Abstract
Since the outbreak of the COVID-19 pandemic, races across academia and industry have been initiated to identify and develop disease modifying or preventative therapeutic strategies has been initiated. The primary focus has been on pharmacological treatment of the immune and respiratory system and the development of a vaccine. The hyperinflammatory state (“cytokine storm”) observed in many cases of COVID-19 indicates a prognostically negative disease progression that may lead to respiratory distress, multiple organ failure, shock, and death. Many critically ill patients continue to be at risk for significant, long-lasting morbidity or mortality. The human immune and respiratory systems are heavily regulated by the central nervous system, and intervention in the signaling of these neural pathways may permit targeted therapeutic control of excessive inflammation and pulmonary bronchoconstriction. Several technologies, both invasive and non-invasive, are available and approved for clinical use, but have not been extensively studied in treatment of the cytokine storm in COVID-19 patients. This manuscript provides an overview of the role of the nervous system in inflammation and respiration, the current understanding of neuromodulatory techniques from preclinical and clinical studies and provides a rationale for testing non-invasive neuromodulation to modulate acute systemic inflammation and respiratory dysfunction caused by SARS-CoV-2 and potentially other pathogens. The authors of this manuscript have co-founded the International Consortium on Neuromodulation for COVID-19 to advocate for and support studies of these technologies in the current coronavirus pandemic.
Keywords: vagus nerve (VN) stimulation, sacral nerve electrical stimulation, COVID-19, cytokine storm, acute respiratory distress (ARDS), cranial nerve stimulation, non-invasive
Introduction
Preventative strategies to reduce infections of the coronavirus, SARS-CoV-2, including wearing masks (N95 most effective) and face shields, avoiding prolonged exposure to infected individuals, avoiding confined indoor spaces, quarantines, and vaccines and boosters, have proven successful. While disease-modifying therapeutic strategies for coronavirus-induced disease-2019 (COVID-19), including the antiviral remdesivir (1), are emerging, the contagiousness of the virus and the morbidity and mortality associated with COVID-19 continue to place an urgent demand on the development of new therapies. Presently worldwide, nearly 450 million persons have been infected worldwide, 6 million of whom have succumbed to the disease (https://coronavirus.jhu.edu/map.html). Severe cases of COIVD-19 are often associated with a “cytokine storm,” which may cause dysfunction of the lungs and other organs. Studies investigating pharmacological therapies targeting the immune and respiratory systems are ongoing.
The human immune and respiratory systems are regulated by the central nervous system (CNS), and therapeutic targeting of these neural pathways is potentially one approach to regulate important aspects of the pathologic sequelae of COVID-19. Neuromodulation directly targets the nervous system through the application of electric or magnetic fields to neuronal tissue, including peripheral nerve fibers and directly to the brain. Neuromodulation may therefore provide alternative therapeutic strategies for the neurobiological systems involved in the pathophysiology of SARS-CoV-2 infections.
This review provides an overview of the role of the nervous system in immune and respiratory control, current understanding of how neuromodulatory techniques may be effective in immune or pulmonary disorders, and provides a future perspective of its role in the treatment of COVID-19. The authors of this review formed the International Consortium on Neuromodulation for COVID-19 (www.covidneuromod.org) in April, 2020, in response to the pandemic with the understanding that neuromodulation, particularly vagus nerve stimulation (VNS) or sacral nerve modulation (SNM), may be able to block infection-induced inflammation through the cholinergic antiinflammatory pathway (CAP). Now including 30 members on three continents, this group was formed to advocate for and support the scientific study of neuromodulation technologies for treatment of excessive inflammation and pulmonary dysfunction in this and future pandemics when appropriate. The authors provide recommendations on clinical trial endpoints, as well as recommended publication guidelines in an effort to standardize technology characterizations.
The Hyperinflammatory State in COVID-19
In up to 30% of mortality caused by SARS-CoV-2, a severe systemic inflammatory response known as a “cytokine storm” is implicated in multi-system organ failure (2, 3). These cases are characterized by high concentrations of circulating proinflammatory cytokines, including TNF, IL-6, IL-7; the inflammatory chemokines CCL2, CCL3 and CXCL10 (4); and acute-phase proteins including C-reactive protein and ferritin are also associated with disease severity (4, 5). Clinically, the most typical phenotype of severe COVID-19 is acute respiratory distress syndrome (ARDS), which affects 3.4% of infected patients overall and 15.6–17.0% of severely infected patients (6). The COVID-19 hyperinflammatory response may induce disseminated intravascular coagulation through both endothelial cell activation and impairment of endogenous anticoagulant pathways (7–12). This disease pathophysiology may pose specific problems for individuals with preexisting cardiopulmonary conditions, including hypertension and chronic obstructive pulmonary disease.
Role of the Nervous System in Immune and Respiratory Control
The mammalian nervous and immune systems evolved to maintain homeostasis and protect the host against tissue injury and infection (13). Autonomic nerves monitor infection and inflammation and form homeostatic reflexes to regulate host responses (14, 15). An important neural conduit for monitoring and regulating immune responses is the vagus nerve (VN), the body's longest cranial nerve. Peripheral vagal fibers sense local cytokines and damage- and pathogen-associated molecular patterns (DAMPs, PAMPs), which activate neural regulatory reflexes (16, 17). The brain can respond to active inflammation via glucocorticoid release from the hypothalamic-pituitary-adrenal (HPA) axis, or through activation of the CAP (18). The CAP comprises efferent VN fibers innervating the spleen via the abdominal celiac ganglion and splenic nerve. The role of sympathetic nerves in regulating inflammation and pulmonary function are reviewed elsewhere (15, 19–21).
Electrical VNS was first shown to protect against excessive inflammation in 2000, when Borovikova et al. reported that VNS reduces systemic proinflammatory cytokine production and maintains blood pressure in a rodent model of endotoxic shock (22). Electrically or pharmacologically stimulating the CAP protects against excessive systemic inflammation, maintains tissue perfusion, and preserves vital organ function in models of arthritis, burns, colitis, hemorrhagic shock, polymicrobial intraabdominal sepsis, and stroke (23–34). Importantly, disruption of CAP signaling delays resolution of inflammation and bacterial clearance in experimental peritonitis (35). Specific CAP components also play key roles in regulation of circulation, microvascular contractility, and viral infection clearance in experimental models (36, 37).
Molecular and functional mapping of the CAP have revealed that VNS inhibits release of pro-inflammatory mediators via acetylcholine-releasing T lymphocytes expressing choline acetyltransferase (ChAT+) (38). Local acetylcholine secretion in spleen inactivates cytokine-producing macrophages through surface α7 nicotinic acetylcholine receptor subunits (37). Pro-inflammatory cytokine production in spleen contributes significantly to overall systemic inflammation (39). Elimination of these cellular or molecular components via genetic deletion or surgical disruption abolishes CAP activity and results in significantly elevated serum cytokine levels (40).
In addition to providing neural regulation of inflammation, the VN also provides the dominant autonomic innervation of the airways, carrying fibers that are responsible for both bronchoconstriction and relaxation through distinct sets of pulmonary nerve branches (41–43). Low-intensity VNS relaxes airway smooth muscle in animal models of bronchoconstriction by activating the HPA axis to release catecholamines from the adrenal cortex (41, 44, 45). These in turn bind to β-receptors on bronchial smooth muscle causing relaxation. Measured concentrations of epinephrine and norepinephrine were sufficient to relax smooth muscle, but insufficient to cause significant cardiac effects (46, 47).
The sacral nerve (SN) is part of the parasympathetic nervous system that also holds therapeutic potential for pathological inflammatory processes. Both afferent and efferent SN fibers innervate the pelvic organs including colon, rectum, urinary bladder and genital organs. Sacral nerve modulation (SNM) has been used to treat diseases of the pelvic organs, including pain, urinary retention, overactive bladder and fecal incontinence (48, 49). The mechanisms of action of SNM are not completely understood. Limited findings suggest that SNM ameliorates overactive bladder by blocking C fiber activities or overactivity (50). In treating urinary retention, SNM seems to stimulate relaxation of pelvic floor muscles and the urethra, facilitating micturition (51, 52). The mechanism involved in SNM-induced improvement in fecal incontinence is also poorly understood, with most research findings suggesting that SNM stimulates afferent fibers from the rectum, pelvic floor and anal sphincter, resulting in reduced activation of C fibers during rectal filling and inhibiting inputs from the rectum to the pontine center (53). SNM in patients with fecal incontinence may activate somatic afferent fibers to inhibit colonic motility and enhance internal anal sphincter pressure (54).
