al. [42]. However, B. sichuanensis is pathogenic, causing tar spot on bamboo leaves. In addition, the sexual stage in this genus is supplemented.

Phaeosphaeriaceae is one of the most important and species-rich families in Pleosporales with diverse lifestyles [55,56], and may be found on herbaceous stems or monocotyledonous culms, branches, leaves, flowers, and woody substrates [57,58]. Currently, more than 70 genera are accommodated in Phaeosphaeriaceae [59]. Most genera in this family were introduced as monotypic genera, such as Acericola, Banksiophoma, Bhagirathimyces, Bhatiellae, Brunneomurispora, Camarosporioides, Elongaticollum, Equiseticola, Hydeopsis, Jeremyomyces, Mauginiella, Melnikia, Neoophiobolus, Neosphaerellopsis, Neostagonosporella, Ophiobolopsis, and Parastagonosporella, among others. Due to these genera being represented by a single species, resulting in few samples that could be used for taxon, the phylogenetic relationships with the related genera are sometimes not well-resolved. Based on morphological characteristics and multigene phylogeny, a novel genus, Paralloneottiosporina, is introduced to accommodate Pa. sichuanensis sp. nov. According to the field investigation, Pa. sichuanensis can cause leaf blight that eventually leads to leaf necrosis and plant decline in severe cases. Besides Ph. violascens, leaf blight caused by Pa. sichuanensis has also been observed on P. heterocycla and P. tianmuensis. This indicates that Pa. sichuanensis may be a common parasitic fungus on bamboos.

As only three species are accommodated within Seriascoma, more research is also needed for better understanding this genus [60]. Seriascoma is presently known as saprobic on decaying wood and dead bamboo in the terrestrial or freshwater habitats distributed in China and Thailand [16,44,61,62]. Seriascoma. yunnanense is found on dead branches of bamboo in Yunnan. In this study, S. yunnanense was saprophytic on Phyllostachys edulis.

The previous studies have revealed a high fungal diversity associated with bamboo Phyllostachys. In recent years, 10 species belonging to seven genera have been described from bamboo of Phyllostachys, including two new genera, Neostagonosporella and Parakarstenia, established by Yang et al. on P. heteroclada in Sichuan Province [54,58,63,64,65,66,67,68,69]. However, the knowledge about bambusicolous fungi is incomplete and mainly remains at cataloguing stage [14]. The previous studies of identification were mostly based on morphological characteristics, and lacked molecular data. Moreover, their hosts were poorly documented or unknown [70], and specimens were absent for further re-examination. Therefore, these species need to be recollected, epitypified, and sequenced [10], and new species need to be discovered and described.

Appendix A. Molecular Data Used in This Study and GenBank Accession Numbers

Table A1.

Isolates and GenBank accession numbers of sequences used in this study.

Species Strains GenBank Accession Numbers
ITS LSU tub2 tef1-a rpb1 SSU rpb2 References
Apiospora acutiapica KUMCC 20-0209 MT946342 MT946338 [71]
Apiospora acutiapica KUMCC 20-0210 T MT946343 MT946339 [71]
Apiospora aquaticum MFLU 18-1628 T MK828608 MK835806 [55]
Apiospora arundinis CBS 114316 KF144884 KF144928 KF144974 KF145016 [40]
Apiospora arundinis CBS 450.92 AB220259 AB220306 [71]
Apiospora arundinis AP11118A MK014868 MK014835 MK017974 MK017945 [72]
Apiospora aureum CBS 244.83 T AB220251 KF144935 KF144981 KF145023 NCBI
Apiospora balearica CBS 145129 T MK014869 MK014836 MK017975 MK017946 [72]
Apiospora bambusicola MFLUCC 20-0144 T MW173030 MW173087 MW183262 [73]
Apiospora biserialis CGMCC 3.20135 T MW481708 MW522955 MW522938 [52]
Apiospora camelliae-sinensis LC5007 T KY494704 KY494780 KY705173 KY705103 [36]
Apiospora camelliae-sinensis LC8181 KY494761 KY494837 KY705229 KY705157 [36]
Apiospora chiangraiense MFLU:21-0046 MZ542520 MZ542524 MZ546409 [49]
Apiospora chromolaenae MFLUCC 17-1505 T MT214342 MT214436 [74]
Apiospora cyclobalanopsidis CGMCC 3.20136 T MW481713 MW522962 MW522945 [52]
Apiospora descalsii CBS 145130 T MK014870 MK014837 MK017976 MK017947 [72]
Apiospora dichotomanthi CGMCC 3.18332 T KY494697 KY494832 KY705167 KY705096 [36]
Apiospora dichotomanthi LC8175 KY494755 KY494831 KY705223 KY705151 [36]
Apiospora esporlensis CBS 145136 T MK014878 MK014845 MK017983 MK017954 [72]
Apiospora euphorbiae IMI 285638b AB220241 AB220288 [71]
Apiospora gaoyouensis CFCC 52301 MH197124 MH236789 MH236793 [53]
Apiospora gaoyouensis CFCC 52302 MH197125 MH236790 MH236794 [53]
Apiospora garethjonesii JHB004 KY356086 KY356091 [41]
Apiospora garethjonesii HKAS 96289 T NR_154736 NG_057131 [41]
Apiospora gelatinosa HKAS:111962 MW5229 MW522941 [52]
Apiospora guizhouensis LC5318 KY494708 KY494784 KY705177 KY705107 [36]
Apiospora guizhouensis CGMCC 3.18334 T = LC5322 KY494709 KY494785 KY705178 KY705108 [36]
Apiospora hispanica IMI 326877 AB220242 AB220336 AB220289 [71]
Apiospora hydei CBS 114990 T KF144890 KF144936 KF144982 KF145024 [40]
Apiospora hydei KUMCC 16-0204 KY356087 KY356092 [41]
Apiospora hydei SICAUCC 22-0032 ON183998 ON185553 ON221313 ON221312 This study
Apiospora hyphopodii MFLUCC 15-003 T KR069110 KR069111 [75]
Apiospora hyphopodii KUMCC 16-0201 KY356088 KY356093 [41]
Apiospora hysterina AP15318 MK014873 MK014840 MK017979 MK017950 [72]
Apiospora hysterina ICPM6889 MK014874 MK014841 MK017980 MK017951 [72]
Apiospora hysterina AP29717 MK014875 MK014842 MK017981 MK017952 [72]
Apiospora hysterina AP2410173 MK014876 MK014843 [72]
Apiospora hysterina AP12118 MK014877 MK014844 MK017982 MK017953 [72]
Apiospora iberica CBS 145137 T MK014879 MK014846 MK017984 MK017955 [72]
Apiospora intestini CBS 135835 T KR011352 MH877577 KR011350 KR011351 [76]
Apiospora italica CBS 145138 T MK014880 MK014847 MK017985 MK017956 [72]
Apiospora italica AP221017 T MK014881 MK014848 MK017986 MK017957 [72]
Apiospora jatrophae CBS 134262 T NR_154675 [77]
Apiospora jatrophae MMI 00051 = CBS:134262 JQ246355 [77]
Apiospora jiangxiensis CGMCC 3.18381 T KY494693 KY705163 KY705092 [36]
Apiospora jiangxiensis LC4578 KY494694 KY494770 KY705164 KY705093 [36]
Apiospora jiangxiensis SICAUCC 22-0070 ON227094 ON227098 ON244432 ON244431 This study
Apiospora kogelbergensis CBS 113332 KF144891 KF144937 KF144983 KF145025 [40]
Apiospora kogelbergensis CBS 113333 T KF144892 KF144938 KF144984 KF145026 [40]
Apiospora kogelbergensis CBS 113335 KF144893 KF144939 KF144985 KF145027 [40]
Apiospora kogelbergensis CBS 117206 KF144895 KF144941 KF144987 KF145029 [40]
Apiospora locuta-pollinis LC11683 MF939595 MF939622 MF939616 [78]
Apiospora longistroma MFLUCC 11-0479 KU940142 KU863130 [16]
Apiospora longistroma MFLUCC 11-0481 KU940141 KU863129 [16]
Apiospora longistroma MFLU 15-1184 T NR_154716 [16]
Apiospora malaysiana CBS 102053 T KF144896 KF144942 KF144988 KF145030 [40]
Apiospora marii CBS 497.90 T AB220252 KF144947 KF144993 KF145035 [40]
Apiospora mediterranea IMI 326875 AB220243 AB220290 [71]
Apiospora minutispora 17E-042 LC517882 LC518888 LC518889 [79]
Apiospora montagnei LSU0093 MT000394 MT000490 [80]
Apiospora mytilomorpha DAOM 214595 KY494685 [36]
Apiospora neobambusae CGMCC 3.18335 T KY494718 KY494794 KY705186 KY806204 [36]
Apiospora neobambusae KUMCC 20-0207 MT946346 MT946340 [71]
Apiospora neobambusae LC7107 KY494719 KY494795 KY705187 KY705117 [36]
Apiospora neochinensis CFCC 53037 MK819292 MK818548 MK818546 [81]
Apiospora neochinensis CFCC 53036 T MK819291 MK818547 MK818545 [81]
Apiospora neogarethjonesii HKAS 96354 T MK070897 MK070898 [82]
Apiospora neosubglobosa JHB006 KY356089 KY356094 [41]
Apiospora neosubglobosa JHB007 T KY356090 KY356095 [41]