Recently, SNM has been shown to reduce intestinal inflammation in rodent models of inflammatory bowel diseases, suppress a number of proinflammatory cytokines including TNF, and enhance anti-inflammatory cytokines such as IL-10 in both intestinal tissues and in circulation (55, 56). The anti-inflammatory effect of SNM on the colon is mediated via the spinal afferent and vagal efferent pathways evidenced by the following factors (57): (1) SNM activates neurons in the nucleus tractus solitaries (57, 58); (2) SNM increases vagal efferent activity as assessed by the spectral analysis of heart rate variability and plasma level of pancreatic polypeptide (55); (3) bilateral subdiaphragmatic vagotomy almost completely abolishes the anti-inflammatory effect of SNM on the colon (57); and (4) SNM induces the release of acetylcholine in the colon (55). These findings suggest that SNM shares a similar vagal efferent pathway as VNS. Indeed, a comparative study has shown that the anti-inflammatory effect of SNM was similar to that of VNS and the combination of SNM and VNS did not show a synergistic effect in comparison with SNM or VNS alone (59, 60).
Together, these findings suggest that VNS or SNM enhance vagal efferent activity and have systemic anti-inflammatory effects. Several VNS technologies are being investigated, some for use in COVID-19, as summarized below.
Vagus Nerve Modulation in Clinical Practice and Research
Electrical signaling between the CNS and individual organ systems is essential to organ function. Homeostasis is continually monitored and regulated through a bi-directional feedback loop that senses the physiological status of organ function, central nervous system processing of the sensory information, and appropriate feed-back to the organs. Therapeutic neuromodulation aims to restore a diseased organ system by interfering with or augmenting its neural control mechanisms via targeted application of external energy sources, typically electrical or magnetic. Neuromodulation technologies have been developed to treat neuropsychiatric disorders and conditions where the nervous system is known to play an important role, including epilepsy, depression and pain (61, 62). Of note, VNS utilizing a surgically implanted electrical pulse generator is an established clinical therapy for the treatment of medically refractory epilepsy and depression. Since 1988, more than 100,000 patients have received this FDA-approved and CE-marked therapy, and long-term follow-up studies demonstrate overall safety of the approach (63).
Functional mapping of the CAP has provided a foundation for clinical trials to evaluate the efficacy of VNS to treat inflammatory diseases. Several studies, albeit with a limited number of patients included, show encouraging data on use of electrical VNS for the treatment of chronic inflammation, e.g., rheumatoid arthritis and Crohn's disease (64–66). VNS significantly reduced whole blood TNF, IL-6, and IL-1β concentrations, and decreased scores on a validated disease activity composite score (DAS28-CRP score) (65). Likewise, non-invasive cervical VNS was tested in two clinical trials for treating acute asthma patients presenting to the emergency department who were unresponsive to 1 h of standard of care therapy (67–69). In both studies, VNS significantly improved two measures of airway patency, FEV1 and perceived work of breathing, after 15, 30 and 60 min (compared with a matched control group), with no reported serious adverse events. These data suggest a possible, novel treatment for COVID-19 patients suffering from acute respiratory dysfunction. However, care must be exercised in choosing stimulation parameters because high intensity cervical VNS, such as is used to treat epilepsy and depression, is capable of inducing bronchoconstriction, which is reversed upon cessation of stimulation (70).
Neuromodulation Technologies for COVID-19
In light of the available mechanistic experimental data on the capacity of neuromodulation techniques to attenuate excessive acute and chronic inflammation, and induce bronchodilation; the clinical safety record of electrical VNS; and the encouraging reports on reduced inflammation with chronic implantation of an electrical vagus nerve stimulator in clinical trials, it is reasonable to consider whether neuromodulation devices may be useful tools to reduce the morbidity and mortality of COVID-19 patients (71–79). A significant challenge for applications in acute-onset excessive inflammation is the delivery method of VNS, as it is currently impractical to implant highly symptomatic COVID-19 patients with an active device that is only needed for acute treatment. However, less invasive neuromodulation techniques, either percutaneous or transcutaneous, may be utilized (Tables 1–4). These methods may be technically suitable for acute use, but their clinical feasibility and efficacy in COVID-19 patients are just beginning to be evaluated. Results from two recent COVID-19 studies have been published, results are pending from several ongoing clinical trials, and a number have been discontinued (discussed below).
Table 1.
Examples of commercially available devices that are currently being tested or have recently been tested in COVID-19 trials.
| Device | Manufacturer/ Distributor | Neural target | Neural interface | Regulatory status | Indication/Use | URL | ClinicalTrials.gov Identifiers |
|---|---|---|---|---|---|---|---|
| gammaCore | electroCore, Inc. | CVN | Transcutaneous, unilateral | FDA cleared, CE marked | Cluster headache (FDA & CE), migraine (FDA & CE), asthma (CE), airway reactivity (CE) | gammacore.com | COVID-19: NCT04368156, NCT04382391 Inflammation-related: NCT05315739, NCT04143269, NCT05165108, NCT01627301, NCT02992899, NCT04935697, NCT04556552, NCT04099992 Pulmonary-related: NCT03869008, NCT04935697, NCT01679314, NCT00762931 (Note A) Other: Note B |
| AuriStim | Multisana | ABVN | Percutaneous, unilateral | CE marked | Wellness | multisana.at | COVID-19: NCT05058742 Inflammation-related: none Pulmonary-related: none Other: NCT05131334 |
| Vitality Smartcable | Nemechek Technologies, Inc. | ABVN | Transcutaneous, unilaterlal | None | Wellness | nemechektechnologies.shop | COVID-19: NCT04379037 Inflammation-related: none Pulmonary-related: none Other: none |
Note A: some pulmonary studies were conducted on alphaCore, a predecessor device to gammaCore that had a similar stimulation waveform. Note B: gammaCore trials listed here are a subset of 34 total trials registered in ClinicalTrials.gov; the remainder are unrelated to pathogenic mechanisms of acute COVID-19 and are not listed here due to space constraints. ABVN, auricular branch of the vagus nerve; CVN, cervical vagus nerve.
Table 4.
Examples of devices with neural mechanisms that may be related to modulating the pathological sequelae of COVID-19, but which have not yet been assessed for relevant endpoints.
| Device | Manufacturer/ Distributor | Neural target | Neural interface | Regulatory status | Indication/Use | URL | Clinicaltrials.gov Identifiers |
|---|---|---|---|---|---|---|---|
| Acuson Sequoia 512 | Seimens | FUS | Transdermal | FDA cleared for imaging | Imaging | avantehs.com/p/siemens-acuson-sequoia-512-lcd-ultrasound-machine/1083 | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: imaging only |
| AGISTIM and ASP needles | Sedatelec | ABVN or ATN | Percutaneous, unilateral or bilateral | CE marked | N/A | sedatelec.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: none |
| Dolphin | Dolphin Neurostim | ABVN | Transcutaneous/ percutaneous, unilateral | Health Canada expanded use authorization | Wellness | dolphinmps.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: none |
| LOGIQ E9 with C1-6 transducer | GE Healthcare | FUS | Transdermal | FDA cleared for imaging | Imaging | gehealthcare.com/products/ultrasound/logiq/logiq-e9-with-xdclear | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: imaging only |
| VaguStim | VaguStim | ABVN | Transcutaneous, unilateral or bilateral | Unknown | N/A | vagustim.io | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT04520516, NCT05088135, NCT05370027 |
ABVN, auricular branch of the vagus nerve; FUS, focused ultrasound.
Table 2.
Examples of commercially available devices that are currently being tested in non-COVID-19 trials, but are assessing endpoints related to pathogenic mechanisms of COVID-19.
| Device | Manufacturer/ Distributor | Neural target | Neural interface | Regulatory status | Indication/Use | URL | ClinicalTrials.gov Identifiers |
|---|---|---|---|---|---|---|---|
| NEMOS | T-VNS technologies | ABVN | Transcutaneous, unilateral | CE marked | Epilepsy | nemos.t-vns.com | COVID-19: none Inflammation-related: NCT01924780, NCT02359188 Pulmonary-related: none Other: NCT02409069, NCT04632134, NCT03722901, NCT02620176, NCT02177890, NCT02156817, NCT05180916, NCT03615209, NCT05157334 |
| ParaSym | Parasym | ABVN | Transcutaneous, unilateral | CE marked, FDA IDEs issued | N/A | parasym.co | COVID-19: Inflammation-related: NCT03392649, NCT02548754, NCT05350150 Pulmonary-related: Other: NCT03930914, NCT05034419, NCT04682704, NCT05341544, NCT05350150 Post-COVID/PASC: NCT05225220 |
| TENStem w/ auricular electrodes | Schwa-Medico | Auricular | Transcutaneous | CE Marked | Wellness | TENS unit: https://www.schwa-medico.com/en/electrostimulation/tens/tenstem-eco-basic/schwa-medico-electrostimulation-tens-tenstem-eco-basic.html
TENS accessories: schwa-medico.com/en/electrostimulation/tens-ems-accessories/ |
COVID-19: none Inflammation-related: NCT04520516, NCT04286373 Pulmonary-related: none Other: none |
ABVN, auricular branch of the vagus nerve; ATN, auriculotemporal nerve; CN, cranial nerves; IDEs, investigational device exemptions; GAN, greater auricular nerve; tDCS, transcranial direct current stimulation; tES, transcranial electrical stimulation; EEG, electroencephalography; FUS, focused ultrasound.
Table 3.
Examples of commercially available devices that are currently being tested in trials unrelated to COVID-19, but which have neural mechanisms of action that could be related to the pathological sequelae of COVID-19.
| Device | Manufacturer/ Distributor | Neural target | Neural interface | Regulatory status | Indication/Use | URL | ClinicalTrials.gov Identifiers |
|---|---|---|---|---|---|---|---|
| Alpha-Stim | Alpha-Stim | GAN | Transcutaneous, unilateral | FDA cleared, CE marked | Anxiety, insomnia, depression, pain | alpha-stim.com | COVID-19: Inflammation-related: Pulmonary-related: Other: NCT04963907, NCT03757494, NCT04770181, NCT03060122, NCT02901080, NCT01533415, NCT04115033, NCT03210155, NCT00723008, NCT04587531 |
| Cefaly | Cefaly | Trigeminal | Transcutaneous | FDA cleared, CE marked | Migraine (acute treatement and prevention) | cefaly.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT02546362, NCT04838067, NCT03217968, NCT02342743, NCT02411513, NCT02616978, NCT03125525, NCT02590939, NCT03465904, NCT05200897, NCT02125422, NCT02122237, NCT02307071, NCT02122757, NCT02462395 |
| electro-detox | Soterix Medical, Inc | tDCS | Percutaneous, unilateral | FDA cleared | Opioid withdrawal syndrome | soterixmedical.com | COVID-19: Inflammation-related: Pulmonary-related: Other: |
| Fisher Wallace Stimulator | Fisher Wallace | tDCS | Transcutaneous | FDA cleared | Depression, anxiety, insomnia | fisherwallace.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT04751864, NCT04627480, NCT04541563, NCT02163967, NCT01325532 |
| Flow | Flow Neuroscience | tDCS | Transcutaneous | CE Marked | Depression | flowneuroscience.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT05202119 |
| Halo | Halo | tDCS | Transcutaneous | N/A | Neuroplasticity | haloneuro.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT04883229 |
| NSS-2 BRIDGE | Innovative Health Solutions | CN V, VII, IX, and X | Percutaneous, unilateral | FDA cleared | Opioid withdrawal syndrome | i-h-s.com/ products/ bridge/ | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT03555266, NCT03834142, NCT03830307, NCT04365465, NCT03931330, NCT04162145, NCT04325659, NCT03762798 |
| Xen | Neuvana | ABVN | Transcutaneous, bilateral | CE marked | Wellness | neuvanalife.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT05132881 |
| PainX or tCDS-LTE | Soterix Medical, Inc | tDCS | Transcranial, bilateral | CE marked | Fibromyalgia, migraine | soterixmedical.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT04994821, NCT04781127, NCT03833583, NCT02648542, NCT02540109, NCT01651884 |
| Starstim | Neuroelectrics | tES plus EEG | Transcutaneous | CE Marked | Research tool | neuroelectrics.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT05205915, NCT04770337, NCT02866240, NCT03943979, NCT03144102 |
| Sparrow | Spark Biomedical, Inc. | ABVN and ATN | Transcutaneous, unilateral | FDA cleared | Opioid withdrawal syndrome | sparkbiomedical.com | COVID-19: none Inflammation-related: none Pulmonary-related: none Other: NCT04731935, NCT05129020, NCT05053503, NCT04588519, NCT04075214 |
ABVN, auricular branch of the vagus nerve; ATN, auriculotemporal nerve; CN, cranial nerves; GAN, greater auricular nerve; tDCS, transcranial direct current stimulation; tES, transcranial electrical stimulation; EEG, electroencephalography.
Transcutaneous Cervical VNS
gammaCore (electroCore, Inc., Rockaway, NJ USA) is a handheld, transcutaneous cervical vagus nerve stimulator that has been FDA approved and CE marked for cluster headache and migraine. Functional magnetic resonance imaging has shown that gammaCore specifically modulates various brain structures, including the locus coeruleus (LC) and the NTS, and that these activation patters are similar between invasive VNS, non-invasive cervical VNS, and transcutaneous auricular VNS (described further below) (80–82). In off-label studies, gammaCore reduced expression of interleukin [IL]-1β, IL-6, IL-8, tumor necrosis factor [TNF]), macrophage inflammatory protein [MIP]-1α, and monocyte chemoattractant protein [MCP]-1, and increased cardiac vagal tone (83–88). gammaCore also improved lung function in treatment-refractory emergent asthma (69). Together, these observations suggest that gammaCore may have therapeutic utility in COVID-19. Indeed, the FDA issued an Emergency Use Authorization for asthma patients experiencing exacerbation of symptoms when infected with the novel coronavirus (89).
Transcutaneous Auricular VNS
Recently, several studies examined the function of the auricular branch of the vagus nerve (ABVN) as a potential non-invasive method to activate the NTS and associated structures. Functional magnetic resonance imaging has shown specific modulation of various brain structures following transcutaneous auricular neurostimulation (tAN), including the NTS and nucleus spinalis of the trigeminal nerve (90, 91). Thus, the ABVN serves as a non-invasive access point to the CNS to deliver information, as similar to cervical VNS. Stimulation of the ABVN downregulated expression of IL-6, IL-1β, IP-10, MIP-1α, TNF, and C-reactive protein (CRP); and increased expression of the anti-inflammatory cytokine IL-10 (92–94). These stimulation paradigms also reduced incidence of pneumonia and hospital length of stay following lung lobectomy; reduced atrial fibrillation burden; and improved disease activity scores (DAS28-CRP) in rheumatoid arthritis (92–94). Electrical stimulation parameters that have typically shown results have focused on the left ear, using stimulation pulses of ~200 ms, delivered at 20 Hz, with current at or somewhat below a level that causes discomfort; and treatment paradigms have delivered as little as 1 h of stimulation daily for 6 months or less (93). In March of 2021, Health Canada issued an expanded use authorization to Dolphin Neurostim for the acute treatment of adult patients with known or suspected COVID-19 who are experiencing exacerbation of asthma-related dyspnea and reduced airflow (95).
Electrical and Magnetic Transcranial Approaches
In addition to modulation of neural pathways that directly modify end-organ function, top-down neuromodulation technologies target central neural structures to achieve similar effects. Low-intensity transcranial electrical stimulation (tES) approaches include transcranial Direct Current Stimulation (tDCS) (96) and transcranial Alternating Current Stimulation (tACS) (97). Transcranial Magnetic Stimulation (TMS) applies varied pulse waveforms (98). Transcranial approaches share the goal of directly activating intra-cranial brain structures (99), though ancillary peripheral [e.g., cranial nerve (100)] stimulation cannot be excluded. The rational for tES, and especially tDCS, for COVID-19 brain disorders have been reviewed (77, 101, 102). Several early trials and case series suggest efficacy of tDCS of post-acute sequelae SARS-CoV-2 infection (PASC)/Long-COVID (103–105).
Noninvasive brain stimulation has the broad potential to manage some of the complications of COVID-19 by stimulating the regions involved in the regulation of systemic anti-inflammatory responses and recovery of respiration. There is a bidirectional influence between the brain and immune response (106). Deep brainstem and forebrain regions mediate the immune response throughout the body and can be potential targets for noninvasive neuromodulatory approaches such as tES/TMS. While it is impractical to activate deep regions selectivity (e.g., without activating superficial cortex) by tES or TMS, deep brain regions can certainly be reached by tES (107–110) current and through connectivity to cortical activated areas (111, 112). Cortical regions are conventionally targeted with tES/TMS, including frontal (113) and temporal regions (114) that can be used to influence the systemic immune response and prevent neuroinflammation (106). Furthermore, tES/TMS may be investigated for application in the restoration of respiratory function in recovery (115). There are thus multiple pathways by which tES/TMS can address immediate and long-term COVID-19 morbidity, but subject to direct experimental testing in COVID-19 patients these links remain indirect.
Ultrasound-Guided Percutaneous Electrodes
One means of direct, percutaneous stimulation was recently demonstrated in mice, using low intensity “imaging” ultrasound to guide a percutaneous needle electrode within proximity to the cervical vagus nerve, but can be extrapolated to other targets as well. Using relatively low energy electrical stimulation, biomarkers of vagus engagement, including bradycardia and brainstem c-FOS activation was confirmed. Percutaneous VNS modulated endotoxin-induced TNF production, CNS inflammation, as well as cognitive dysfunction (116). Coupled with the established long-duration of anti-inflammatory effects of VNS after a single treatment (117, 118), this data demonstrates the feasibility of using ultrasound-guided percutaneous electrical stimulation to modify cytokine storm. Translation of this technique to humans should be trivial. While minimally invasive, this procedure would require a trained health care provider to perform and would be limited to in-clinic use. This technique was used to stimulate the vagus nerve in the Miner clinical study of VNS on bronchoconstriction patients (67).
Focused Ultrasound
A promising non-invasive technology is focused ultrasound, which uses acoustic pressure waves to transmit mechanical and heat energy to neural tissues, rather than electrical energy. The long history of focused ultrasound to therapeutically modulate neural tissue since the 1950's, in both central and peripheral systems, has been reviewed elsewhere (119). These established techniques can be used for destructive targeted ablation of tissues, to activate neurons, or to suppress the activation of neural circuits. The elucidation of neural circuits that control inflammation have generated a number of intervention points that may be targeted by focused ultrasound, including deep brain structures, cranial nerves, peripheral nerves, and end organs.