Apiospora neosubglobosa SICAUCC 22-0071 ON227095 ON227099 ON244430 ON244429 This study
Apiospora obovata CGMCC 3.18331 T KY494696 KY494834 KY705166 KY705095 [41]
Apiospora obovata LC8177 KY494757 KY494833 KY705225 KY705153 [41]
Apiospora ovata CBS 115042 T KF144903 KF144950 KF144995 KF145037 [40]
Arthrinium paraphaeospermum NCYU 19-0341 MW114315 MW293936 MW288020 NCBI
Apiospora paraphaeosperma MFLUCC 13-0644 T KX822128 KX822124 [71]
Apiospora phragmitis CPC 18900 T KF144909 KF145001 KF145043 [40]
Apiospora phragmitis AP3218 MK014891 MK014858 MK017996 MK017967 [72]
Apiospora phragmitis AP2410172A MK014890 MK014857 MK017995 MK017966 [72]
Apiospora phyllostachydis MFLUCC 18-1101 MK291949 [65]
Apiospora piptatheri CBS 145149 T MK014893 MK014860 MK017969 [72]
Apiospora pseudoparenchymatica CGMCC 3.18336 T KY494743 KY494819 KY705211 KY705139 [36]
Apiospora pseudoparenchymatica LC8173 KY494753 KY494829 KY705221 KY705149 [36]
Apiospora pseudorasikravindrae KUMCC 20-0208 T MT946344 [71]
Apiospora pseudorasikravindrae KUMCC 20-0211 MT946345 [71]
Apiospora pseudosinensis CBS 135459 T KF144910 KF144957 KF145044 [40]
Apiospora pseudospegazzinii CBS 102052 T KF144911 KF144958 KF145002 KF145045 [40]
Apiospora pterosperma CBS 123185 KF144912 KF144959 KF145003 [40]
Apiospora pterosperma CBS 134000 T KF144913 KF144960 KF145004 KF145046 [40]
Apiospora qinlingensis CFCC 52303 T MH197120 MH236791 MH236795 [53]
Apiospora qinlingensis CFCC 52304 MH197121 MH236792 MH236796 [53]
Apiospora rasikravindrae NFCCI 2144 T KF144914 [83]
Apiospora rasikravindrae MFLUCC 11-0616 KU940144 KU863132 [16]
Apiospora rasikravindrae LC5449 KY494713 KY494789 KY705182 KY705112 [36]
Apiospora rasikravindrae LC7115 KY494721 KY494797 KY705189 KY705118 [36]
Apiospora rasikravindrae KUC21351 MH498540 MH498498 MN868932 [84]
Apiospora rasikravindrae KUC21327 MH498541 MH498499 MH544670 [84]
Apiospora sacchari CBS 212.30 KF144916 KF144962 KF145005 KF145047 [40]
Apiospora sacchari CBS 301.49 KF144917 KF144963 KF145006 KF145048 [40]
Apiospora saccharicola CBS 191.73 KF144920 KF144966 KF145009 KF145051 [40]
Apiospora saccharicola CBS 463.83 KF144921 KF144968 KF145010 KF145052 [40]
Apiospora sasae CBS 146808 T MW883402 MW883797 MW890120 MW890104 [85]
Apiospora septatum CGMCC 3.20134 T MW481711 MW522960 MW522943 [52]
Apiospora serenensis IMI 326869 T AB220250 AB220297 [71]
Apiospora serenensis ATCC 76309 AB220240 AB220287 [71]
Apiospora setariae CFCC 54041 MT492004 MT497466 MW118456 [86]
Apiospora setostroma KUMCC 19-0217 MN528012 MN528011 MN527357 [87]
Apiospora sinensis UNKNOW-1 = HKUCC 3143 AY083831 NCBI
Apiospora sinensis UNKNOW-2 DQ810215 NCBI
Apiospora sorghi URM<BRA>:9300 MK371706 NCBI
Apiospora stipae CBS 146804 MW883403 MW883798 MW890121 MW890105 [85]
Apiospora subglobosa MFLUCC 11-0397 T KR069112 KR069113 [75]
Apiospora subrosea LC7291 KY494751 KY494827 KY705219 KY705147 [36]
Apiospora subrosea CGMCC3.18337 T KY494752 KY494828 KY705220 KY705148 [36]
Apiospora thailandica MFLUCC 15-0199 KU940146 KU863134 [16]
Apiospora thailandica MFLUCC 15-0202 T KU940145 KU863133 [16]
Apiospora thailandica LC5630 KY494714 KY494790 KY806200 KY705113 [36]
Apiospora tintinnabula 7019-96 (ICMP) DQ810216 [71]
Apiospora vietnamensis IMI 99670 KX986096 KX986111 KY019466 [88]
Apiospora xenocordella CBS 478.86 T KF144925 KY494763 [40]
Apiospora xenocordella CBS 595.66 KF144926 KF144971 KF145013 KF145055 [40]
Apiospora yunnana MFLUCC 15-0002 T KU940147 KU863135 [16]
Apiospora yunnana SICAUCC 22-0072 ON227096 ON227100 ON244426 ON244425 This study
Arthrinium agari KUC21364 MH498516 MH498474 MN868917 [84]
Arthrinium arctoscopi KUC21347 MH498525 MH498483 MN868922 [84]
Arthrinium fermenti KUC21289 MF615226 MF615231 MH544667 [84]
Arthrinium koreanum KUC21350 MH498521 MH498479 MN868929 [84]
Arthrinium marinum KUC21328 MH498538 MH498496 MH544669 [84]
Arthrinium marinum KUC21356 MH498534 MH498492 MN868926 [84]
Arthrinium marinum KUC21355 MH498535 MH498493 MN868925 [84]
Arthrinium marinum KUC21354 MH498536 MH498494 MN868924 [84]
Arthrinium mori MFLU 18-2514 MW114313 MW114393 [89]
Arthrinium mori NCYU 19-0364 MW114314 MW114394 [89]
Arthrinium phaeospermum CBS 114315 KF144905 KF144952 KF144997 KF145039 [40]
Arthrinium phaeospermum CBS 114317 KF144906 KF144953 KF144998 KF145040 [40]
Arthrinium phaeospermum CBS 114318 KF144907 KF144954 KF144999 KF145041 [40]
Arthrinium pusillispermum KUC21357 MH498532 MH498490 MN868931 [84]
Arthrinium sargassi KUC21232 KT207750 KT207648 MH544676 [84]
Arthrinium taeanense KUC21322 MH498515 MH498473 MH544662 [84]
Pestalotiopsis chamaeropis CBS 237.38 MH855954 MH867450 KM199392 KM199474 [76]
Pestalotiopsis colombiensis CBS 118553 T KM199307 KM116222 KM199421 KM199488 [90]
Bambusicularia brunnea CBS 133599 T KM484830 KM484948 KM485043 [91]
Bambusicularia brunnea CBS 133600 AB274436 KM484949 KM485044 [91,92]
Barretomyces calatheae CBS 129274 = CPC 18464 KM484831 KM484950 KM485045 [76]
Bifusisporella sichuanensis SICAUCC 22-0073 T ON227097 ON227101 ON244427 ON244428 This study
Bifusisporella sorghi URM 7442 T MK060155 MK060153 MK060157 MK060159 [42]
Bifusisporella sorghi URM 7864 MK060156 MK060154 MK060158 MK060160 [42]
Buergenerula spartinae ATCC 22848 JX134666 DQ341492 JX134692 JX134720 [93]
Bussabanomyces longisporus CBS 125232 T KM484832 KM484951 KM009202 KM485046 [94]
Falciphora oryzae CBS 125863 T EU636699 KJ026705 JN857963 KJ026706 [95]
Falciphoriella solaniterrestris CBS 117.83 T KM484842 KM484959 KM485058 [91]
Gaeumannomycella caricicola CBS:145041 MK442584 MK442526 [96]
Gaeumannomycella caricis CBS 388.81 T KM484843 KM484960 KX306674 [91]
Gaeumannomyces australiensis CPC 26058 T KX306480 KX306550 KX306683 KX306619 [97]
Gaeumannomyces avenae CBS 187.65 JX134668 JX134680 JX134722 [93]
Gaeumannomyces avenae CBS 870.73 = DAR 20999 KM484833 DQ341495 KM485048 [91]
Gaeumannomyces californicus CPC 26044 T KX306490 KX306560 KX306691 KX306625 [97]
Gaeumannomyces ellisiorum CBS 387.81 T KM484835 KM484952 KX306692 KM485051 [91]
Gaeumannomyces floridanus CPC 26037 T KX306491 KX306561 KX306693 KX306626 [97]
Gaeumannomyces fusiformis CPC 26068 T KX306492 KX306562 KX306694 KX306627 [97]
Gaeumannomyces glycinicola CPC 26266 KX306494 KX306564 KX306696 KX306629 [97]
Gaeumannomyces glycinicola CPC 26057 KX306493 KX306563 KX306695 KX306628 [97]
Gaeumannomyces graminicola CBS 352.93 T KM484834 DQ341496 KX306697 KM485050 [91]
Gaeumannomyces graminis CPC 26045 KX306505 KX306575 KX306708 KX306640 [97]
Gaeumannomyces graminis var. graminis M33 JF710374 JF414896 JF710411 JF710442 [98]
Gaeumannomyces graminis var. graminis M54 JF414848 JF414898 JF710419 JF710444 [98]
Gaeumannomyces hyphopodioides CBS 350.77 T KX306506 KX306576 [97]
Gaeumannomyces hyphopodioides CBS 541.86 KX306507 KX306577 KX306709 [97]
Gaeumannomyces oryzicola CPC 26063 T KX306516 KX306586 KX306717 KX306646 [97]
Gaeumannomyces oryzinus CPC 26030 T KX306517 KX306587 KX306718 KX306647 [97]
Gaeumannomyces radicicola CBS 296.53 T KM009170 KM009158 KM009206 KM009194 [94]
Gaeumannomyces setariicola CPC 26059 KX306524 KX306594 KX306725 KX306654 [97]
Gaeumannomyces tritici CBS 273.36 KX306525 KX306595 KX306729 KX306655 [97]
Gaeumannomyces walkeri CPC 26028 T KX306543 KX306613 KX306746 KX306670 [97]
Gaeumannomyces wongoonoo BRIP:60376 KP162137 KP162146 [99]
Kohlmeyeriopsis medullaris CBS 117849 T = JK5528S KM484852 KM484968 KM485068 [91]
Macgarvieomyces borealis CBS 461.65 T MH858669 DQ341511 KM009198 KM485070 [94]
Macgarvieomyces juncicola CBS 610.82 KM484855 KM484970 KM009201 KM485071 [91]
Magnaporthiopsis agrostidis BRIP 59300 T KT364753 KT364754 KT364756 KT364755 [100]
Magnaporthiopsis cynodontis RS7-2 = CBS 141700 T KJ855508 KM401648 KP282714 KP268930 [101]