The spleen and its attendant nerves are a major interaction nexus between the neural and immune systems (38, 39, 120), and has recently been explored as a target for focused ultrasound intervention in rodents by several groups (121–124). Focused ultrasound targeting the spleen reduced endotoxin-induced TNF (123), retention of renal form and function following ischemia reperfusion injury, including reduction in renal accumulation of neutrophils and dendritic cells (121, 122), reduction in plasma creatinine following cecal ligation and puncture (122), and attenuation of disease manifestation in a serum transfer model of inflammatory arthritis (124). Demonstrating the potential to tailor a specific outcome by modulating a specifically targeted tissue, focused ultrasound on glucose sensory neurons in the liver prevented hyperglycemia following endotoxin exposure (123). While extremely promising as a non-invasive technique to modulate inflammation and its sequelae, these studies have demonstrated that both the dose delivered and the sub-organ location targeted have a large impact on the physiological outcome, relegating its use to a trained health care provider in-clinic. Focused ultrasound as a modulator of inflammation still requires demonstration of translation to humans.
Alternative Mechanisms
The exact mechanisms of VNS are not fully understood. In addition to activating efferent CAP fibers to the spleen, VNS is believed to proportionally activate afferent fibers (40, 125). Vagal afferents carry sensory information to the dorsal medullary complex, in particular to the nucleus of the solitary tract (NTS). Activation of the NTS plays an important role in modulating cardiopulmonary function (126–128). Therapeutic mechanisms in epilepsy and depression may involve regulating the serotonergic and/or noradrenergic projections from the raphe and LC, respectively, which in turn modulates activity in the hypothalamus, thalamus, insular cortex, and cerebellum, hippocampus, amygdala, and posterior cingulate gyrus (129, 130). These structures are associated with the regulation of mood and emotion, seizure activity, anxiety, intestinal activity, satiety, and pain perception (131–134). Other potential, centrally mediated mechanisms for VNS include elevation of gamma aminobutyric acid (GABA) levels in the brain stem (135), desynchronization of cortical and thalamocortical network activity (125), suppression of cortical spreading depression (136), altering expression of brain-derived neurotrophic factor and other growth factors and increasing norepinephrine in prefrontal cortex (137), and altering brain waste clearance dynamics (138).
Recent COVID-19 Trials
There are currently six studies listed on ClinicalTrials.gov assessing the effects of VNS on immune and/or pulmonary function in COVID-19 (Table 5). Two of the trials used gammaCore, and thus targeted the cervical vagus nerve transcutaneously. Four trials employed several different auricular vagus nerve stimulation devices. Two studies are completed, three are open to enrollment or active but not recruiting, and one terminated early due to low recruitment rates.
Table 5.
Clinical trials of vagus nerve stimulation in COVID-19 that are registered at ClinicalTrials.gov and that include proposed mechanisms of action related to immune and/or pulmonary function.
| Title | Conditions | Neural target | Device | NCT number | Status |
|---|---|---|---|---|---|
| Study Assessing Vagus Nerve Stimulation in CoViD-19 Respiratory Symptoms (SAVIOR-1) | Covid-19 | Cervical vagus | gammaCore | NCT04368156 | Completed |
| Study Assessing Vagus Nerve Stimulation in CoViD-19 Respiratory Symptoms (SAVIOR-2) | COVID|Corona virus Infection|Respiratory Failure|Respiratory Distress Syndrome, Adult|ARDS, Human|SARS (Severe Acute Respiratory Syndrome) | Cervical Vagus | gammaCore Sapphire | NCT04382391 | Active, not recruiting |
| Non-invasive Nervus Vagus Stimulation in Patients With COVID-19 and ARDS | COVID-19|ARDS|Cytokine Storm | Auricular vagus | AuriStim | NCT05058742 | Recruiting |
| Neuromodulation With Percutaneous Electrical Nerve Field Stimulation for Adults With COVID-19 | COVID-19 | Auricular vagus | NSS-2 BRIDGE | NCT04514627 | Recruiting |
| Impact of Auricular vagus Nerve Neuromodulation on COVID-19 Positive Inpatients Outcome | Covid19|SARS-CoV Infection | Auricular vagus | Procedure: Auricular neuromodulation (acupuncture) | NCT04341415 | Terminated |
| Vagus Nerve Stimulation ARDS Prevention Trial for COVID-19 Hospitalized Patients | Severe Acute Respiratory Syndrome Coronavirus 2 | Auricular Vagus | Nemechek Vitality Smartcable | NCT04379037 | Completed |
No trials are currently registered exploring other neuromodulation strategies for these mechanisms of action in COVID-19.
The use of cervical non-invasive VNS in COVID-19 was first published in a case report of two COVID-19-positive subjects, which provided preliminary observations that transcutaneous cervical VNS reduced the use of opioid and cough suppressant medications and relieved symptoms of chest tightness and shortness of breath (139). Two randomized control trials of gammaCore in inpatients with COVID-19 and respiratory distress have since been initiated: SAVIOR-1, performed in Valencia, Spain, was a prospective, randomized controlled trial (RCT) of VNS vs. standard of care, which evaluated a total of 90 patients, 45 in each arm. Improvement in respiratory function and proinflammatory cytokine levels were measured following VNS (NCT04368156) (140). SAVIOR-2, performed at Allegheny Health Network, was scheduled to study 60 patients and also followed respiratory parameters and cytokines (NCT04382391). This study closed to enrollment after 21 subjects due to low case burdens resulting in low recruitment rates.
The remaining studies employed devices targeting the auricular branch of the vagus nerve either in the cymba concha or the tragus. The results of the first study suggest that auricular VNS results in infrequent mechanical ventilation and a high rate of survival, though it should be noted that this trial in 51 subjects was a single-arm, uncontrolled, open-label, observational trial (141). Studies of two additional auricular VNS devices are actively recruiting, and results are not yet available. A French study is assessing auricular nerve stimulation via four percutaneously placed leads on each tragus and is being compared to sham (no needle placement; NCT04341415). Enrollment has been halted due to a low case load (142).
Future Perspectives
COVID-19 is a deadly disease, the most serious effects of which appear to be hyperactivation of an acute inflammatory response (“cytokine storm”) and compromised lung function. To date, pharmacological strategies have not been generally successful in modulating the cytokine response and clinical sequellae to SARS-CoV-2, with the exception of dexamethasone, a non-specific anti-inflammatory corticosteroid that reduces mortality by one-third in severe COVID patients with acute respiratory distress (143). As described here, there is substantial preclinical and clinical evidence that neuromodulation strategies may have a salutary impact on the host responses to the virus, and clinical trials to assess these strategies are warranted. Given the unabated SARS-CoV-2 pandemic, speed to execute these trials and deliver rigorous results is of essence.
The authors of this paper have formed the International Consortium on Neuromodulation for COVID-19 (ICNC; www.covidneuromod.org) with the mission to provide global leadership for the rapid advancement and clinical adoption of neuromodulation technologies to treat emerging infectious diseases. The ICNC envisions a global infrastructure capable of the rapid deployment and clinical validation of neuromodulation technologies for pandemics, epidemics, and other emerging public health crises for which they may be efficacious. Further, beyond applications for immunological and respiratory control in response to infection, neuromodulation has multiple potential therapeutic applications for the post-acute recovery phase. For example, a recent report has indicated that >87% of COVID-19 patients continue to experience at least one symptom following acute recovery (144), the most frequent of which was fatigue. Noninvasive brain stimulation approaches have reliable benefit for fatigue (145), as well as for psychological symptoms such as depression and anxiety that are common in the recovery period (146–148).
ICNC members have developed recommended endpoints for neuromodulation clinical in COVID-19, as well as recommended publishing guidelines to describe the technology tested.
While prospective, RCTs are the gold standard for such clinical trials and sham control arms are desirable, they might not always be necessary if objective endpoints are used to measure outcomes (149). Such endpoints will vary based on hypothesized mechanism of action of the technology, as well as the patient population being studied: wearable and handheld neuromodulation technologies can be trialed in hospitalized patients (non-ICU or ICU), as well as ambulatory outpatients pre- or post-hospitalization. Nevertheless, some key data elements and outcome measures are recommended, in the anticipation that post-study meta-analyses can illuminate overarching trends not apparent in individual studies (Table 6). Upon publication of study results, the ICNC members recommend careful descriptions of the neuromodulation technology (150).
Table 6.
Recommended clinical trial endpoints for studies of neuromodulation technologies in COVID-19.
| Baseline demographics/signs & symptoms | Age |
|---|---|
| Gender | |
| BMI | |
| Comorbidities | |
| Tobacco/vape use | |
| Date of known or suspected exposure to virus | |
| Date of first positive diagnostic test | |
| Days since symptom onset/discharge | |
| Duration of symptoms | |
| Cough, on a patient-reported scale of severe, moderate, mild, absent | |
| Oxygen saturation level (SpO2) | |
| Inpatient measures | Emergency severity index at presentation |
| Blood pressure (systolic/diastolic) | |
| Time on supplemental oxygen | |
| Spirometry (Liu et al.) | |
| Incidence of non-invasive positive pressure ventilation or heated high flow nasal canula use | |
| Days on non-invasive positive pressure ventilation or heated high flow nasal canula use | |
| Occurrence of ICU transfer from non-ICU hospital bed and time to transfer | |
| Duration of ICU stay in days | |
| Occurrence of mechanical ventilation | |
| Days to and on mechanical ventilation | |
| Time to clinical recovery defined as the time (in hours) from initiation of therapy until normalization of fever, respiratory rate, and oxygen saturation, and alleviation of cough, sustained for at least 72 hours. Normalization and alleviation criteria as follow: | |
| Fever - ≤ 36.6°C or -axilla, ≤ 37.2°C oral or ≤ 37.8°C rectal or tympanic | |
| Respiratory rate - ≤ 24/min on room air | |
| Oxygen saturation - >94% on room air | |
| Cough - mild or absent on a patient-reported scale of severe, moderate, mild, absent | |
| Hospital length of stay (LOS) | |
| All-cause mortality | |
| Outpatient measures | Body temperature, twice daily (morning and evening) |
| Ambulatory spirometry or breathing measures | |
| Headache/pain scores and BAS | |
| Respiratory rate | |
| Mechanistic measures | Inflammation: TNF, IL-1b, IL-6, IL-8, IL-10, IFNg, CRP. Ferritin |
| Pulmonary function: forced expiratory volume |
Study designers are encouraged to ensure specific biomarkers to the technology and hypothesized mechanism of action are included.
We strongly believe that multi-national and academic-industry collaborative and coordinated efforts to tackle COVID-19 are necessary to advance our knowledge and provide the urgently needed therapeutic options. Our present collaboration and this review on neuromodulation will hopefully serve as an example/roadmap for other scientific areas.
Author Contributions
All authors wrote sections of the manuscript, contributed to manuscript revision, and read and approved the submitted version.
Conflict of Interest
CC is an equity holder of Convergent Medical Technologies, Inc., reports personal fees from electroCore Inc., and Spark Biomedical, and has issued and pending patents related to vagus nerve stimulation to control bleeding and inflammation. MB reports personal fees from Soterix Medical, grants from Google X, personal fees from Halo Neuroscience, outside the submitted work; in addition, he has a patent Brain Stimulation issued. MFr reports pending patent applications describing injectable electrode structures for Neuronoff, Inc., and is an employee and equity holder of Neuronoff, Inc. He further reports issued patents for selective Vagus nerve stimulation and selective electrical vagal block for regulation of autonomic functions such as heart rate and blood pressure for Boston Scientific. MFu reports personal fees from Axon Therapies, CVRx, Daxor, Edwards Life Sciences, Galvani, and Respicardia, outside the submitted work. SH is an employee and equity holder of Cala Health. NK reports a patent devices and methods for reducing inflammation using electrical stimulation pending. BS reports personal fees from electroCore, and reports patents issued and pending related to transcutaneous cervical vagus nerve stimulation. PS is an employee and equity holder of electroCore, and reports patents issued and pending related to transcutaneous cervical vagus nerve stimulation. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Acknowledgments
The authors wish to thank additional members of the ICNC for their discussions and advice on this manuscript and other ICNC matters: Abrahão Fontes Baptista, Lecio Figueira, Eugenijus Kaniusas, Mark Lambert, Hubert Lim, Alexandre OKano, Fivos Panetsos, JoJo Platt, Lawrence Poree, Daniel Powell, Christopher Puleo, Claire-Marie Rangon, Carlos Tornero, and Ricardo Vallejo.
References
- 1.Ader F, Bouscambert-Duchamp M, Hites M, Peiffer-Smadja N, Poissy J, Belhadi D, et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. (2022) 22:209–21. 10.1016/S1473-3099(21)00485-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. (2020) 20:363–74. 10.1038/s41577-020-0311-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. (2020). 10.1016/j.ajpath.2020.08.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol Nat Res. (2020) 20:355–62. 10.1038/s41577-020-0331-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. (2020) 26:1636–43. 10.1038/s41591-020-1051-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kim IC, Kim HA, Park JS, Nam CW. Updates of cardiovascular manifestations in COVID-19: Korean experience to broaden worldwide perspectives. Korean Circ J. (2020) 50:543. 10.4070/kcj.2020.0205 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. (2020) 18:844–7. 10.1111/jth.14768 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of covid-19 in the young. N Engl J Med. (2020) 382:e60. 10.1056/NEJMc2009787 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Liu PP, Blet A, Smyth D, Li H. The Science underlying COVID-19: implications for the cardiovascular system. Circulation. (2020) 142:68–78. 10.1161/CIRCULATIONAHA.120.047549 [DOI] [PubMed] [Google Scholar]
- 10.Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with covid-19. N Engl J Med. (2020) 382:E38. 10.1056/NEJMc2007575 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Levi M, Van Der Poll T. Coagulation in sepsis: all bugs bite equally. Crit Care. (2004) 8:99–100. 10.1186/cc2595 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Van Der Poll T, Van De Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. (2017) 17:407–20. 10.1038/nri.2017.36 [DOI] [PubMed] [Google Scholar]
- 13.Chiu IM, Von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. (2012) 15:1063–7. 10.1038/nn.3144 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Chu C, Artis D, Chiu IM. Neuro-immune Interactions in the Tissues. Immunity. (2020) 52:464–74. 10.1016/j.immuni.2020.02.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Bellocchi C, Carandina A, Montinaro B, Targetti E, Furlan L, Rodrigues GD, et al. The interplay between autonomic nervous system and inflammation across systemic autoimmune diseases. Int J Mol Sci. (2022) 23:2449. 10.3390/ijms23052449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Caravaca AS, Tsaava T, Goldman L, Silverman H, Riggott G, Chavan SS, et al. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J Neural Eng. (2017) 14:066005. 10.1088/1741-2552/aa7a42 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A. (2018) 115:E4843–52. 10.1073/pnas.1719083115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. (2012) 30:313–35. 10.1146/annurev-immunol-020711-075015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Vaillancourt M, Chia P, J Sarji S, Nguyen Hoftman N, Ruffenach G, et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res. (2017) 18:201. 10.1186/s12931-017-0679-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Al-kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Kasozi KI, Zirintunda G, Aslam A, et al. Effects of β-Blockers on the Sympathetic and Cytokines Storms in Covid-19. Front Immunol. (2021) 12:749291. 10.3389/fimmu.2021.749291 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.McAllen RM, McKinley MJ, Martelli D. Reflex regulation of systemic inflammation by the autonomic nervous system. Auton Neurosci. (2022) 237:102926. 10.1016/j.autneu.2021.102926 [DOI] [PubMed] [Google Scholar]
- 22.Borovikova L V, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. (2000) 405:458–62. 10.1038/35013070 [DOI] [PubMed] [Google Scholar]