Magnaporthiopsis cynodontis RS5-5 KJ855506 KM401646 KP282712 KP268928 [101]
Magnaporthiopsis cynodontis RS3-1 KJ855505 KM401645 KP282711 KP268927 [101]
Magnaporthiopsis incrustans M35 JF414843 JF414892 JF710412 JF710437 [98]
Magnaporthiopsis maydis M84 KM009160 KM009148 KM009196 KM009184 [94]
Magnaporthiopsis maydis M85 KM009161 KM009149 KM009197 KM009185 [94]
Magnaporthiopsis meyeri-festucae FF2 MF178146 MF178151 MF178167 MF178162 [102]
Magnaporthiopsis meyeri-festucae SCR11 MF178150 MF178155 MF178171 MF178166 [102]
Magnaporthiopsis panicorum CM2S8 T KF689643 KF689633 KF689623 KF689613 [103]
Magnaporthiopsis panicorum CM10s2 KF689644 KF689634 KF689624 KF689614 [103]
Magnaporthiopsis poae TAP35 KJ855511 KM401651 KP282717 KP268933 [104]
Magnaporthiopsis poae M1 JF414827 JF414876 JF710400 JF710425 [98]
Magnaporthiopsis poae M12 JF414828 JF414877 JF710401 JF710426 [98]
Magnaporthiopsis rhizophila M22 JF414833 JF414882 JF710407 JF710431 [98]
Nakataea oryzae M21 JF414838 JF414887 JF710406 JF710441 [98]
Nakataea oryzae M69 JX134672 JX134685 JX134698 JX134726 [93]
Nakataea oryzae M71 JX134673 JX134686 JX134699 JX134727 [93]
Neogaeumannomyces bambusicola MFLUCC11-0390 T KP744449 KP744492 [105]
Neopyricularia commelinicola CBS 128307 = KACC 44083 FJ850125 KM484984 KM009199 KM485086 [91,106]
Neopyricularia commelinicola CBS 128308 T FJ850122 KM484985 KM485087 [91,106]
Ophioceras dolichostomum CBS 114926 = HKUCC 3936 = KM 8 JX134677 JX134689 JX134703 JX134731 [93]
Ophioceras leptosporum CBS 894.70 T = ATCC 24161 = HME 2955 JX134678 JX134690 JX134704 JX134732 [83]
Proxipyricularia zingiberis CBS 132355 = MAFF 240221 AB274433 KM484987 KM485090 [91]
Pseudophialophora eragrostis CM12m9 KF689648 KF689638 KF689628 KF689618 [103]
Pseudopyricularia cyperi CBS 133595 T = MAFF 240229 KM484872 KM484990 AB818013 [91]
Pseudopyricularia kyllingae CBS 133597 T = MAFF 240227 KM484876 KM484992 KT950880 KM485096 [91]
Pyricularia ctenantheicola GR0001 = Ct-4 = ATCC 200218 KM484878 KM484994 KM485098 [91]
Pyricularia grisea BR0029 KM484880 KM484995 KM485100 [91]
Pyricularia grisea CR0024 KM484882 KM484997 KM485102 [91]
Pyricularia oryzae CBS 365.52 = MUCL 9451 KM484890 KM485000 KM485110 [76]
Slopeiomyces cylindrosporus BAN-145 JF508361 [107]
Slopeiomyces cylindrosporus CG340 AY428776 [108]
Utrechtiana cibiessia CBS 128780 = CPC 18916 JF951153 JF951176 KM485047 [76]
Xenopyricularia zizaniicola CBS 132356 KM484946 KM485042 KM009203 KM485160 [91]
Acericola italica MFLUCC 13-0609 T MF167428 MF167429 MF167430 [109]
Alloneottiosporina thailandica MFLUCC 15-0576 T MT177913 MT177940 MT454002 MT177968 [43]
Allophaeosphaeria muriformia MFLUCC 13-0349 T KP765680 KP765681 KP765682 [105]
Amarenographium ammophilae MFLUCC 16-0296 KU848196 KU848197 MG520894 KU848198 [109]
Amarenomyces dactylidis MFLU 17-0498 T KY775577 KY775575 [110]
Ampelomyces quisqualis CBS 129.79 T EU754128 EU754029 [111]
Banksiophoma australiensis CBS 142163 T KY979739 KY979794 KY979889 [112]
Bhagirathimyces himalayensis AMH 10127 T = NFCCI 4580 MK836021 MK836020 MN121697 [113]
Bhatiellae rosae MFLUCC 17-0664 T MG828873 MG828989 MG829101 [114]
Brunneomurispora lonicerae KUMCC 18-0157 T MK356373 MK356346 MK359065 MK356360 [59]
Camarosporioides phragmitis MFLUCC 13-0365 T KX572340 KX572345 KX572354 KX572350 [115]
Chaetosphaeronema achilleae MFLUCC 16-0476 T KX765265 KX765266 [115]
Chaetosphaeronema hispidulum MFLU:16-1965 MT177915 MT177942 MT177970 [43]
Chaetosphaeronema hispidulum MFLU:16-2275 MT177914 MT177941 MT454003 MT177969 [43]
Chaetosphaeronema hispidulum CBS 216.75 KF251148 KF251652 KF253108 [116]
Dactylidina dactylidis MFLUCC 13-0618 KP744432 KP744473 KP753946 [105]
Dactylidina dactylidis MFLUCC 14-0966 T MG828886 MG829002 MG829199 MG829113 [114]
Dematiopleospora donetzica MFLU 15-2199 T MG829005 MG829116 [114]
Dematiopleospora mariae MFLUCC 13-0612 T KJ749654 KJ749653 KJ749655 KJ749652 [117]
Diederichomyces ficuzzae CBS 128019 KP170647 KP170673 [118]
Diederichomyces xanthomendozae CBS 129666 KP170651 KP170677 [118]
Dlhawksworthia clematidicola MFLUCC 17-2151 T MT310619 MT214574 MT394633 MT226687 [119]
Edenia gomezpompae JLCC 34533 KC193601 [120]
Elongaticollum hedychii MFLUCC 18-1638 T MT321796 MT321810 MT328753 MT321803 [115]
Elongaticollum hedychii NCYUCC 19-0286 MT321797 MT321811 MT328754 MT321804 [115]
Embarria clematidis MFLUCC 14-0652 KT306949 KT306953 KT306956 [121]
Embarria clematidis MFLUCC 14-0976 MG828871 MG828987 MG829194 MG829099 [114]
Equiseticola fusispora MFLUCC 14-0522 T KU987668 KU987669 MG520895 KU987670 [122]
Galliicola pseudophaeosphaeria MFLUCC 14-0524 MG520896 [109]
Hawksworthiana clematidicola MFLUCC 14-0910 T MG828901 MG829011 MG829202 MG829120 [114]
Hawksworthiana lonicerae MFLUCC 14-0955 T MG828902 MG829012 MG829203 MG829121 [114]
Hydeomyces desertipleosporoides SQUCC 15260 MK290842 MK290840 MK290849 MK290844 [123]
Hydeomyces desertipleosporoides SQUCC 15259 T MK290841 MK290839 MK290848 MK290843 [123]
Hydeomyces pinicola GZ-06 MK522506 MK522496 MK523386 MK522502 [124]
Hydeopsis verrucispora SD-2016-5 MK522508 MK522498 MK523388 MK522504 [124]
Italica achilleae MFLUCC 14-0959 T MG828903 MG829013 MG829204 MG829122 [114]
Jeremyomyces labinae CBS 144617 T MK442589 MK442695 [96]
Juncaceicola italica MFLUCC 13-0750 KX500110 KX500107 MG520897 KX500108 [109]
Juncaceicola luzulae MFLUCC 13-0780 KX449529 KX449530 MG520898 KX449531 [125]
Kwanghwana miscanthi FU31017 MK503817 MK503823 MT009126 MK503829 [126]
Leptosphaeria doliolum CBS 505.75 T JF740205 GU301827 GU349069 GU296159 [127,128]
Leptospora galii KUMCC 15-0521 T KX599547 KX599548 MG520899 KX599549 [109]
Leptospora rubella CPC 11006 DQ195780 DQ195792 DQ195803 [129]
Leptospora thailandica MFLUCC 16-0385 T KX655559 KX655549 KX655564 KX655554 [130]
Loratospora luzulae MFLUCC 14-0826 T KT328497 KT328495 KT328496 [121]
Mauginiella scaettae CBS 239.58 MH857770 MH869303 [76]
Melnikia anthoxanthii MFLUCC 14-1010 KU848204 KU848205 [131]
Murichromolaenicola chiangraiensis MFLUCC 17-1488 T MN994582 MN994559 MN998163 MN994605 [74]
Muriphaeosphaeria galatellae MFLUCC 15-0769 KT438330 KT438332 [132]
Muriphaeosphaeria galatellae MFLUCC 14-0614 T KT438333 KT438329 MG520900 KT438331 [132]
Neoophiobolus chromolaenae MFLUCC 17-1467 T MN994583 MN994562 MN998164 MN994606 [74]
Neosetophoma garethjonesii MFLUCC 14-0528 KY514402 KY501126 [133]
Neosetophoma rosigena MFLUCC 17-0768 T MG828928 MG829037 MG829143 [114]
Neosphaerellopsis thailandica CPC 21659 T KP170652 KP170721 KP170678 [118]
Neostagonospora arrhenather MFLUCC 15-0464 KX926417 KX910091 MG520901 KX950402 [134]
Neostagonospora caricis CBS 135092 T KF251163 KF251667 [76]
Neostagonospora phragmitis MFLUCC 16-0493 KX926416 KX910090 MG520902 KX950401 [134]
Neostagonosporella sichuanensis MFLUCC 18-1223 MH394690 MH394687 MK313854 MK296469 [58]
Neostagonosporella sichuanensis MFLUCC 18-1228 T MH368073 MH368079 MK313851 MH368088 [58]
Neosulcatispora strelitziae CPC 25657 KX228253 KX228305 [112]
Nodulosphaeria guttulatum MFLUCC 15-0069 KY514394 KY501115 [133]
Nodulosphaeria multiseptata MFLUCC 15-0078 KY496748 KY496728 [133]
Nodulosphaeria scabiosae MFLUCC 14-1111 T KU708850 KU708846 KU708854 KU708842 [135]
Ophiobolopsis italica MFLUCC 17-1791 T MG520939 MG520959 MG520903 MG520977 [109]
Ophiobolus artemisiae MFLUCC 14-1156 T KT315508 KT315509 MG520905 MG520979 [109]
Ophiobolus disseminans MFLUCC 17-1787 MG520941 MG520961 MG520906 MG520980 [109]
Ophiobolus ponticus MFLUCC 17-2273 MG520943 MG520963 MG520908 MG520982 [109]
Ophiosimulans tanaceti MFLUCC 14-0525 KU738890 KU738891 MG520910 KU738892 [109]
Ophiosphaerella herpotricha KY423 KP690989 KP691011 [136]