- 23.Steinberg BE, Sundman E, Terrando N, Eriksson LI, Olofsson PS. Neural control of inflammation. Anesthesiology. (2016) 124:1174–89. 10.1097/ALN.0000000000001083 [DOI] [PubMed] [Google Scholar]
- 24.Li L, Wang D, Pan H, Huang L, Sun X, He C, et al. Non-invasive Vagus nerve stimulation in cerebral stroke: current status and future perspectives. Front Neurosci. (2022) 16:820665. 10.3389/fnins.2022.820665 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Du L, Yang Z, Sheng H, Liu M, Sun Q. Effects of Long-term vagus nerve electrical stimulation therapy on acute cerebral infarction and neurological function recovery in post MCAO mice. Oxid Med Cell Longev. (2022) 2022:1–9. 10.1155/2022/8131391 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Azabou E, Bao G, Costantino F, Jacota M, Lazizi C, Nkam L, et al. Randomized cross over study assessing the efficacy of non-invasive stimulation of the vagus nerve in patients with axial spondyloarthritis resistant to biotherapies: the ESNV-SPA study protocol. Front Hum Neurosci. (2021) 15:679775. 10.3389/fnhum.2021.679775 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Powell K, Shah K, Hao C, Wu YC, John A, Narayan RK, et al. Neuromodulation as a new avenue for resuscitation in hemorrhagic shock. Bioelectronic Medicine. (2019) 5:17. 10.1186/s42234-019-0033-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Wu J, Yin Y, Qin M, Li K, Liu F, Zhou X, et al. Vagus nerve stimulation protects enterocyte Glycocalyx after hemorrhagic shock via the cholinergic anti-inflammatory pathway. Shock. (2021) 56:832–9. 10.1097/SHK.0000000000001791 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Bonaz B, Sinniger V, Pellissier S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases. Front Neurosci. (2021) 15:650971. 10.3389/fnins.2021.650971 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Caravaca AS, Levine YA, Drake A, Eberhardson M, Olofsson PS. Vagus nerve stimulation reduces indomethacin-induced small bowel inflammation. Front Neurosci. (2022) 15:730407. 10.3389/fnins.2021.730407 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther. (2017) 179:1–16. 10.1016/j.pharmthera.2017.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Costantini TW, Coimbra R, Weaver JL, Eliceiri BP. Precision targeting of the vagal anti-inflammatory pathway attenuates the systemic inflammatory response to burn injury. J Trauma Acute Care Surg. (2022) 92:323–9. 10.1097/TA.0000000000003470 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Courties A, Berenbaum F, Sellam J. Vagus nerve stimulation in musculoskeletal diseases. Joint Bone Spine. (2021) 88:105149. 10.1016/j.jbspin.2021.105149 [DOI] [PubMed] [Google Scholar]
- 34.Brock C, Rasmussen SE, Drewes AM, Møller HJ, Brock B, Deleuran B, et al. Vagal nerve stimulation-modulation of the anti-inflammatory response and clinical outcome in psoriatic arthritis or ankylosing spondylitis. Mediators Inflamm. (2021) 2021:1–9. 10.1155/2021/9933532 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity. (2017) 46:92–105. 10.1016/j.immuni.2016.12.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Cox MA, Duncan GS, Lin GHY, Steinberg BE, Yu LX, Brenner D, et al. Choline acetyltransferase–expressing T cells are required to control chronic viral infection. Science. (2019) 8:363. 10.1126/science.aau9072 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Malin SG, Shavva VS, Tarnawski L, Olofsson PS. Functions of acetylcholine-producing lymphocytes in immunobiology. Curr Opin Neurobiol. (2020) 62:115–21. 10.1016/j.conb.2020.01.017 [DOI] [PubMed] [Google Scholar]
- 38.Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. (2011) 334:98–101. 10.1126/science.1209985 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. (2006) 203:1623–9. 10.1084/jem.20052362 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol Rev. (2012) 248:188–204. 10.1111/j.1600-065X.2012.01138.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Hoffmann TJ, Mendez S, Staats P, Emala CW, Guo P. Inhibition of histamine-induced bronchoconstriction in guinea pig and swine by pulsed electrical vagus nerve stimulation. Neuromodulation. (2009) 12:261–9. 10.1111/j.1525-1403.2009.00234.x [DOI] [PubMed] [Google Scholar]
- 42.Hoffmann TJ, Simon BJ, Zhang Y, Emala CW. Low voltage vagal nerve stimulation reduces bronchoconstriction in guinea pigs through catecholamine release. Neuromodulation. (2012) 15:527–36. 10.1111/j.1525-1403.2012.00454.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Ricciardolo FLM, Trevisani M, Geppetti P, Nadel JA, Amadesi S, Bertrand C. Role of nitric oxide and septide-insensitive NK1 receptors in bronchoconstriction induced by aerosolised neurokinin A in guinea-pigs. Br J Pharmacol. (2000) 129:915–20. 10.1038/sj.bjp.0703135 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Sepulveda P, Bohill G, Hoffmann TJ. Treatment of asthmatic bronchoconstriction by percutaneous low voltage vagal nerve stimulation: case report. Internet J Asthma Allergy Immunol. (2010) 7:2. 10.5580/4a7 [DOI] [Google Scholar]
- 45.Pavlov VA, Chavan SS, Tracey KJ. Molecular and Functional Neuroscience in Immunity. Annu Rev Immunol. (2018) 36:783–812. 10.1146/annurev-immunol-042617-053158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol. (2000) 279:R141–7. 10.1152/ajpregu.2000.279.1.R141 [DOI] [PubMed] [Google Scholar]
- 47.Knox AJ, Campos-Gongora H, Wisniewski A, MacDonald IA, Tattersfield AE. Modification of bronchial reactivity by physiological concentrations of plasma epinephrine. J Appl Physiol. (1992) 73:1004–7. 10.1152/jappl.1992.73.3.1004 [DOI] [PubMed] [Google Scholar]
- 48.Simillis C, Lal N, Qiu S, Kontovounisios C, Rasheed S, Tan E, et al. Sacral nerve stimulation versus percutaneous tibial nerve stimulation for faecal incontinence: a systematic review and meta-analysis. Int J Colorectal Dis. (2018) 33:645–8. 10.1007/s00384-018-2976-z [DOI] [PubMed] [Google Scholar]
- 49.Siddiqui NY, Wu JM, Amundsen CL. Efficacy and adverse events of sacral nerve stimulation for overactive bladder: a systematic review. Neurourol Urodyn. (2010) 29 Suppl 1: S18–23. 10.1002/nau.20786 [DOI] [PubMed] [Google Scholar]
- 50.Wang Y, Hassouna MM. Neuromodulation reduces c-fos gene expression in spinalized rats: a double-blind randomized study. J Urol. (2000) 163:1966–70. 10.1097/00005392-200006000-00103 [DOI] [PubMed] [Google Scholar]
- 51.Elkelini MS, Abuzgaya A, Hassouna MM. Mechanisms of action of sacral neuromodulation. Int Urogynecol J. (2010) 21:439–46. 10.1007/s00192-010-1273-3 [DOI] [PubMed] [Google Scholar]
- 52.Aboseif S, Tamaddon K, Chalfin S, Freedman S, Mourad MS, Chang JH, et al. Sacral neuromodulation in functional urinary retention: an effective way to restore voiding. BJU Int. (2002) 90:662–5. 10.1046/j.1464-410X.2002.02989.x [DOI] [PubMed] [Google Scholar]
- 53.Janssen PTJ, Komen N, Melenhorst J, Bouvy ND, Jahanshahi A, Temel Y, et al. Sacral neuromodulation for fecal incontinence. J Clin Gastroenterol. (2017) 51:669–76. 10.1097/MCG.0000000000000850 [DOI] [PubMed] [Google Scholar]
- 54.Gourcerol G, Vitton V, Leroi AM, Michot F, Abysique A, Bouvier M. How sacral nerve stimulation works in patients with faecal incontinence. Colorectal Dis. (2011) 13:e203–11. 10.1111/j.1463-1318.2011.02623.x [DOI] [PubMed] [Google Scholar]
- 55.Zhang N, Zhang H, Jiang L, Zhang S, Yin J, Schramm L, et al. A novel method of sacral nerve stimulation for colonic inflammation. Neurogastroenterol Motil. (2020) 1:32. 10.1111/nmo.13825 [DOI] [PubMed] [Google Scholar]
- 56.Pasricha TS, Zhang H, Zhang N, Chen JDZ. Sacral nerve stimulation prompts vagally-mediated amelioration of rodent colitis. Physiol Rep. (2020) 1:8. 10.14814/phy2.14294 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Tu L, Gharibani P, Zhang N, Yin J, Chen JD. Anti-inflammatory effects of sacral nerve stimulation: a novel spinal afferent and vagal efferent pathway. Am J Physiol. (2020) 318:G624–34. 10.1152/ajpgi.00330.2019 [DOI] [PubMed] [Google Scholar]
- 58.Ye F, Liu Y, Li S, Zhang S, Foreman RD, Chen JD. Sacral nerve stimulation increases gastric accommodation in rats: a spinal afferent and vagal efferent pathway. Am J Physiol. (2020) 318:G574–81. 10.1152/ajpgi.00255.2019 [DOI] [PubMed] [Google Scholar]
- 59.Guo J, Jin H, Shi Z, Yin J, Pasricha T, Chen JDZ. Sacral nerve stimulation improves colonic inflammation mediated by autonomic-inflammatory cytokine mechanism in rats. Neurogastroenterol Motil. (2019) 1:31. 10.1111/nmo.13676 [DOI] [PubMed] [Google Scholar]
- 60.Wang X, Zhang S, Pasricha PJ, Chen JDZ. Ameliorating effects of sacral neuromodulation on gastric and small intestinal dysmotility mediated via a sacral afferent-vagal efferent pathway. Neurogastroenterol Motil. (2020) 1:32. 10.1111/nmo.13837 [DOI] [PubMed] [Google Scholar]
- 61.Pancrazio J. Introduction. In: Krames ES, Peckham PH RA. editor. Neuromodulation: Comprehensive Textbook of Principles, Technologies, and Therapies. 2nd edn. London: Academic Press Inc. (2018). p. 69–70. [Google Scholar]
- 62.Vonck K, Boon P. Epilepsy: Closing the loop for patients with epilepsy. Nat Rev Neurol. (2015) 11:252–4. 10.1038/nrneurol.2015.56 [DOI] [PubMed] [Google Scholar]
- 63.Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices. (2018) 15:527–39. 10.1080/17434440.2018.1507732 [DOI] [PubMed] [Google Scholar]
- 64.Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in Rheumatoid arthritis. Proc Natl Acad Sci U S A. (2016) 113:8284–9. 10.1073/pnas.1605635113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterol Motil. (2020). 10.1111/nmo.13911 [DOI] [PubMed] [Google Scholar]
- 66.Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural control of inflammation: bioelectronic medicine in treatment of chronic inflammatory disease. Cold Spring Harb Perspect Med. (2020) 1:10. 10.1101/cshperspect.a034181 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Miner JR, Lewis LM, Mosnaim GS, Varon J, Theodoro D, Hoffmann TJ. Feasibility of percutaneous vagus nerve stimulation for the treatment of acute asthma exacerbations. Acad Emerg Med. (2012) 19:421–9. 10.1111/j.1553-2712.2012.01329.x [DOI] [PubMed] [Google Scholar]
- 68.Steyn E, Mohamed Z, Husselman C. Non-invasive vagus nerve stimulation for the treatment of acute asthma exacerbations - Results from an initial case series. Int J Emerg Med. (2013) 6:7. 10.1186/1865-1380-6-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Staats P, Emala C, Simon B, Errico JP. Neuromodulation for Asthma. In: Krames ES, Peckham PH, Rezai AR. eds. Neuromodulation: Comprehensive Textbook of Principles, Technologies, and Therapies. 2nd ed. Academic Press/Elsevier; (2018). [Google Scholar]
- 70.Bijwadia JS, Hoch RC, Dexter DD. Identification and treatment of bronchoconstriction induced by a vagus nerve stimulator employed for management of seizure disorder. Chest. (2005) 127:401–2. 10.1378/chest.127.1.401 [DOI] [PubMed] [Google Scholar]
- 71.Fudim M, Qadri YJ, Ghadimi K, MacLeod DB, Molinger J, Piccini JP, et al. Implications for neuromodulation therapy to control inflammation and related organ dysfunction in COVID-19. J Cardiovasc Transl Res. (2020) 13:894–9. 10.1007/s12265-020-10031-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Kaniusas E, Szeles JC, Kampusch S, Alfageme-Lopez N, Yucuma-Conde D, Li X, et al. Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome. Front Physiol. (2020) 11:890. 10.3389/fphys.2020.00890 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med. (2020) 6:15. 10.1186/s42234-020-00051-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus nerve stimulation: a potential adjunct therapy for COVID-19. Front Med (Lausanne). (2021) 8:625836. 10.3389/fmed.2021.625836 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Mastitskaya S, Thompson N, Holder D. Selective vagus nerve stimulation as a therapeutic approach for the treatment of ARDS: a rationale for neuro-immunomodulation in COVID-19 disease. Front Neurosci. (2021) 15:667036. 10.3389/fnins.2021.667036 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Qin Z, Xiang K, Su DF, Sun Y, Liu X. Activation of the cholinergic anti-inflammatory pathway as a novel therapeutic strategy for COVID-19. Front Immunol. (2020) 11:595342. 10.3389/fimmu.2020.595342 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, et al. Applications of non-invasive neuromodulation for the management of disorders related to COVID-19. Front Neurol. (2020) 11:573718. 10.3389/fneur.2020.573718 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Bara GA, de Ridder D, Maciaczyk J. Can neuromodulation support the fight against the COVID19 pandemic? Transcutaneous non-invasive vagal nerve stimulation as a potential targeted treatment of fulminant acute respiratory distress syndrome. Med Hypotheses. (2020) 143:110093. 10.1016/j.mehy.2020.110093 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Andersson U. The cholinergic anti-inflammatory pathway alleviates acute lung injury. Mol Med. (2020) 26:64. 10.1186/s10020-020-00184-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Frangos E, Ellrich J, Komisaruk BR. Non-invasive Access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. (2015) 8:624–36. 10.1016/j.brs.2014.11.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Frangos E, Komisaruk BR. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. (2017) 10:19–27. 10.1016/j.brs.2016.10.008 [DOI] [PubMed] [Google Scholar]
- 82.Komisaruk BR, Frangos E. Vagus nerve afferent stimulation: projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance. Auton Neurosci. (2022) 237:102908. 10.1016/j.autneu.2021.102908 [DOI] [PubMed] [Google Scholar]
- 83.Lerman I, Hauger R, Sorkin L, Proudfoot J, Davis B, Huang A, et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation. (2016) 19:283–91. 10.1111/ner.12398 [DOI] [PubMed] [Google Scholar]
- 84.Brock C, Brock B, Aziz Q, Møller HJ, Pfeiffer Jensen M, Drewes AM, et al. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol Motil. (2017) 1:29. 10.1111/nmo.12999 [DOI] [PubMed] [Google Scholar]
- 85.Tarn J, Legg S, Mitchell S, Simon B, Ng WF. The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary sjögren's syndrome. Neuromodulation. (2019) 22:580–5. 10.1111/ner.12879 [DOI] [PubMed] [Google Scholar]
- 86.Wittbrodt MT, Gurel NZ, Nye JA, Ladd S, Shandhi MMH, Huang M, et al. Non-invasive vagal nerve stimulation decreases brain activity during trauma scripts. Brain Stimul. (2020) 13:1333–48. 10.1016/j.brs.2020.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Mondal B, Choudhury S, Banerjee R, Roy A, Chatterjee K, Basu P, et al. Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's disease in patients with freezing of gait. NPJ Parkinsons Dis. (2021) 7:46. 10.1038/s41531-021-00190-x [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 88.Bremner JD, Wittbrodt MT, Gurel NZ, Shandhi MH, Gazi AH, Jiao Y, et al. Transcutaneous cervical vagal nerve stimulation in Patients with Posttraumatic Stress Disorder (PTSD): a pilot study of effects on PTSD symptoms and interleukin-6 response to stress. J Affect Disord Rep. (2021) 6: 100190. 10.1016/j.jadr.2021.100190 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.U.S. Food and Drug Administration . electroCore EUA. Available online at: https://www.fda.gov/media/139967/download (accessed March 12, 2022).
- 90.Chae JH, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, et al. review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res. (2003) 37:443–55. 10.1016/S0022-3956(03)00074-8 [DOI] [PubMed] [Google Scholar]
- 91.Kraus T, Kiess O, Hösl K, Terekhin P, Kornhuber J, Forster C, et al. fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. (2013) 6:798–804. 10.1016/j.brs.2013.01.011 [DOI] [PubMed] [Google Scholar]
- 92.Salama M, Akan A, Mueller MR. Transcutaneous stimulation of auricular branch of the vagus nerve attenuates the acute inflammatory response after lung lobectomy. World J Surg. (2020) 1:44. 10.1007/s00268-020-05543-w [DOI] [PubMed] [Google Scholar]
- 93.Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. (2020) 6:282–91. 10.1016/j.jacep.2019.11.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Addorisio ME, Imperato GH, de Vos AF, Forti S, Goldstein RS, Pavlov VA, et al. Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron Med. (2019) 5:4. 10.1186/s42234-019-0020-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Health Canada . Dolphin Extended Use Authorization. Available online at: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-industry/medical-devices/authorized/expanded-use.html (accessed March 13, 2022).
- 96.Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. (2016) 127:1031–48. 10.1016/j.clinph.2015.11.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. (2017) 128:1774–809. 10.1016/j.clinph.2017.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Huang YZ, Sommer M, Thickbroom G, Hamada M, Pascual-Leonne A, Paulus W, et al. Consensus: New methodologies for brain stimulation. Brain Stimul. (2009) 2:2–13. 10.1016/j.brs.2008.09.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. (2012) 5:435–53. 10.1016/j.brs.2011.10.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. (2020) 13:717–50. 10.1016/j.brs.2020.02.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Pilloni G, Bikson M, Badran BW, George MS, Kautz SA, Okano AH, et al. Update on the Use of Transcranial Electrical Brain Stimulation to Manage Acute and Chronic COVID-19 Symptoms. Front Hum Neurosci. (2020) 14:595567. 10.3389/fnhum.2020.595567 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Silva Filho E, Moura S, Santos ADC, Brasileiro-Santos MDS, Albuquerque JA. Transcranial direct current stimulation as a strategy to manage COVID-19 pain and fatigue. Rev Assoc Med Bras. (2021) 67:26–8. 10.1590/1806-9282.67.01.20200671 [DOI] [PubMed] [Google Scholar]
- 103.Eilam-Stock T, George A, Lustberg M, Wolintz R, Krupp LB, Charvet LE. Telehealth transcranial direct current stimulation for recovery from Post-Acute Sequelae of SARS-CoV-2 (PASC). Brain Stimul. (2021) 14:1520–2. 10.1016/j.brs.2021.10.381 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Gómez L, Vidal B, Cabrera Y, Hernández L, Rondón Y. Successful Treatment of Post-COVID Symptoms With Transcranial Direct Current Stimulation. Prim Care Companion CNS Disord. (2021) 2:23. 10.4088/PCC.21cr03059 [DOI] [PubMed] [Google Scholar]
- 105.Rosen AC, Lavacot JA, Porter IM, Chao SZ, Bikson M, Kumar AA, et al. TDCS in a patient with dreadlocks: Improvements in COVID-19 related verbal fluency dysfunction. Brain Stimul. (2022) 15:254–6. 10.1016/j.brs.2022.01.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. (2018) 98:477–504. 10.1152/physrev.00039.2016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Gomez-Tames J, Asai A, Hirata A. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): a computational analysis of electric fields. Clin Neurophysiol. (2020) 131:755–65. 10.1016/j.clinph.2019.11.018 [DOI] [PubMed] [Google Scholar]
- 108.Dasilva AF, Mendonca ME, Zaghi S, Lopes M, Dossantos MF, Spierings EL, et al. TDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. (2012) 52:1283–95. 10.1111/j.1526-4610.2012.02141.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Huang Y, Datta A, Parra LC. Optimization of interferential stimulation of the human brain with electrode arrays. J Neural Eng. (2020) 17:036023. 10.1088/1741-2552/ab92b3 [DOI] [PubMed] [Google Scholar]
- 110.Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife. (2017) 7:6. 10.7554/eLife.18834 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Bestmann S, Feredoes E. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Ann N Y Acad Sci. (2013) 1296:11–30. 10.1111/nyas.12110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage. (2005) 28:22–9. 10.1016/j.neuroimage.2005.05.027 [DOI] [PubMed] [Google Scholar]
- 113.Iseger TA, van Bueren NER, Kenemans JL, Gevirtz R, Arns M. A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques. Brain Stimul. (2020) 13:1–9. 10.1016/j.brs.2019.10.006 [DOI] [PubMed] [Google Scholar]
- 114.Montenegro RA, Farinatti Pde T, Fontes EB, Soares PP, Cunha FA, Gurgel JL, et al. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett. (2011) 497:32–6. 10.1016/j.neulet.2011.04.019 [DOI] [PubMed] [Google Scholar]
- 115.Vandermeeren Y, Jamart J, Ossemann M. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci. (2010) 16:11. 10.1186/1471-2202-11-38 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. (2019) 12:19–29. 10.1016/j.brs.2018.10.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. (2007) 35:2762–8. 10.1097/00003246-200712000-00014 [DOI] [PubMed] [Google Scholar]
- 118.Levine YA, Faltys M, Chernoff D. Harnessing the inflammatory reflex for the treatment of inflammation-mediated diseases. Cold Spring Harb Perspect Med. (2020) 1:10. 10.1101/cshperspect.a034330 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound in Medicine and Biology Elsevier USA. (2019) 45:1509–36. 10.1016/j.ultrasmedbio.2018.12.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. (2008) 105:11008–13. 10.1073/pnas.0803237105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. (2013) 24:1451–60. 10.1681/ASN.2013010084 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Gigliotti JC, Huang L, Bajwa A, Ye H, Mace EH, Hossack JA, et al. Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J Am Soc Nephrol. (2015) 26:2470–81. 10.1681/ASN.2014080769 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Cotero V, Fan Y, Tsaava T, Kressel AM, Hancu I, Fitzgerald P, et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun. (2019) 1:10. 10.1038/s41467-019-08750-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Zachs DP, Offutt SJ, Graham RS, Kim Y, Mueller J, Auger JL, et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nat Commun. (2019) 1:10. 10.1038/s41467-019-08721-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. (2002) 59(6 Suppl. 4): S3–14. 10.1212/WNL.59.6_suppl_4.S3 [DOI] [PubMed] [Google Scholar]
- 126.Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. (2005) 29:493–500. 10.1016/j.neubiorev.2005.01.004 [DOI] [PubMed] [Google Scholar]
- 127.Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. (2003) 4:109–21. 10.1054/jpai.2003.434 [DOI] [PubMed] [Google Scholar]
- 128.Dietrich S, Smith J, Scherzinger C, Hofmann-Preiß K, Freitag T, Eisenkolb A, et al. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Tech. (2008) 53:104–11. 10.1515/BMT.2008.022 [DOI] [PubMed] [Google Scholar]
- 129.Henry TR, Bakay RAE, Votaw JR, Pennell PB, Epstein CM, Faber TL, et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia. (1998) 39:983–90. 10.1111/j.1528-1157.1998.tb01448.x [DOI] [PubMed] [Google Scholar]
- 130.Henry TR, Votaw JR, Pennell PB, Epstein CM, Bakay RAE, Faber TL, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology. (1999) 52:1166–73. 10.1212/WNL.52.6.1166 [DOI] [PubMed] [Google Scholar]
- 131.Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. (2000) 85:1–17. 10.1016/S1566-0702(00)00215-0 [DOI] [PubMed] [Google Scholar]
- 132.George MS, Nahas Z, Bohning DE, Mu Q, Kozel FA, Borckhardt J, et al. Mechanisms of action of vagus nerve stimulation (VNS). Clin Neurosci Res. (2004) 4:71–9. 10.1016/j.cnr.2004.06.006 [DOI] [Google Scholar]
- 133.George MS, Sackeim HA, Marangell LB, Husain MM, Nahas Z, Lisanby SH, et al. Vagus nerve stimulation: A potential therapy for resistant depression? Psychiatr Clin North Am. (2000) 23:757–83. 10.1016/S0193-953X(05)70196-9 [DOI] [PubMed] [Google Scholar]
- 134.George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry. (2000) 47:287–95. 10.1016/S0006-3223(99)00308-X [DOI] [PubMed] [Google Scholar]
- 135.Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia. (1999) 40:1051–7. 10.1111/j.1528-1157.1999.tb00818.x [DOI] [PubMed] [Google Scholar]
- 136.Chen SP, Ay I, Lopes De Morais A, Qin T, Zheng Y, Sadeghian H, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. (2016) 157:797–805. 10.1097/j.pain.0000000000000437 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. (2007) 1179:28–34. 10.1016/j.brainres.2007.08.045 [DOI] [PubMed] [Google Scholar]
- 138.Cheng K, Brodnick S, Blanz S, Zeng W, Kegel J, Pisaniello J, et al. Is vagus nerve stimulation brain washing? bioRxiv. (2019) 13:733410. 10.1101/73341015820352 [DOI] [Google Scholar]
- 139.Staats P, Giannakopoulos G, Blake J, Liebler E, Levy RM. The use of non-invasive vagus nerve stimulation to treat respiratory symptoms associated with COVID-19: a theoretical hypothesis and early clinical experience. Neuromodulation. (2020) 23:784–8. 10.1111/ner.13172 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Tornero C, Pastor E, Garzando MDM, Orduña J, Forner MJ, Bocigas I, et al. Non-invasive Vagus Nerve Stimulation for COVID-19: Results From a Randomized Controlled Trial (SAVIOR I). Front Neurol. (2022) 8:13. 10.3389/fneur.2022.820864 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Nemechek P, Antonelli G, Braida A. Transcutaneous vagus nerve stimulation is associated with lower mechanical ventilation and mortality in COVID-19 patients. J Emerg Dis Virol. (2021) 6:1–5. 10.16966/2473-1846.165 [DOI] [Google Scholar]
- 142.Rangon CM, Barruet R, Mazouni A, le Cossec C, Thevenin S, Guillaume J, et al. Auricular neuromodulation for mass vagus nerve stimulation: insights from SOS COVID-19 a multicentric, randomized, controlled, double-blind french pilot study. Front Physiol. (2021) 2:12. 10.3389/fphys.2021.704599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Ortolani C, Pastorello EA. Hydroxychloroquine and dexamethasone in COVID-19: who won and who lost? Clin Mol Allergy. (2020) 18:17. 10.1186/s12948-020-00132-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Carfì A, Bernabei R, Landi F. persistent symptoms in patients after acute COVID-19. JAMA. (2020) 324:603–5. 10.1001/jama.2020.12603 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Lefaucheur JP, Chalah MA, Mhalla A, Palm U, Ayache SS, Mylius V. The treatment of fatigue by non-invasive brain stimulation. Neurophysiol Clin. (2017) 47:173–84. 10.1016/j.neucli.2017.03.003 [DOI] [PubMed] [Google Scholar]
- 146.Brunoni AR, Sampaio-Junior B, Moffa AH, Aparício L V, Gordon P, Klein I, et al. Noninvasive brain stimulation in psychiatric disorders: a primer. Braz J Psychiatry. (2019) 41:70–81. 10.1590/1516-4446-2017-0018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Vicario CM, Salehinejad MA, Felmingham K, Martino G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci Biobehav Rev. (2019) 96:219–31. 10.1016/j.neubiorev.2018.12.012 [DOI] [PubMed] [Google Scholar]
- 148.Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous auricular vagus nerve stimulation as an adjuvant therapy for the depressive symptoms of COVID-19: a literature review. Front Psychiatry. (2021) 15:12. 10.3389/fpsyt.2021.765106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Fudim M, Ali-Ahmed F, Patel MR, Sobotka PA. Sham trials: benefits and risks for cardiovascular research and patients. Lancet. (2019) 393:2104–6. 10.1016/S0140-6736(19)31120-1 [DOI] [PubMed] [Google Scholar]
- 150.Farmer AD, Strzelczyk A, Finisguerra A, Gourine Av, Gharabaghi A, Hasan A, et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (Version 2020). Front Hum Neurosci. (2020) 14:568051. 10.3389/fnhum.2020.568051 [DOI] [PMC free article] [PubMed] [Google Scholar]