Ophiosphaerella korrae ATCC 56289 KC848509 KC848515 [136]
Ophiosphaerella narmari ATCC 64688 KC848510 KC848516 [136]
Paraleptosphaeria dryadis CBS 643.86 JF740213 GU301828 GU349009 KC584632 [127,128]
Paraleptospora chromolaenae MFLUCC 17-1481 T MN994587 MN994563 MN998167 MN994609 [74]
Paralloneottiosporina sichuanensis SICAUCC 22-0074 T ON226746 ON227102 ON244423 ON227129 This study
Paralloneottiosporina sichuanensis SICAUCC 22-0075 ON226747 ON227103 ON244424 ON227130 This study
Paraloratospora camporesii MFLU 18-0915 T MN756639 MN756637 MN756635 [113]
Paraophiobolus arundinis MFLUCC 17-1789 T MG520945 MG520965 MG520912 MG520984 [109]
Paraophiobolus plantaginis MFLUCC 17-0245 T KY797641 KY815010 KY815012 [109]
Paraphoma chrysanthemicola CBS 522.66 KF251166 KF251670 KF253124 [116]
Paraphoma radicina CBS 111.79 KF251172 KF251676 KF253130 [116]
Parastagonospora italica MFLUCC 13-0377 T KU058714 KU058724 MG520915 MG520985 [109,137]
Parastagonospora minima MFLUCC 13-0376 KU058713 KU058723 MG520916 MG520986 [109,137]
Parastagonosporella fallopiae CCTU 1151.1 MH460544 MH460546 MH460550 [138]
Parastagonosporella fallopiae CBS 135981 T MH460543 MH460545 MH460549 [138]
Phaeopoacea festucae MFLUCC 17-0056 KY824766 KY824767 KY824769 [134]
Phaeoseptoriella zeae CBS 144614 T MK442611 MK442547 MK442702 [96]
Phaeosphaeria chiangraina MFLUCC 13-0231 T KM434270 KM434280 KM434298 KM434289 [57]
Phaeosphaeria oryzae CBS 110110 T KF251186 KF251689 GQ387530 [139]
Phaeosphaeria pleurospora CBS 460.84 AF439498 [140]
Phaeosphaeriopsis glaucopunctata MFLUCC 13-0265 KJ522473 KJ522477 MG520918 KJ522481 [109,141]
Phaeosphaeriopsis triseptata MFLUCC 13-0271 KJ522475 KJ522479 MG520919 KJ522484 [109,141]
Phaeosphaeriopsis yuccae MFLUCC 16-0558 KY554482 KY554481 MG520920 KY554480 [109]
Piniphoma wesendahlina CBS 145032 T MK442615 MK442551 MK442706 [96]
Poaceicola arundinis MFLUCC 15-0702 T KU058716 KU058726 MG520921 MG520988 [109]
Poaceicola italica MFLUCC 13-0267 KX926421 KX910094 MG520924 KX950409 [109,134]
Populocrescentia ammophilae MFLUCC 17-0665 T MG828949 MG829059 MG829231 MG829164 [114]
Populocrescentia forlicesenensis MFLUCC 14-0651 T KT306948 KT306952 MG520925 KT306955 [121]
Populocrescentia rosae TASM 6125 T MG829060 MG829232 MG829165 [114]
Pseudoophiobolus mathieui MFLUCC 17-1784 MG520949 MG520969 MG520928 MG520991 [109]
Pseudoophiobolus rosae MFLUCC 17-1786 T MG520952 MG520972 MG520930 MG520993 [109]
Pseudoophiobolus urticicola KUMCC 17-0168 T MG520955 MG520975 MG520933 MG520996 [109]
Pseudoophiosphaerella huishuiensis HS-13 MK522509 MK522499 MK523389 MK522505 [124]
Pseudophaeosphaeria rubi MFLUCC 14-0259 T KX765298 KX765299 MG520934 KX765300 [130]
Sclerostagonospora ericae CPC 25927 T KX228268 KX228319 KX228375 [112]
Scolicosporium minkeviciusii MFLUCC 12-0089 KF366382 KF366383 [142]
Septoriella phragmitis CPC 24118 T KR873251 KR873279 [143]
Setomelanomma holmii CBS 110217 KT389542 GU301871 GU349028 GU296196 [127,144]
Setophoma terrestris CBS 335.29 KF251246 KF251749 KF253196 [116]
Stagonospora neglecta CBS 343.86 AJ496630 [145]
Sulcispora supratumida MFLUCC 14-0995 T KP271443 KP271444 MH665366 KP271445 [146]
Tintelnotia destructans CBS 127737 T KY090652 KY090664 KY090698 [147]
Tintelnotia opuntiae CBS 376.91 T KY090651 GU238123 GU238226 [147,148]
Vagicola arundinis MFLUCC 15-0027 T KY706139 KY706129 MG520936 KY706134 [109]
Vittaliana mangrovei NFCCI 4251 T MG767311 MG767312 MG767314 MG767313 [149]
Vrystaatia aloeicola CBS 135107 KF251278 KF251781 [116]
Wingfieldomyces cyperi CBS 141450 T KX228286 KX228337 MK540163 [150]
Wojnowicia italica MFLUCC 13-0447 T KX342923 KX430001 KX430003 KX430002 [130]
Wojnowicia rosicola MFLUCC 15-0128 T MG828979 MG829091 MG829191 [114]
Wojnowiciella eucalypti CBS 139904 T KR476741 KR476774 [76]
Xenophoma puncteliae CBS 128022 JQ238619 KP170686 [118,151]
Xenoseptoria neosaccardoi CBS 120.43 KF251280 KF251783 KF253227 [116]
Xenoseptoria neosaccardoi CBS 128665 KF251281 KF251784 KF253228 [116]
Yunnanensis phragmitis MFLUCC 17-1361 T MF684869 MF684865 MF684864 [152]
Yunnanensis phragmitis MFLUCC 17-0315 MF684862 MF684863 MF683624 MF684867 [152]
Biatriospora marina CY 1228 GQ925848 GU479848 GQ925835 GU479823 [153]
Biatriospora peruviensis CCF 4485 LN626683 LN626671 LN626677 LN626665 [154]
Neooccultibambusa chiangraiensis MFLUCC 12-0559 T KU764699 KU712458 [155]
Neoroussoella bambusae MFLUCC 11-0124 KJ474839 KJ474848 KJ474856 [156]
Occultibambusa aquatica MFLUCC 11-0006 KX698110 KX698112 [130]
Occultibambusa bambusae MFLUCC 11-0394 KU863113 KU940194 KU872117 KU940171 [16]
Occultibambusa bambusae MFLUCC 13-0855 T KU863112 KU940193 KU872116 KU940170 [16]
Occultibambusa chiangraiensis MFLUCC 16-0380 T KX655546 KX655551 KX655566 [130]
Occultibambusa fusispora MFLUCC 11-0127 T KU863114 KU940195 KU940172 [16]
Occultibambusa jonesii GZCC 16-0117 T KY628322 KY814756 KY628324 KY814758 [157]
Occultibambusa kunmingensis HKAS 102151 T MN913733 MT954407 MT864342 MT878453 [61]
Occultibambusa maolanensis GZCC 16-0116 KY628323 KY814757 KY628325 KY814759 [157]
Occultibambusa pustula MFLUCC 11-0502 KU863115 KU872118 [16]
Paradictyoarthrinium diffractum MFLUCC 13-0466 KP744498 KP753960 KX437764 [105,158]
Paradictyoarthrinium tectonicola MFLUCC 13-0465 T KP744500 KP753961 KX437763 [105,158]
Roussoella hysterioides HH 26988 AB524622 AB539115 AB524481 AB539102 [127]
Roussoella nitidula MFLUCC 11-0182 KJ474843 KJ474852 KJ474859 [156]
Roussoella nitidula MFLUCC 11-0634 KJ474842 KJ474851 KJ474858 [156]
Roussoella pustulans KT 1709 AB524623 AB539116 AB524482 AB539103 [1,127]
Seriascoma bambusae KUMCC 21-0021 MZ329035 MZ325468 MZ329031 MZ325470 [159]
Seriascoma didymospora MFLUCC 11-0179 T KU863116 KU940196 KU940173 [16]
Seriascoma didymospora MFLUCC 11-0194 KU863117 KU940197 KU940174 [16]
Seriascoma yunnanense MFLU 19-0690 T NG_068303 MN381858 MN174694 MN210324 [44]
Seriascoma yunnanense SICAUCC 22-0059 ON226771 ON567182 ON227356 ON567183 This study
Torula herbarum CBS 111855 KF443386 KF443403 KF443391 KF443396 [160]
Westerdykella ornata CBS 379.55 GU301880 GU349021 GU296208 GU371803 [127]

Notes: superscript T represents ex-type or ex-epitype isolates. “–” means that the sequence is missing, unavailable or unused. New sequences are listed in bold. Abbreviation: AP: Culture Collection of A. Pintos; ATCC: American Type Culture Collection, U.S.A.; BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CPC: Culture Collection of P.W. Crous; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; GZCC: Guizhou Academy of Agricultural Sciences Culture Collection, Guizhou, China; IMI: Culture Collection of CABI Europe UK Centre, Egham, UK; JHB: Culture Collection of H.B. Jiang; KUMCC: Kunming Institute of Botany Culture Collection, Yunnan, China; LC: Working collection of Lei Cai, housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NCYUCC: National Chiayi University Culture Collection, Chiayi, Taiwan; SICAUCC: Sichuan Agricultural University Culture Collection, Sichuan, China; URM: Culture Collection of the Universidade Federal de Pernambuco, Brazil.

Author Contributions

Q.Z. and C.-L.Y.: conceptualization. Q.Z.: data curation. Q.Z. and Y.-C.L.: formal analysis, methodology, and writing—original draft. Q.Z., Y.-C.L., Y.D. and F.-H.W.: investigation. C.-L.Y. and Y.-G.L.: project administration. C.-L.Y. and X.-L.X.: supervision. C.-L.Y., X.-L.X., S.-Y.L. and L.-J.L.: writing—review and editing. All authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The datasets presented in this study can be found in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/), Index Fungorum (http://www.indexfungorum.org/Names/Names.asp) (all accessed on 8 May 2022).

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Tanaka K., Hirayama K., Yonezawa H., Hatakeyama S., Harada Y., Sano T., Shirouzu T., Hosoya T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. Stud. Mycol. 2009;64:175–209. doi: 10.3114/sim.2009.64.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Shi J.Y., Zhou D.Q., Ma L.S., Yao J., Zhang D.M. Diversity of bamboo species in China. World Bamboo Ratt. 2020;18:55–65. doi: 10.12168/sjzttx.2020.04.011. [DOI] [Google Scholar]
  • 3.Du S.S. Classification and arrangement of Phyllostachys (Poaceae: Bambusoideae), China. J. Fujian Forestry Sci. Technol. 2020;47:120–123. doi: 10.13428/j.cnki.fjlk.2020.03.022. [DOI] [Google Scholar]
  • 4.Li Y.G., Xue L., Fan L.L., Ye L.T., Cheng L.Y., He T.Y., Zheng Y.S. Research progress in germplasm resources and applications of Phyllostachy. J. Sic. For. Sci. Technol. 2019;40:117–122. doi: 10.16779/j.cnki.1003-5508.2019.04.024. [DOI] [Google Scholar]
  • 5.Bystriakova N., Kapos V., Lysenko I., Stapleton C.M.A. Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers. Conserv. 2003;12:1833–1841. doi: 10.1023/A:1024139813651. [DOI] [Google Scholar]
  • 6.Scurlock J.M.O., Dayton D.C., Hames B. Bamboo: An overlooked biomass resource? Biomass. Bioener. 2000;19:229–244. doi: 10.1016/S0961-9534(00)00038-6. [DOI] [Google Scholar]
  • 7.Idris M.A., Mohamad A. Bamboo shoot utilization in peninsular Malaysia: A case study in Pahang. J. Bamboo Rattan. 2002;1:141–155. doi: 10.1163/156915902760181612. [DOI] [Google Scholar]
  • 8.Shi J.Y., Chen Q.B., Huang J.Y., Zhou D.Q., Ma L.S., Yao J. Biodiversity of the staple food bamboos of giant panda and its important value. World Bamboo Rattan. 2020;18:10–19. doi: 10.12168/sjzttx.2020.05.002. [DOI] [Google Scholar]
  • 9.Wang X.J., Wang T., Chi M., Li L.B. Research progress of ornamental bamboos in China. J. Bamboo Res. 2019;38:3–9. doi: 10.19560/j.cnki.issn1000-6567.2019.04.002. [DOI] [Google Scholar]
  • 10.Hyde K.D., Zhou D.Q., Mckenzie E.H.C., Ho W.H., Dalisay T. Vertical distribution of saprobic fungi on bamboo culms. Fungal Divers. 2002;11:109–118. [Google Scholar]
  • 11.Tanaka E., Shimizu K., Imanishi Y., Yasuda F., Tanaka C. Isolation of basidiomycetous anamorphic yeast-like fungus Meira argovae found on Japanese bamboo. Mycoscience. 2008;49:329–333. doi: 10.1007/S10267-008-0429-1. [DOI] [Google Scholar]
  • 12.Dai D.Q., Bhat D.J., Liu J.K., Chukeatirote E., Zhao R.L., Hyde K.D. Bambusicola, a new genus from bamboo with asexual and sexual morphs. Cryptogamie Mycol. 2012;33:363–379. doi: 10.7872/crym.v33.iss3.2012.363. [DOI] [Google Scholar]
  • 13.Doungporn M., Hiroko K., Tatsuji S. Molecular diversity of bamboo–associated fungi isolated from Japan. FEMS Microbiol. Lett. 2007;266:10–19. doi: 10.1111/j.1574-6968.2006.00489.x. [DOI] [PubMed] [Google Scholar]
  • 14.Hyde K.D., Zhou D., Dalisay T. Bambusicolous fungi: A review. Fungal Divers. 2002;9:1–14. [Google Scholar]
  • 15.Tanaka K., Harada Y. Bambusicolous fungi in Japan (1): Four Phaeosphaeria species. Mycoscience. 2004;45:377–382. doi: 10.1007/S10267-004-0197-5. [DOI] [Google Scholar]
  • 16.Dai D.Q., Phookamsak R., Wijayawardene N.N., Li W.J., Bhat D.J., Xu J.C., Taylor J.E., Hyde K.D., Chukeatirote E. Bambusicolous fungi. Fungal Divers. 2017;82:1–105. doi: 10.1007/s13225-016-0367-8. [DOI] [Google Scholar]
  • 17.Hatakeyama S., Tanaka K., Harada Y. Bambusicolous fungi in Japan (7): A new coelomycetous genus, Versicolorisporium. Mycoscience. 2008;49:211–214. doi: 10.1007/S10267-008-0409-5. [DOI] [Google Scholar]
  • 18.Hatakeyama S., Tanaka K., Harada Y. Bambusicolous fungi in Japan (5): Three species of Tetraploa. Mycoscience. 2005;46:196–200. doi: 10.1007/S10267-005-0233-0. [DOI] [Google Scholar]
  • 19.Zhang Z.Y., Zhang X. Potentials of bamboo in traditioanl Chinese medicine and development of heath products. World Sci. Technol. 2000;3:54–56. doi: 10.3969/j.issn.1674-3849.2000.03.018. [DOI] [Google Scholar]
  • 20.Zhou B.Z., Fu M.Y., Xie J.Z., Yang X.S., Li Z.C. Ecological functions of bamboo forest: Research and application. J. Forestry Res. 2005;16:143–147. doi: 10.1007/BF02857909. [DOI] [Google Scholar]
  • 21.Singhal P., Bal L.M., Satya S., Sudhakar P., Naik S.N. Bamboo shoots: A novel source of nutrition and medicine. Crit. Rev. Food Sci. Nutr. 2013;53:517–534. doi: 10.1080/10408398.2010.531488. [DOI] [PubMed] [Google Scholar]
  • 22.Teng S.C. Fungi of China. Mycotaxon, Ltd.; New York, NY, USA: 1996. pp. 1–728. [Google Scholar]
  • 23.Tai F.L. Sylloge Fungorum Sinicorum. Science Press, Academica Sinica; Beijing, China: 1979. pp. 1–1527. [Google Scholar]
  • 24.Chen M.M. Forest Fungi Phytogeography: Forest Fungi Phytogeography of China, North America, and Siberia and International Quarantine of Tree Pathogens. Pacific Mushroom Research and Education Center; Sacramento, CA, USA: 2002. pp. 1–469. [Google Scholar]
  • 25.Chomnunti P., Hongsanan S., Hudson B.A., Tian Q., Peršoh D., Dhami M.K., Alias A.S., Xu J.C., Liu X.Z., Stadler M., et al. The sooty moulds. Fungal Divers. 2014;66:1–36. doi: 10.1007/s13225-014-0278-5. [DOI] [Google Scholar]
  • 26.White T.J., Bruns T., Lee S., Taylor J. Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfaud D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322. [Google Scholar]
  • 27.Vilgalys R., Hester M. Rapid genetic identifification and mapping of enzymatically amplifified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.O’Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997;7:103–116. doi: 10.1006/mpev.1996.0376. [DOI] [PubMed] [Google Scholar]
  • 29.Glass N.L., Donaldson G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 1995;61:1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Matheny P.B., Liu Y.J., Ammirati J.F., Hall B.D. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales) Am. J. Bot. 2002;89:688–698. doi: 10.3732/ajb.89.4.688. [DOI] [PubMed] [Google Scholar]
  • 31.Castlebury L., Rossman A., Sung G., Hyten A., Spatafora J. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 2004;108:864–872. doi: 10.1017/S0953756204000607. [DOI] [PubMed] [Google Scholar]
  • 32.Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. [DOI] [PubMed] [Google Scholar]
  • 33.Rehner S.A., Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84–98. doi: 10.3852/mycologia.97.1.84. [DOI] [PubMed] [Google Scholar]
  • 34.O’Donnell K., Kistler H.C., Cigelnik E., Ploetz R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA. 1998;95:2044–2049. doi: 10.1073/pnas.95.5.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. doi: 10.1080/00275514.1999.12061051. [DOI] [Google Scholar]
  • 36.Wang M., Tan X.M., Liu F., Cai L. Eight new Arthrinium species from China. MycoKeys. 2018;34:1–24. doi: 10.3897/mycokeys.34.24221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. [Google Scholar]
  • 39.Xu X.L., Yang C.L., Jeewon R., Wanasinghe D.N., Xiao Q.G. Morpho-molecular diversity of Linocarpaceae (Chaetosphaeriales): Claviformispora gen. nov. from decaying branches of Phyllostachys heteroclada. MycoKeys. 2020;69:113–129. doi: 10.3897/mycokeys.69.54231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Crous P.W., Groenewald J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus. 2013;4:133–154. doi: 10.5598/imafungus.2013.04.01.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Dai D.Q., Jiang H.B., Tang L.Z., Bhat D.J. Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere. 2016;7:1332–1345. doi: 10.5943/mycosphere/7/9/7. [DOI] [Google Scholar]
  • 42.Silva R.M., Oliveira R.J., Bezerra J.D., Bezerra J.L., Souza–Motta C.M., Silva G.A. Bifusisporella sorghi gen. et sp. nov. (Magnaporthaceae) to accommodate an endophytic fungus from Brazil. Mycol. Prog. 2019;18:847–854. doi: 10.1007/s11557-019-01494-2. [DOI] [Google Scholar]
  • 43.Li W.J., McKenzie E.H.C., Liu J.K., Bhat D.J., Dai D.Q., Camporesi E., Tian Q., Maharachchikumbura S.S.N., Luo Z.L., Shang Q.J., et al. Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Divers. 2020;100:279–801. doi: 10.1007/s13225-020-00440-y. [DOI] [Google Scholar]
  • 44.Rathnayaka A.R., Dayarathne M.C., Maharachchikumbura S.S.N., Liu J.K., Tennakoon D.S., Hyde K.D. Introducing Seriascoma yunnanense sp. nov. (Occultibambusaceae, Pleosporales) based on evidence from morphology and phylogeny. Asian J. Mycol. 2019;2:245–253. doi: 10.5943/ajom/2/1/15. [DOI] [Google Scholar]
  • 45.Dai D.Q., Tang L.Z., Wang H.B. A Review of Bambusicolous Ascomycetes. Bamboo Curr. Future Prospect. 2018:165–183. doi: 10.5772/intechopen.76463. [DOI] [Google Scholar]
  • 46.Saccardo P. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositorum. Atti Soc. Veneziana-Trent. Istriana Sci. Nat. 1875;4:77–100. [Google Scholar]
  • 47.Ellis M.B. Dematiaceous hyphomycetes VI. Commonw. Mycol. Inst. 1965;103:1–46. [Google Scholar]
  • 48.Pintos Á., Alvarado P. Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Syst. Evol. 2021;7:197–221. doi: 10.3114/fuse.2021.07.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Tian X.G., Karunarathna S.C., Mapook A., Promputtha I., Xu J.C., Bao D.F., Tibpromma S. One new species and two new host records of Apiospora from bamboo and maize in Northern Thailand with thirteen new combinations. Life. 2021;11:1071. doi: 10.3390/life11101071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Chen K., Wu X.Q., Huang M.X., Han Y.Y. First report of brown culm ctreak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis. 2014;98:1274. doi: 10.1094/PDIS-02-14-0165-PDN. [DOI] [PubMed] [Google Scholar]
  • 51.Yin C.W., Luo F.Y., Zhang H., Fang X.M., Zhu T.H., Li S.J. First report of Arthrinium kogelbergense causing blight disease of Bambusa intermedia in Sichuan Province, China. Plant Dis. 2021;105:214. doi: 10.1094/PDIS-06-20-1159-PDN. [DOI] [PubMed] [Google Scholar]
  • 52.Feng Y., Liu J.K., Lin C.G., Chen Y.Y., Xiang M.M., Liu Z.Y. Additions to the genus Arthrinium (Apiosporaceae) from bamboos in China. Front. Microbiol. 2021;12:661281. doi: 10.3389/fmicb.2021.661281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Jiang N., Li J., Tian C.M. Arthrinium species associated with bamboo and reed plants in China. Fungal Syst. Evol. 2018;2:1–9. doi: 10.3114/fuse.2018.02.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Yang C.L., Xu X.L., Liu Y.G., Xu X.L. First report of bamboo blight disease caused by Arthrinium yunnanum on Phyllostachys heteroclada in Sichuan, China. Plant Dis. 2018;103:1026. doi: 10.1094/PDIS-10-18-1740-PDN. [DOI] [Google Scholar]
  • 55.Luo Z.L., Hyde K.D., Liu J.K., Maharachchikumbura S.S.N., Jeewon R., Bao D.F., Bhat D.J., Lin C.G., Li W.L., Yang J., et al. Freshwater Sordariomycetes. Fungal Divers. 2019;99:451–660. doi: 10.1007/s13225-019-00438-1. [DOI] [Google Scholar]
  • 56.Tennakoon D.S., Jeewon R., Gentekaki E., Kuo C.H., Hyde K.D. Multi-gene phylogeny and morphotaxonomy of Phaeosphaeria ampeli sp. nov. from Ficus ampelas and a new record of P. musae from Roystonea regia. Phytotaxa. 2019;406:111–128. doi: 10.11646/phytotaxa.406.2.3. [DOI] [Google Scholar]
  • 57.Phookamsak R., Liu J.K., McKenzie E.H.C., Manamgoda D.S., Ariyawansa H., Thambugala K.M., Dai D.Q., Camporesi E., Chukeatirote E., Wijayawardene N.N., et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014;68:159–238. doi: 10.1007/s13225-014-0308-3. [DOI] [Google Scholar]
  • 58.Yang C.L., Xu X.L., Wanasinghe D.N., Jeewon R., Phookamsak R., Liu Y.G., Liu L.J., Hyde K.D. Neostagonosporellasichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachys heteroclada (Poaceae) from Sichuan Province, China. MycoKeys. 2019;46:119–150. doi: 10.3897/mycokeys.46.32458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Phookamsak R., Hyde K.D., Jeewon R., Bhat D.J., Jones E.B.J., Maharachchikumbura S.S.N., Raspé O., Karunarathna S.C., Wanasinghe D.N., Hongsanan S., et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungal. Fungal Divers. 2019;95:1–273. doi: 10.1007/s13225-019-00421-w. [DOI] [Google Scholar]
  • 60.Hyde K.D., Jeewon R., Chen Y.J., Bhunjun C.S., Calabon M.S., Jiang H.B., Lin C.G., Norphanphoun C., Sysouphanthong P., Pem D., et al. The numbers of fungi: Is the descriptive curve flattening? Fungal Divers. 2020;103:219–271. doi: 10.1007/s13225-020-00458-2. [DOI] [Google Scholar]
  • 61.Dong W., Wang B., Hyde K.D., McKenzie E.H.C., Raja H.A., Tanaka K., Abdel-Wahab M.A., Abdel-Aziz F.A., Doilom M., Phookamsak R., et al. Freshwater Dothideomycetes. Fungal Divers. 2020;105:319–575. doi: 10.1007/s13225-020-00463-5. [DOI] [Google Scholar]
  • 62.Boonmee S., Wanasinghe D.N., Calabon M.S., Huanraluek N., Chandrasiri S.K.U., Jones G.E.B., Rossi W., Leonardi M., Singh S.K., Rana S., et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2021;111:1–135. doi: 10.1007/s13225-021-00489-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Yang C.L., Xu X.L., Liu Y.G. Two new species of Bambusicola (Bambusicolaceae, Pleosporales) on Phyllostachys heteroclada from Sichuan, China. Nova Hedwigia. 2019;108:527–545. doi: 10.1127/nova_hedwigia/2019/0526. [DOI] [Google Scholar]
  • 64.Yang C.L., Xu X.L., Liu Y.G., Hyde K.D., Mckenzie E.H.C. A new species of Phyllachora (Phyllachoraceae, Phyllachorales) on Phyllostachys heteroclada from Sichuan, China. Phytotaxa. 2019;392:186–196. doi: 10.11646/phytotaxa.392.3.2. [DOI] [Google Scholar]
  • 65.Yang C.L., Xu X.L., Dong W., Wanasinghe D.N., Liu Y.G., Hyde K.D. Introducing Arthrinium phyllostachium sp. nov. (Apiosporaceae, Xylariales) on Phyllostachys heteroclada from Sichuan Province, China. Phytotaxa. 2019;406:91–110. doi: 10.11646/phytotaxa.406.2.2. [DOI] [Google Scholar]
  • 66.Yang C.L., Xu X.L., Liu Y.G. Podonectria sichuanensis, a potentially mycopathogenic fungus from Sichuan Province in China. Phytotaxa. 2019;402:219–231. doi: 10.11646/phytotaxa.402.5.1. [DOI] [Google Scholar]
  • 67.Yang C.L., Xu X.L., Jeewon R., Boonmee S., Liu Y.G., Hyde K.D. Acremonium arthrinii sp. Nov., a mycopathogenic fungus on Arthrinium yunnanum. Phytotaxa. 2019;420:283–299. doi: 10.11646/phytotaxa.420.4.4. [DOI] [Google Scholar]
  • 68.Yang C.L., Baral H.O., Xu X.L., Liu Y.G. Parakarstenia phyllostachydis, a new genus and species of non-lichenized Odontotremataceae (Ostropales, Ascomycota) Mycol. Prog. 2019;18:833–845. doi: 10.1007/s11557-019-01492-4. [DOI] [Google Scholar]
  • 69.Yan H., Jiang N., Liang L.Y., Yang Q., Tian C.M. Arthriniumtrachycarpum sp. nov. from Trachycarpus fortunei in China. Phytotaxa. 2019;400:203–210. doi: 10.11646/phytotaxa.400.3.7. [DOI] [Google Scholar]
  • 70.Alves-Silva G., Drechsler-Santos E.R., da Silveira R.M.B. Bambusicolous Fomitiporia revisited: Multilocus phylogeny reveals a clade of host-exclusive species. Mycologia. 2020;112:633–648. doi: 10.1080/00275514.2020.1741316. [DOI] [PubMed] [Google Scholar]
  • 71.Senanayake I.C., Bhat J.D., Cheewangkoon R., Xie N. Bambusicolous Arthrinium species in Guangdong Province, China. Front. Microbiol. 2020;11:2981. doi: 10.3389/fmicb.2020.602773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Pintos A., Alvarado P., Planas J., Jarling R. Six new species of Arthrinium from Europe and notes about A.caricicola and other species found in Carex spp. hosts. MycoKeys. 2019;49:15–48. doi: 10.3897/mycokeys.49.32115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Tang X., Goonasekara I.D., Jayawardena R.S., Jiang H.B., Li J.F., Hyde K.D., Kang J.C. Arthrinium bambusicola (Fungi, Sordariomycetes), a new species from Schizostachyum brachycladum in northern Thailand. Biodivers Data J. 2020;8:e58755. doi: 10.3897/BDJ.8.e58755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Mapook A., Hyde K.D., McKenzie E.H.C., Jones E.B.G., Bhat D.J., Jeewon R., Stadler M., Samarakoon M.C., Malaithong M., Tanunchai B., et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed) Fungal Divers. 2020;101:1–175. doi: 10.1007/s13225-020-00444-8. [DOI] [Google Scholar]
  • 75.Senanayake I.C., Maharachchikumbura S.S.N., Hyde. K.D., Bhat J.D., Jones E.B.G., McKenzie E.H.C., Dai D.Q., Daranagama D.A., Dayarathne M.C., Goonasekara I.D., et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes) Fungal Divers. 2015;73:73–144. doi: 10.1007/s13225-015-0340-y. [DOI] [Google Scholar]
  • 76.Vu D., Groenewald M., de Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2018;91:23–36. doi: 10.1016/j.simyco.2018.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Sharma R., Kulkarni G., Sonawane M.S., Shouche Y.S. A new endophytic species of Arthrinium (Apiosporaceae) from Jatropha podagrica. Mycoscience. 2014;55:118–123. doi: 10.1016/j.myc.2013.06.004. [DOI] [Google Scholar]
  • 78.Zhao Y.Z., Zhang Z.F., Cai L., Peng W.J., Liu F. Four new filamentous fungal species from newly-collected and hive-stored bee pollen. Mycosphere. 2018;9:1089–1116. doi: 10.5943/mycosphere/9/6/3. [DOI] [Google Scholar]
  • 79.Das K., Lee S.Y., Choi H.W., Eom A.H., Choe Y.J., Jung H.Y. Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New records from soil in Korea. Mycobiology. 2020;48:450–463. doi: 10.1080/12298093.2020.1830741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Allen W.J., de Vries A.E., Bologna N.J., Bickford W.A., Kowalski K.P., Meyerson L.A., Cronin J.T. Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasive Phragmites australis. Glob. Ecol. Biogeogr. 2020;29:1199–1211. doi: 10.1111/geb.13097. [DOI] [Google Scholar]
  • 81.Jiang N., Liang Y.M., Tian C.M. A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales) Sydowia. 2020;72:77–83. doi: 10.12905/0380.sydowia72-2020-0077. [DOI] [Google Scholar]
  • 82.Hyde K.D., Norphanphoun C., Maharachchikumbura S., Bhat D.J., Jones E.B.G., Bundhun D., Chen Y.J., Bao D.F., Boonmee S., Calabon M., et al. Refined families of Sordariomycetes. Mycosphere. 2020;11:305–1059. doi: 10.5943/mycosphere/11/1/7. [DOI] [Google Scholar]
  • 83.Schoch C.L., Robbertse B., Robert V., Vu D., Cardinali G., Irinyi L., Meyer W., Nilsson R.H., Hughes K., Miller A.N., et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for fungi. Database. 2014:336–341. doi: 10.1093/database/bau061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kwon S.L., Park M.S., Jang S., Lee Y.M., Heo Y.M., Hong J.H., Lee H., Jang Y., Park J.H., Kim C., et al. The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus. 2021;12:13. doi: 10.1186/s43008-021-00065-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Crous P., Hernandez-Restrepo M., Schumacher R.K., Cowan D.A., Maggs-Koelling G., Marais E., Wingfield M.J., Yilmaz N., Adan O.C.G., Akulov A., et al. New and interesting fungi. 4. Fungal Syst. Evol. 2021;7:255–343. doi: 10.3114/fuse.2021.07.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Jiang N., Tian C.M. The holomorph of Arthrinium setariae sp. nov. (Apiosporaceae, Xylariales) from China. Phytotaxa. 2021;483:149–159. doi: 10.11646/phytotaxa.483.2.7. [DOI] [Google Scholar]
  • 87.Jiang H.B., Hyde K.D., Doilom M., Karunarathna S.C., Xu J.C., Phookamsak R. Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China. Asian J. Mycol. 2019;2:254–268. doi: 10.5943/ajom/2/1/16. [DOI] [Google Scholar]
  • 88.Wang M., Liu F., Crous P.W., Cai L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia. 2017;39:118–142. doi: 10.3767/persoonia.2017.39.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Tennakoon D.S., Kuo C.H., Maharachchikumbura S.S.N., Thambugala K.M., Gentekaki E., Phillips A.J.L., Bhat D.J., Wanasinghe D.N., de Silva N.I., Promputtha I., et al. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Divers. 2021;108:1–215. doi: 10.1007/s13225-021-00474-w. [DOI] [Google Scholar]
  • 90.Maharachchikumbura S.S.N., Hyde K.D., Groenewald J.Z., Xu J., Crous P.W. Pestalotiopsis revisited. Stud. Mycol. 2014;79:121–186. doi: 10.1016/j.simyco.2014.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Klaubauf S., Tharreau D., Fournier E., Groenewald J.Z., Crous P.W., de Vries R.P., Lebrun M.H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae) Stud. Mycol. 2014;79:85–120. doi: 10.1016/j.simyco.2014.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Hirata K., Kusaba M., Chuma I., Osue J., Nakayashiki H., Mayama S., Tosa Y. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol. Res. 2007;111:799–808. doi: 10.1016/j.mycres.2007.05.014. [DOI] [PubMed] [Google Scholar]
  • 93.Luo J., Zhang N. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota) Mycologia. 2013;105:1019–1029. doi: 10.3852/12-359. [DOI] [PubMed] [Google Scholar]
  • 94.Luo J., Walsh E., Zhang N. Toward monophyletic generic concepts in Magnaporthales: Species with Harpophora asexual states. Mycologia. 2015;107:641–646. doi: 10.3852/14-302. [DOI] [PubMed] [Google Scholar]
  • 95.Yuan Z.L., Lin F.C., Zhang C.L., Kubicek C.P. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte. FEMS Microbiol. Lett. 2010;307:94–101. doi: 10.1111/j.1574-6968.2010.01963.x. [DOI] [PubMed] [Google Scholar]
  • 96.Crous P.W., Schumacher R.K., Akulov A., Thangavel R., Hernandez-Restrepo M., Carnegie A.J., Cheewangkoon R., Wingfield M.J., Summerell B.A., Quaedvlieg W., et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019;3:57–134. doi: 10.3114/fuse.2019.03.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Hernández-Restrepo M., Groenewald J.Z., Elliott M.L., Canning G., Mcmillan V.E., Crous P.W. Take-all or nothing. Stud. Mycol. 2016;83:19–48. doi: 10.1016/j.simyco.2016.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Zhang N., Zhao S., Shen Q. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia. 2011;103:1267–1276. doi: 10.3852/11-022. [DOI] [PubMed] [Google Scholar]
  • 99.Wong P.T.W. Gaeumannomyces wongoonoo sp. nov., the cause of a patch disease of buffalo grass (St Augustine grass) Mycol. Res. 2002;106:857–862. doi: 10.1017/S0953756202006147. [DOI] [Google Scholar]
  • 100.Khemmuk W., Geering A.D., Shivas R.G. Wongia gen. nov. (Papulosaceae, Sordariomycetes), a new generic name for two root-infecting fungi from Australia. IMA Fungus. 2016;7:247–252. doi: 10.5598/imafungus.2016.07.02.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Vines P.L., Hoffmann F.G., Meyer F., Allen T.W., Luo J., Zhang N., Tomaso-Peterson M. Magnaporthiopsis cynodontis, a novel turfgrass pathogen with widespread distribution in the United States. Mycologia. 2020;112:52–63. doi: 10.1080/00275514.2019.1676614. [DOI] [PubMed] [Google Scholar]
  • 102.Luo J., Vines P.L., Grimshaw A., Hoffman L., Walsh E., Bonos S.A., Clarke B.B., Murphy J.A., Meyer W.A., Zhang N. Magnaporthiopsis meyeri-festucae, sp. nov., associated with a summer patch-like disease of fine fescue turfgrasses. Mycologia. 2017;109:780–789. doi: 10.1080/00275514.2017.1400306. [DOI] [PubMed] [Google Scholar]
  • 103.Luo J., Walsh E., Zhang N. Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens. Mycologia. 2014;106:580–588. doi: 10.3852/13-306. [DOI] [PubMed] [Google Scholar]
  • 104.Vines P.L. Master Thesis. Mississippi State University; Starkville, MI, USA: 2015. Evaluation of Ultradwarf Bermudagrass Cultural Management Practices and Identification, characterization, and Pathogenicity of Ectotrophic Rootinfecting Fungi Associated with Summer Decline of Ultradwarf Bermudagrass Putting Greens. [Google Scholar]
  • 105.Liu J.K., Hyde K.D., Jones E.B.G., Ariyawansa H.A., Bhat D.J., Boonmee S., Maharachchikumbura S.S.N., McKenzie E.H.C., Phookamsak R., Phukhamsakda C., et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015;72:1–197. doi: 10.1007/s13225-015-0324-y. [DOI] [Google Scholar]
  • 106.Park M.J., Shin H.D. A new species of Pyricularia on Commelina communis. Mycotaxon. 2009;108:449–456. doi: 10.5248/108.449. [DOI] [Google Scholar]
  • 107.Ban Y., Tang M., Chen H., Xu Z., Zhang H., Yang Y. The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS ONE. 2018. 7:e47968. doi: 10.1371/journal.pone.0047968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Saleh A.A., Leslie J.F. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Mycologia. 2004;96:1294–1305. doi: 10.1080/15572536.2005.11832879. [DOI] [PubMed] [Google Scholar]
  • 109.Phookamsak R., Wanasinghe D.N., Hongsanan S., Phukhamsakda C., Huang S.K., Tennakoon D.S., Norphanphoun C., Camporesi E., Bulgakov T.S., Promputtha I., et al. Towards a natural classification of Ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales) Fungal Divers. 2017;87:299–339. doi: 10.1007/s13225-017-0393-1. [DOI] [Google Scholar]
  • 110.Hyde K.D., Norphanphoun C., Abreu V.P., Bazzicalupo A., Chethana K.W.T., Clericuzio M., Dayarathne M.C., Dissanayake A.J., Ekanayaka A.H., He M.Q., et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017;87:1–235. doi: 10.1007/s13225-017-0391-3. [DOI] [Google Scholar]
  • 111.De Gruyter J., Aveskamp M.M., Woudenberg J.H., Verkley G.J., Groenewald J.Z., Crous P.W. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res. 2009;113:508–519. doi: 10.1016/j.mycres.2009.01.002. [DOI] [PubMed] [Google Scholar]
  • 112.Crous P.W., Wingfield M.J., Guarro J., Cheewangkoon R., van der Bank M., Swart W.J., Stchigel A.M., Cano-Lira J.F., Roux J., Madrid H., et al. Fungal planet description sheets: 154–213. Persoonia. 2013;31:188–296. doi: 10.3767/003158513X675925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Manawasinghe I.S., Pem D., Bundhun D., Karunarathna A., Ekanayaka A.H., Bao D.F., Li J.F., Samarakoon M.C., Chaiwan N., Lin C.G., et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020;100:5–277. doi: 10.1007/s13225-020-00439-5. [DOI] [Google Scholar]
  • 114.Wanasinghe D.N., Phukhamsakda C., Hyde K.D., Jeewon R., Lee H.B., Jones G.E.B., Tibpromma S., Tennakoon D.S., Dissanayake A.J., Jayasiri S.C., et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018;89:1–236. doi: 10.1007/s13225-018-0395-7. [DOI] [Google Scholar]
  • 115.Tennakoon D.S., Thambugala K.M., Wanasinghe D.N., Gentekaki E., Promputtha I., Kuo C.H., Hyde K.D. Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae. MycoKeys. 2020;70:59–88. doi: 10.3897/mycokeys.70.53674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Quaedvlieg W., Verkley G.J., Shin H.D., Barreto R.W., Alfenas A.C., Swart W.J., Groenewald J.Z., Crous P.W. Sizing up Septoria. Stud. Mycol. 2013;75:307–390. doi: 10.3114/sim0017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Wanasinghe D.N., Jones E.B.G., Camporesi E., Boonmee S., Karunarathna S.C., Thines M., Mortimer P.E., Xu J., Hyde K.D. Dematiopleospora mariae gen. sp. nov., from Ononis Spinosa in Italy. Cryptogamie. Mycol. 2014;35:105–117. doi: 10.7872/crym.v35.iss2.2014.105. [DOI] [Google Scholar]
  • 118.Trakunyingcharoen T., Lombard L., Groenewald J.Z., Cheewangkoon R., To-Anun C., Alfenas A.C., Crous P.W. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus. 2014;5:391–414. doi: 10.5598/imafungus.2014.05.02.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Phukhamsakda C., McKenzie E.H.C., Phillips A.J.L., Jones E.B.G., Bhat D.J., Stadler M., Bhunjun C.S., Wanasinghe D.N., Thongbai B., Camporesi E., et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020;102:1–203. doi: 10.1007/s13225-020-00448-4. [DOI] [Google Scholar]
  • 120.Cui Y., Jia H., He D., Yu H., Gao S., Yokoyama K., Li J., Wang L. Characterization of Edenia gomezpompae isolated from a patient with keratitis. Mycopathologia. 2013;176:75–81. doi: 10.1007/s11046-013-9667-7. [DOI] [PubMed] [Google Scholar]
  • 121.Ariyawansa H.A., Hyde K.D., Jayasiri S.C., Buyck B., Chethana K.W.T., Dai D.Q., Dai Y.C., Daranagama D.A., Jayawardena R.S., Lücking R., et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75:27–274. doi: 10.1007/s13225-015-0346-5. [DOI] [Google Scholar]
  • 122.Abd-Elsalam K.A., Tibpromma S., Wanasinghe D.N., Camporesi E., Hyde K.D. Equiseticola gen. nov. (Phaeosphaeriaceae), from Equisetum sp. in Italy. Phytotaxa. 2016;284:169–180. doi: 10.11646/phytotaxa.284.3.2. [DOI] [Google Scholar]
  • 123.Maharachchikumbura S.S.N., Ariyawansa H.A., Wanasinghe D.N., Dayarathne M.C., Al-Saady N.A., Al-Sadi A.M. Phylogenetic classification and generic delineation of Hydeomyces desertipleosporoides gen. et sp. nov., (Phaeosphaeriaceae) from Jebel Akhdar Mountain in Oman. Phytotaxa. 2019;391:28–38. doi: 10.11646/phytotaxa.391.1.2. [DOI] [Google Scholar]
  • 124.Zhang J.F., Liu J.K., Jeewon R., Wanasinghe D.N., Liu Z.Y. Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. Mycosphere. 2019;10:202–220. doi: 10.5943/mycosphere/10/1/3. [DOI] [Google Scholar]
  • 125.Tennakoon D.S., Hyde K.D., Phookamsak R., Wanasinghe D.N., Camporesi E., Promputtha I. Taxonomy and phylogeny of Juncaceicola gen. nov. (Phaeosphaeriaceae, Pleosporinae, Pleosporales) Cryptogamie Mycol. 2016;37:135–156. doi: 10.7872/crym/v37.iss2.2016.135. [DOI] [Google Scholar]
  • 126.Karunarathna A., Phookamsak R., Jayawardena R.S., Hyde K.D., Kuo C.H. Kwanghwana miscanthi Karun., C.H. Kuo & K.D. Hyde, gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Miscanthus floridulus (Labill.) Warb. ex K. Schum. & Lauterb. (Poaceae) Cryptogamie. Mycol. 2020;41:119–132. doi: 10.5252/cryptogamiemycologie2020v41a6. [DOI] [Google Scholar]
  • 127.Schoch C.L., Crous P.W., Groenewald J.Z., Boehm E.W., Burgess T.I., de Gruyter J., de Hoog G.S., Dixon L.J., Grube M., Gueidan C., et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 2009;64:1–15. doi: 10.3114/sim.2009.64.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.De Gruyter J., Woudenberg J.H., Aveskamp M.M., Verkley G.J., Groenewald J.Z., Crous P.W. Redisposition of phoma-like anamorphs in Pleosporales. Stud. Mycol. 2013;75:1–36. doi: 10.3114/sim0004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Crous P.W., Verkley G.J., Groenewald J.Z. Eucalyptus microfungi known from culture. 1. Cladoriella and Fulvoflamma genera nova, with notes on some other poorly known taxa. Stud. Mycol. 2006;55:53–63. doi: 10.3114/sim.55.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Hyde K.D., Hongsanan S., Jeewon R., Bhat D.J., McKenzie E.H.C., Jones E.B.G., Phookamsak R., Ariyawansa H.A., Boonmee S., Zhao Q., et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80:1–270. doi: 10.1007/s13225-016-0373-x. [DOI] [Google Scholar]
  • 131.Wijayawardene N.N., Hyde K.D., Wanasinghe D.N., Papizadeh M., Goonasekara I.D., Camporesi E., Bhat D.J., McKenzie E.H.C., Phillips A.J.L., Diederich P., et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77:1–316. doi: 10.1007/s13225-016-0360-2. [DOI] [Google Scholar]
  • 132.Phukhamsakda C., Ariyawansa H.A., Phookamsak R., Chomnunti P., Bulgakov T.S., Yang J.B., Bhat D.J., Bahkali A.H., Hyde K.D. Muriphaeosphaeria galatellae gen. et sp. nov. in Phaeosphaeriaceae (Pleosporales) Phytotaxa. 2015;227:55–65. doi: 10.11646/phytotaxa.227.1.6. [DOI] [Google Scholar]
  • 133.Tibpromma S., Hyde K.D., Jeewon R., Maharachchikumbura S.S.N., Liu J.K., Bhat D.J., Jones E.B.G., McKenzie E.H.C., Camporesi E., Bulgakov T.S., et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017;83:1–261. doi: 10.1007/s13225-017-0378-0. [DOI] [Google Scholar]
  • 134.Thambugala K.M., Wanasinghe D.N., Phillips A.J.L., Camporesi E., Bulgakov T.S., Phukhamsakda C., Ariyawansa H.A., Goonasekara I.D., Phookamsak R., Dissanayake A., et al. Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere. 2017;8:697–796. doi: 10.5943/mycosphere/8/4/13. [DOI] [Google Scholar]
  • 135.Mapook A., Boonmee S., Ariyawansa H.A., Tibpromma S., Campesori E., Jones E.B.G., Bahkali A.H., Hyde K.D. Taxonomic and phylogenetic placement of Nodulosphaeria. Mycol. Progs. 2016;15:1–15. doi: 10.1007/s11557-016-1176-x. [DOI] [Google Scholar]
  • 136.Flores F.J., Marek S.M., Orquera G., Walker N.R. Molecular identification and multilocus phylogeny of Ophiosphaerella species associated with spring dead spot of bermudagrass. Crop. Sci. 2017;57:249. doi: 10.2135/cropsci2016.05.0437. [DOI] [Google Scholar]
  • 137.Li W.J., Bhat D.J., Camporesi E., Tian Q., Wijayawardene N.N., Dai D.Q., Phookamsak R., Chomnunti P., Bahkali A.H., Hyde K.D. New asexual morph taxa in Phaeosphaeriaceae. Mycosphere. 2015;6:681–708. doi: 10.5943/mycosphere/6/6/5. [DOI] [Google Scholar]
  • 138.Bakhshi M., Arzanlou M., Groenewald J.Z., Quaedvlieg W., Crous P.W. Parastagonosporella fallopiae gen. et sp. nov. (Phaeosphaeriaceae) on Fallopia convolvulus from Iran. Mycol. Prog. 2019;18:203–214. doi: 10.1007/s11557-018-1428-z. [DOI] [Google Scholar]
  • 139.De Gruyter J., Woudenberg J.H.C., Aveskamp M.M., Verkley G.J.M., Groenewald J.Z., Crous P.W. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia. 2010;102:1066–1081. doi: 10.3852/09-240. [DOI] [PubMed] [Google Scholar]
  • 140.Camara M.P.S., Palm M.E., van Berkum P., O’Neill N.R. Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia. 2002;94:630–640. doi: 10.1080/15572536.2003.11833191. [DOI] [PubMed] [Google Scholar]
  • 141.Thambugala K.M., Camporesi E., Ariyawansa H.A., Phookamsak R., Liu Z.Y., Hyde K.D. Phylogeny and morphology of Phaeosphaeriopsis triseptata sp. nov., and Phaeosphaeriopsis glaucopunctata. Phytotaxa. 2014;176:238–250. doi: 10.11646/phytotaxa.176.1.23. [DOI] [Google Scholar]
  • 142.Wijayawardene N.N., Camporesi E., Song Y., Dai D.Q., Hyde K.D. Multi-gene analyses reveal taxonomic placement of Scolicosporium minkeviciusii in Phaeosphaeriaceae (Pleosporales) Cryptogamie Mycol. 2013;34:357–366. doi: 10.7872/crym.v34.iss2.2013.357. [DOI] [Google Scholar]
  • 143.Crous P.W., Carris L.M., Giraldo A., Groenewald J.Z., Hawksworth D.L., Hernandez-Restrepo M., Jaklitsch W.M., Lebrun M.H., Schumacher R.K., Stielow J.B., et al. The genera of fungi—Fixing the application of the type species of generic names—G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus. 2015;6:163–198. doi: 10.5598/imafungus.2015.06.01.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Chen Q., Jiang J.R., Zhang G.Z., Cai L., Crous P.W. Resolving the Phoma enigma. Stud. Mycol. 2015;82:137–217. doi: 10.1016/j.simyco.2015.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Ernst M., Mendgen K.W., Wirsel S.G. Endophytic fungal mutualists: Seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol. Plant-Microb. MPMI. 2003;16:580–587. doi: 10.1094/MPMI.2003.16.7.580. [DOI] [PubMed] [Google Scholar]
  • 146.Senanayake I.C., Jeewon R., Camporesi E., Hyde K.D., Zeng Y.J., Tian S.L., Xie N. Sulcisporasupratumida sp. nov. (Phaeosphaeriaceae, Pleosporales) on Anthoxanthumodoratum from Italy. MycoKeys. 2018;38:35–46. doi: 10.3897/mycokeys.38.27729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Ahmed S.A., Hofmuller W., Seibold M., de Hoog G.S., Harak H., Tammer I., van Diepeningen A.D., Behrens-Baumann W. Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses. 2016;60:244–253. doi: 10.1111/myc.12588. [DOI] [PubMed] [Google Scholar]
  • 148.Aveskamp M.M., de Gruyter J., Woudenberg J.H., Verkley G.J., Crous P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 2010;65:1–60. doi: 10.3114/sim.2010.65.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Devadatha B., Mehta N., Wanasinghe D.N., Baghela A., Venkateswara V., Vittaliana S. Vittaliana mangrovei Devadatha, Nikita, A. Baghela & V.V. Sarma, gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. Cryptogamie Mycol. 2019;40:117–132. doi: 10.5252/cryptogamiemycologie2019v40a7. [DOI] [Google Scholar]
  • 150.Marin-Felix Y., Hernández-Restrepo M., Iturrieta-González I., García D., Gené J., Groenewald J.Z., Cai L., Chen Q., Quaedvlieg W., Schumacher R.K., et al. Genera of phytopathogenic fungi: GOPHY 3. Stud. Mycol. 2019;94:1–124. doi: 10.1016/j.simyco.2019.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Lawrey J.D., Diederich P., Nelsen M.P., Freebury C., Van den Broeck D., Sikaroodi M., Ertz D. Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes) Fungal Divers. 2012;55:195–213. doi: 10.1007/s13225-012-0166-9. [DOI] [Google Scholar]
  • 152.Karunarathna A., Papizadeh M., Senanayake I.C., Jeewon R., Phookamsak R., Goonasekara I.D., Wanasinghe D.N., Wijayawardene N.N., Amoozegar M.A., Shahzadeh-Fazeli S.A., et al. Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere. 2017;8:1818–1834. doi: 10.5943/mycosphere/8/10/8. [DOI] [Google Scholar]
  • 153.Suetrong S., Schoch C.L., Spatafora J.W., Kohlmeyer J., Volkmann-Kohlmeyer B., Sakayaroj J., Phongpaichit S., Tanaka K., Hirayama K., Jones E.B.G. Molecular systematics of the marine Dothideomycetes. Stud. Mycol. 2009;64:155–173. doi: 10.3114/sim.2009.64.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Kolarik M., Spakowicz D., Gazis R., Shaw J., Novakova A., Chudickova M., Forcina G.C., Kang K.W., Kelnarova I., Skaltsas D., et al. Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst. Evol. 2017;303:35–50. doi: 10.1007/s00606-016-1350-2. [DOI] [Google Scholar]
  • 155.Doilom M., Dissanayake A.J., Wanasinghe D.N., Boonmee S., Liu J.K., Bhat D.J., Taylor J.E., Bahkali A.H., McKenzie E.H.C., Hyde K.D. Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers. 2017;82:107–182. doi: 10.1007/s13225-016-0368-7. [DOI] [Google Scholar]
  • 156.Liu J.K., Phookamsak R., Dai D.Q., Tanaka K., Jones E.B.G., Xu J.C., Chukeatirote E., Hyde K.D. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa. 2014;181:1–33. doi: 10.11646/phytotaxa.181.1.1. [DOI] [Google Scholar]
  • 157.Zhang J.F., Liu J.K., Hyde K.D., Yang W., Liu Z.Y. Fungi from Asian Karst formations II. Two new species of Occultibambusa (Occultibambusaceae, Dothideomycetes) from karst landforms of China. Mycosphere. 2017;8:550–559. doi: 10.5943/mycosphere/8/4/4. [DOI] [Google Scholar]
  • 158.Li J., Bhat D.J., Phookamsak R., Mapook A., Lumyong S., Hyde K.D. Sporidesmioides thailandica gen. et sp nov (Dothideomycetes) from northern Thailand. Mycol. Prog. 2016;15:1169–1178. doi: 10.1007/s11557-016-1238-0. [DOI] [Google Scholar]
  • 159.Jiang H.B., Phookamsak R., Hyde K.D., Mortimer P.E., Xu J.C., Kakumyan P., Karunarathna S.C., Kumla J. A taxonomic appraisal of bambusicolous fungi in Occultibambusaceae (Pleosporales, Dothideomycetes) with new collections from Yunnan Province, China. Life. 2021;11:932. doi: 10.3390/life11090932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Ahmed S.A., van de Sande W.W., Stevens D.A., Fahal A., van Diepeningen A.D., Menken S.B., de Hoog G.S. Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia. 2014;33:141–154. doi: 10.3767/003158514X684744. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/), Index Fungorum (http://www.indexfungorum.org/Names/Names.asp) (all accessed on 8 May 2022).


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES