Skip to main content
Frontiers in Aging logoLink to Frontiers in Aging
. 2022 Jul 18;3:949924. doi: 10.3389/fragi.2022.949924

Functional role of miR-34a in diabetes and frailty

Pasquale Mone 1,2,*, Antonio de Donato 3, Fahimeh Varzideh 1, Urna Kansakar 1, Stanislovas S Jankauskas 1, Antonella Pansini 2, Gaetano Santulli 1,4
PMCID: PMC9340262  PMID: 35923683

Abstract

Emerging evidence has shown that microRNAs (miRNAs) play critical role in the pathogenesis of several disorders. In the present minireview, we focus our attention on the functional role of a specific miRNA, namely miR-34a, in the pathophysiology of frailty and diabetes mellitus. Based on the current literature, we speculate that this miRNA may serve as a potential biomarker of frailty in diabetic older adults. Additionally, its actions on oxidative stress might represent a druggable target to obtain new potentials treatments.

Keywords: miRNA, miR-34, frailty, diabetes, aging

Background

Frailty is a clinical burden which is typical of older adults (Clegg et al., 2013; Hanlon et al., 2018). Frail older adults have a high risk of adverse events such as functional and cognitive impairment, hospitalizations, and death (Puts et al., 2017; Gilbert et al., 2018; Hoogendijk et al., 2019; Pilotto et al., 2020). A prompt diagnosis and a careful management of comorbidities is the first step to avoid adverse outcomes; diabetes is one of these comorbidities and it is very common in frail older adults (Umegaki, 2016; Yarnall et al., 2017; Clegg and Hassan-Smith, 2018; Nagai et al., 2018; Li et al., 2019; Sieber, 2019; Mone et al., 2022a; Mone et al., 2022b; Mone et al., 2022d). Indeed, diabetes leads to a higher risk of cardiovascular complications and functional and physical impairment driving adverse outcomes (Fadini and Avogaro, 2010; Prattichizzo et al., 2018; Yun et al., 2018; Jarvie et al., 2019; Yu et al., 2019; Gulsin et al., 2020).

microRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators (Ambros, 2004; Krol et al., 2010; Santulli, 2015; Ferrante and Conti, 2017; Fridrichova and Zmetakova, 2019; Stavast and Erkeland, 2019; Mone et al., 2021b; Mone et al., Forthcoming 2022c); miRNAs exert their activity in many biological processes and have been proposed as biomarkers and therapeutic strategies (Creemers et al., 2012; Wronska et al., 2015; Barwari et al., 2016; Chen et al., 2018; Wong et al., 2018; Mone et al., 2021b; Fonseca et al., 2021; Mone et al., Forthcoming 2022c). Many miRNAs have been associated to mitochondrial dysfunction, inflammation, and oxidative stress and their concentration may vary in physiological conditions (Zhang et al., 2014; Hathaway et al., 2018; Wei et al., 2018; Rusanova et al., 2019; Song et al., 2019; Gambardella et al., Forthcoming 2022). Interestingly, several investigators evidenced the potential roles of microRNAs (miRNAs) in the pathogenesis of frailty (Rusanova et al., 2019; Carini et al., 2021; Lee et al., 2021; Carini et al., 2022; Dowling et al., 2022).

Specifically, miR-34a has been associated to frailty, aging, and diabetes (Figure 1) (Boon et al., 2013; Chakraborty et al., 2014; Rippo et al., 2014; Badi et al., 2018; Thounaojam and Bartoli, 2019; Kukreti and Amuthavalli, 2020; Ni et al., 2020; Manakanatas et al., 2022) and is generally considered a bona fide biomarker of cellular and vascular senescence (Badi et al., 2015; Park et al., 2020; Manakanatas et al., 2022).

FIGURE 1.

FIGURE 1

Functional role of miR-34 in frailty, aging, and diabetes.

Role of miR-34a in frailty and aging

The pathophysiology of frailty includes chronic inflammation, which is prevailing in aging (“inflammaging”), oxidative stress with or without mitochondrial dysfunction, insulin resistance, loss of anabolic hormones, and reduced tolerance to physical exercise with a reduction in muscle strength (Bandeen-Roche et al., 2015; Cruz-Jentoft and Sayer, 2019; Rusanova et al., 2019).

Frailty onset is due to the failure of multiple organs and/or systems and many pathologic conditions have been associated with frailty (Walston et al., 2008; Afilalo et al., 2014; Mone and Pansini, 2020; Mone et al., 2021a; Waite et al., 2021; Mone et al., 2022e). In 2001, Fried et al. (2001) developed the five criteria now routinely used to diagnose frailty. Equally important, the frailty index is another tool to diagnose and manage frailty (Rockwood et al., 2005; Searle et al., 2008).

In 2011, Khanna et al. (2011) observed an age-dependent decreased expression of miR-34a in the brain of calorie-restricted mice, mirrored by an increase in Bcl-2 expression, and a reduced expression of pro-apoptosis genes such as Bax. The authors concluded that this miRNA was involved in the neuronal survival in long-lived calorie-restricted fed mice.

A subsequent investigation by Zheng and collaborators evidenced the involvement of miR-34a in cellular senescence via MAPK: the authors detected its overexpression in sarcopenia, suggesting a role of this miRNA in the aging process of the skeletal muscle (Zheng et al., 2018). Similarly, miR-34a expression was significantly up-regulated in the hearts of aged mice lacking Calstabin 2, the stabilizing protein of the cardiac isoform of Ryanodine Receptor (Yuan et al., 2014). Another investigation revealed that an increased expression of miR-34a in older rats correlates with a concomitant decrease in the brain of the anti-aging target protein SIRT1 (Hu et al., 2017).

Notably, a clinical paper indicated miR-34a as a biomarker of aging/frailty in oncogeriatric populations (Dalmasso et al., 2018). In line with these observations, a very recent paper evidenced that miR-34 regulates protein translation and protein turnover in the aging brain of Drosophila (Srinivasan et al., 2022).

Role of miR-34a in diabetes

Insulin resistance is one of the most important features of Type 2 Diabetes mellitus (T2DM) (Feve and Bastard, 2009; Taylor, 2013; Mastrototaro and Roden, 2021). Of note, miR-34a supports pancreatic development and has been associated to insulin resistance and to the onset of T2DM (Wei et al., 2013; Chakraborty et al., 2014). Intriguingly, previous investigations had highlighted that the expression of miR-34a is increased in islets of diabetic mice (Rottiers and Naar, 2012). The prolonged exposure of saturated fatty acids to MIN6 β-cells and pancreatic islets increased the expression of miR-34a (Lovis et al., 2008). Furthermore, miR-34a leads to endothelial dysfunction and vascular senescence in diabetes (Li et al., 2016; Carracedo et al., 2019; Thounaojam and Bartoli, 2019), increasing the overall risk of oxidative stress and inflammation with or without diabetes (Li et al., 2016; Cheleschi et al., 2019; Xiong et al., 2019; Zimta et al., 2019; Li et al., 2021; Mahjabeen et al., 2021; Zhu et al., 2021).

Conclusion

Herein, we summarized the investigations linking miR-34a and frailty. Furthermore, miR-34 may be linked to diabetes and endothelial dysfunction. Based on the provided evidence, we speculate that this miRNA may serve as a potential biomarker of frailty in diabetic older adults. Additionally, its actions on oxidative stress might represents a druggable target in order to develop new potentials therapeutic options.

Author contributions

Study concept and design: PM and GS. Drafting of the manuscript: PM, AP, and GS. Critical revision of the manuscript for important intellectual content: SJ, FV, UK, and GS. Administrative, technical, or material support: PM, AdD, and AP. Study supervision: PM and GS.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Afilalo J., Alexander K. P., Mack M. J., Maurer M. S., Green P., Allen L. A., et al. (2014). Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 63, 747–762. 10.1016/j.jacc.2013.09.070 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambros V. (2004). The functions of animal microRNAs. Nature 431, 350–355. 10.1038/nature02871 [DOI] [PubMed] [Google Scholar]
  3. Badi I., Burba I., Ruggeri C., Zeni F., Bertolotti M., Scopece A., et al. (2015). MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1304–1311. 10.1093/gerona/glu180 [DOI] [PubMed] [Google Scholar]
  4. Badi I., Mancinelli L., Polizzotto A., Ferri D., Zeni F., Burba I., et al. (2018). miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1 (sirtuin 1) and axl (AXL receptor tyrosine kinase). Arterioscler. Thromb. Vasc. Biol. 38, 2079–2090. 10.1161/ATVBAHA.118.311298 [DOI] [PubMed] [Google Scholar]
  5. Bandeen-Roche K., Seplaki C. L., Huang J., Buta B., Kalyani R. R., Varadhan R., et al. (2015). Frailty in older adults: a nationally representative profile in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1427–1434. 10.1093/gerona/glv133 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barwari T., Joshi A., Mayr M. (2016). MicroRNAs in cardiovascular disease. J. Am. Coll. Cardiol. 68, 2577–2584. 10.1016/j.jacc.2016.09.945 [DOI] [PubMed] [Google Scholar]
  7. Boon R. A., Iekushi K., Lechner S., Seeger T., Fischer A., Heydt S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110. 10.1038/nature11919 [DOI] [PubMed] [Google Scholar]
  8. Carini G., Mingardi J., Bolzetta F., Cester A., Bolner A., Nordera G., et al. (2022). miRNome profiling detects miR-101-3p and miR-142-5p as putative blood biomarkers of frailty syndrome. Genes (Basel) 13, 231. 10.3390/genes13020231 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carini G., Musazzi L., Bolzetta F., Cester A., Fiorentini C., Ieraci A., et al. (2021). The potential role of miRNAs in cognitive frailty. Front. Aging Neurosci. 13, 763110. 10.3389/fnagi.2021.763110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carracedo J., Alique M., Ramirez-Carracedo R., Bodega G., Ramirez R. (2019). Endothelial extracellular vesicles produced by senescent cells: pathophysiological role in the cardiovascular disease associated with all types of diabetes mellitus. Curr. Vasc. Pharmacol. 17, 447–454. 10.2174/1570161116666180820115726 [DOI] [PubMed] [Google Scholar]
  11. Chakraborty C., Doss C. G., Bandyopadhyay S., Agoramoorthy G. (2014). Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip. Rev. RNA 5, 697–712. 10.1002/wrna.1240 [DOI] [PubMed] [Google Scholar]
  12. Cheleschi S., Tenti S., Mondanelli N., Corallo C., Barbarino M., Giannotti S., et al. (2019). MicroRNA-34a and MicroRNA-181a mediate visfatin-induced apoptosis and oxidative stress via NF-kappaB pathway in human osteoarthritic chondrocytes. Cells 8, 874. 10.3390/cells8080874 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen L., Sun H., Wang C., Yang Y., Zhang M., Wong G., et al. (2018). miRNA arm switching identifies novel tumour biomarkers. EBioMedicine 38, 37–46. 10.1016/j.ebiom.2018.11.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clegg A., Hassan-Smith Z. (2018). Frailty and the endocrine system. Lancet. Diabetes Endocrinol. 6, 743–752. 10.1016/S2213-8587(18)30110-4 [DOI] [PubMed] [Google Scholar]
  15. Clegg A., Young J., Iliffe S., Rikkert M. O., Rockwood K. (2013). Frailty in elderly people. Lancet 381, 752–762. 10.1016/S0140-6736(12)62167-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Creemers E. E., Tijsen A. J., Pinto Y. M. (2012). Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110, 483–495. 10.1161/CIRCRESAHA.111.247452 [DOI] [PubMed] [Google Scholar]
  17. Cruz-Jentoft A. J., Sayer A. A. (2019). Sarcopenia. Lancet 393, 2636–2646. 10.1016/S0140-6736(19)31138-9 [DOI] [PubMed] [Google Scholar]
  18. Dalmasso B., Hatse S., Brouwers B., Laenen A., Berben L., Kenis C., et al. (2018). Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy. BMC Cancer 18, 1014. 10.1186/s12885-018-4920-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dowling L., Duseja A., Vilaca T., Walsh J. S., Goljanek-Whysall K. (2022). MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J. Cachexia Sarcopenia Muscle 13, 68–85. 10.1002/jcsm.12878 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fadini G. P., Avogaro A. (2010). Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes Obes. Metab. 12, 570–583. 10.1111/j.1463-1326.2010.01210.x [DOI] [PubMed] [Google Scholar]
  21. Ferrante M., Conti G. O. (2017). Environment and neurodegenerative diseases: an update on miRNA role. Microrna 6, 157–165. 10.2174/2211536606666170811151503 [DOI] [PubMed] [Google Scholar]
  22. Feve B., Bastard J. P. (2009). The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 305–311. 10.1038/nrendo.2009.62 [DOI] [PubMed] [Google Scholar]
  23. Fonseca A., Ramalhete S. V., Mestre A., Pires Das Neves R., Marreiros A., Castelo-Branco P., et al. (2021). Identification of colorectal cancer associated biomarkers: an integrated analysis of miRNA expression. Aging (Albany NY) 13, 21991–22029. 10.18632/aging.203556 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fridrichova I., Zmetakova I. (2019). MicroRNAs contribute to breast cancer invasiveness. Cells 8, 1361. 10.3390/cells8111361 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fried L. P., Tangen C. M., Walston J., Newman A. B., Hirsch C., Gottdiener J., et al. (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156. 10.1093/gerona/56.3.m146 [DOI] [PubMed] [Google Scholar]
  26. Gambardella J., Fiordelisi A., Sorriento D., Cerasuolo F. A., Buonaiuto A., Avvisato R., et al. (Forthcoming 2022). Mitochondrial microRNAs are dysregulated in patients with Fabry Disease. J. Pharmacol. Exp. Ther. JPET-AR, 2022-001250. 10.1124/jpet.122.001250 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gilbert T., Neuburger J., Kraindler J., Keeble E., Smith P., Ariti C., et al. (2018). Development and validation of a hospital frailty risk score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet 391, 1775–1782. 10.1016/S0140-6736(18)30668-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gulsin G. S., Henson J., Brady E. M., Sargeant J. A., Wilmot E. G., Athithan L., et al. (2020). Cardiovascular determinants of aerobic exercise capacity in adults with type 2 diabetes. Diabetes Care 43, 2248–2256. 10.2337/dc20-0706 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hanlon P., Nicholl B. I., Jani B. D., Lee D., Mcqueenie R., Mair F. S., et al. (2018). Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK biobank participants. Lancet. Public Health 3, e323–e332. 10.1016/S2468-2667(18)30091-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hathaway Q. A., Pinti M. V., Durr A. J., Waris S., Shepherd D. L., Hollander J. M., et al. (2018). Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am. J. Physiol. Heart Circ. Physiol. 314, H293–H310. 10.1152/ajpheart.00520.2017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hoogendijk E. O., Afilalo J., Ensrud K. E., Kowal P., Onder G., Fried L. P., et al. (2019). Frailty: implications for clinical practice and public health. Lancet 394, 1365–1375. 10.1016/S0140-6736(19)31786-6 [DOI] [PubMed] [Google Scholar]
  32. Hu G., Liao K., Yang L., Pendyala G., Kook Y., Fox H. S., et al. (2017). Tat-mediated induction of miRs-34a & -138 promotes astrocytic activation via downregulation of SIRT1: implications for aging in HAND. J. Neuroimmune Pharmacol. 12, 420–432. 10.1007/s11481-017-9730-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jarvie J. L., Pandey A., Ayers C. R., Mcgavock J. M., Senechal M., Berry J. D., et al. (2019). Aerobic fitness and adherence to guideline-recommended minimum physical activity among ambulatory patients with type 2 diabetes mellitus. Diabetes Care 42, 1333–1339. 10.2337/dc18-2634 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kukreti H., Amuthavalli K. (2020). MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. J. Cell. Biochem. 121, 3070–3089. 10.1002/jcb.29312 [DOI] [PubMed] [Google Scholar]
  35. Khanna A., Muthusamy S., Liang R., Sarojini H., Wang E. (2011). Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging (Albany NY) 3, 223–236. 10.18632/aging.100276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Krol J., Loedige I., Filipowicz W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610. 10.1038/nrg2843 [DOI] [PubMed] [Google Scholar]
  37. Lee H., Kim Y. I., Nirmala F. S., Kim J. S., Seo H. D., Ha T. Y., et al. (2021). MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging (Albany NY) 13, 4881–4894. 10.18632/aging.202617 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Li G., Prior J. C., Leslie W. D., Thabane L., Papaioannou A., Josse R. G., et al. (2019). Frailty and risk of fractures in patients with type 2 diabetes. Diabetes Care 42, 507–513. 10.2337/dc18-1965 [DOI] [PubMed] [Google Scholar]
  39. Li Q., Kim Y. R., Vikram A., Kumar S., Kassan M., Gabani M., et al. (2016). P66Shc-Induced MicroRNA-34a causes diabetic endothelial dysfunction by downregulating Sirtuin1. Arterioscler. Thromb. Vasc. Biol. 36, 2394–2403. 10.1161/ATVBAHA.116.308321 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Li T., Pang Q., Liu Y., Bai M., Peng Y., Zhang Z., et al. (2021). Sulforaphane protects human umbilical vein endothelial cells from oxidative stress via the miR-34a/SIRT1 axis by upregulating nuclear factor erythroid-2-related factor 2. Exp. Ther. Med. 21, 186. 10.3892/etm.2021.9617 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lovis P., Roggli E., Laybutt D. R., Gattesco S., Yang J. Y., Widmann C., et al. (2008). Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57, 2728–2736. 10.2337/db07-1252 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mahjabeen W., Khan D. A., Mirza S. A., Pervez M. A. (2021). Effects of delta-tocotrienol supplementation on glycemic control, oxidative stress, inflammatory biomarkers and miRNA expression in type 2 diabetes mellitus: a randomized control trial. Phytother. Res. 35, 3968–3976. 10.1002/ptr.7113 [DOI] [PubMed] [Google Scholar]
  43. Manakanatas C., Ghadge S. K., Agic A., Sarigol F., Fichtinger P., Fischer I., et al. (2022). Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria. Aging (Albany NY) 14, 195–224. 10.18632/aging.203820 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mastrototaro L., Roden M. (2021). Insulin resistance and insulin sensitizing agents. Metabolism. 125, 154892. 10.1016/j.metabol.2021.154892 [DOI] [PubMed] [Google Scholar]
  45. Mone P., Gambardella J., Lombardi A., Pansini A., De Gennaro S., Leo A. L., et al. (2022a). Correlation of physical and cognitive impairment in diabetic and hypertensive frail older adults. Cardiovasc. Diabetol. 21, 10. 10.1186/s12933-021-01442-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Mone P., Gambardella J., Pansini A., De Donato A., Martinelli G., Boccalone E., et al. (2021a). Cognitive impairment in frail hypertensive elderly patients: role of hyperglycemia. Cells 10, 2115. 10.3390/cells10082115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mone P., Gambardella J., Pansini A., Martinelli G., Minicucci F., Mauro C., et al. (2022b). Cognitive dysfunction correlates with physical impairment in frail patients with acute myocardial infarction. Aging Clin. Exp. Res. 34, 49–53. 10.1007/s40520-021-01897-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Mone P., Gambardella J., Wang X., Jankauskas S. S., Matarese A., Santulli G., et al. (2021b). miR-24 targets the transmembrane glycoprotein neuropilin-1 in human brain microvascular endothelial cells. Noncoding. RNA 7, 9. 10.3390/ncrna7010009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Mone P., Lombardi A., Kansakar U., Varzideh F., Jankauskas S. S., Pansini A., et al. (Forthcoming 2022c). Empagliflozin improves the microRNA signature of endothelial dysfunction in patients with HFpEF and diabetes. J. Pharmacol. Exp. Ther. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mone P., Pansini A., Calabro F., De Gennaro S., Esposito M., Rinaldi P., et al. (2022d). Global cognitive function correlates with P-wave dispersion in frail hypertensive older adults. J. Clin. Hypertens. (Greenwich) 24 (5), 638–643. 10.1111/jch.14439 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Mone P., Pansini A., Frullone S., De Donato A., Buonincontri V., De Blasiis P., et al. (2022e). Physical decline and cognitive impairment in frail hypertensive elders during COVID-19. Eur. J. Intern. Med. 99, 89–92. 10.1016/j.ejim.2022.03.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mone P., Pansini A. (2020). Gait speed test and cognitive decline in frail women with acute myocardial infarction. Am. J. Med. Sci. 360, 484–488. 10.1016/j.amjms.2020.03.021 [DOI] [PubMed] [Google Scholar]
  53. Nagai K., Miyamato T., Okamae A., Tamaki A., Fujioka H., Wada Y., et al. (2018). Physical activity combined with resistance training reduces symptoms of frailty in older adults: a randomized controlled trial. Arch. Gerontol. Geriatr. 76, 41–47. 10.1016/j.archger.2018.02.005 [DOI] [PubMed] [Google Scholar]
  54. Ni T., Lin N., Lu W., Sun Z., Lin H., Chi J., et al. (2020). Dihydromyricetin prevents diabetic cardiomyopathy via miR-34a suppression by activating autophagy. Cardiovasc. Drugs Ther. 34, 291–301. 10.1007/s10557-020-06968-0 [DOI] [PubMed] [Google Scholar]
  55. Park J., Kim J., Chen Y., Song H. C., Chen Y., Zheng M., et al. (2020). CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway. Free Radic. Res. 54, 848–858. 10.1080/10715762.2019.1710142 [DOI] [PubMed] [Google Scholar]
  56. Pilotto A., Custodero C., Maggi S., Polidori M. C., Veronese N., Ferrucci L., et al. (2020). A multidimensional approach to frailty in older people. Ageing Res. Rev. 60, 101047. 10.1016/j.arr.2020.101047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Prattichizzo F., De Nigris V., Spiga R., Mancuso E., La Sala L., Antonicelli R., et al. (2018). Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res. Rev. 41, 1–17. 10.1016/j.arr.2017.10.003 [DOI] [PubMed] [Google Scholar]
  58. Puts M. T. E., Toubasi S., Andrew M. K., Ashe M. C., Ploeg J., Atkinson E., et al. (2017). Interventions to prevent or reduce the level of frailty in community-dwelling older adults: a scoping review of the literature and international policies. Age Ageing 46, 383–392. 10.1093/ageing/afw247 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Rippo M. R., Olivieri F., Monsurro V., Prattichizzo F., Albertini M. C., Procopio A. D., et al. (2014). MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp. Gerontol. 56, 154–163. 10.1016/j.exger.2014.03.002 [DOI] [PubMed] [Google Scholar]
  60. Rockwood K., Song X., Macknight C., Bergman H., Hogan D. B., Mcdowell I., et al. (2005). A global clinical measure of fitness and frailty in elderly people. CMAJ 173, 489–495. 10.1503/cmaj.050051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rottiers V., Naar A. M. (2012). MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13, 239–250. 10.1038/nrm3313 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rusanova I., Fernandez-Martinez J., Fernandez-Ortiz M., Aranda-Martinez P., Escames G., Garcia-Garcia F. J., et al. (2019). Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 124, 110637. 10.1016/j.exger.2019.110637 [DOI] [PubMed] [Google Scholar]
  63. Santulli G. (2015). microRNAs distinctively regulate vascular smooth muscle and endothelial cells: Functional implications in angiogenesis, atherosclerosis, and in-stent restenosis. Adv. Exp. Med. Biol. 887, 53–77. 10.1007/978-3-319-22380-3_4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Searle S. D., Mitnitski A., Gahbauer E. A., Gill T. M., Rockwood K. (2008). A standard procedure for creating a frailty index. BMC Geriatr. 8, 24. 10.1186/1471-2318-8-24 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sieber C. C. (2019). Malnutrition and sarcopenia. Aging Clin. Exp. Res. 31, 793–798. 10.1007/s40520-019-01170-1 [DOI] [PubMed] [Google Scholar]
  66. Song R., Hu X. Q., Zhang L. (2019). Mitochondrial MiRNA in cardiovascular function and disease. Cells 8, 1475. 10.3390/cells8121475 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Srinivasan A. R., Tran T. T., Bonini N. M. (2022). Loss of miR-34 in Drosophila dysregulates protein translation and protein turnover in the aging brain. Aging Cell 21, e13559. 10.1111/acel.13559 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stavast C. J., Erkeland S. J. (2019). The non-canonical aspects of MicroRNAs: many roads to gene regulation. Cells 8, 1465. 10.3390/cells8111465 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Taylor R. (2013). Type 2 diabetes: etiology and reversibility. Diabetes Care 36, 1047–1055. 10.2337/dc12-1805 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Thounaojam M. C., Bartoli M. (2019). MicroRNA-34a and vascular senescence in diabetes. Aging (Albany NY) 11, 11799–11800. 10.18632/aging.102625 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Umegaki H. (2016). Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr. Gerontol. Int. 16, 293–299. 10.1111/ggi.12688 [DOI] [PubMed] [Google Scholar]
  72. Waite S. J., Maitland S., Thomas A., Yarnall A. J. (2021). Sarcopenia and frailty in individuals with dementia: a systematic review. Arch. Gerontol. Geriatr. 92, 104268. 10.1016/j.archger.2020.104268 [DOI] [PubMed] [Google Scholar]
  73. Walston J., Fedarko N., Yang H., Leng S., Beamer B., Espinoza S., et al. (2008). The physical and biological characterization of a frail mouse model. J. Gerontol. A Biol. Sci. Med. Sci. 63, 391–398. 10.1093/gerona/63.4.391 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wei R., Yang J., Liu G. Q., Gao M. J., Hou W. F., Zhang L., et al. (2013). Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518, 246–255. 10.1016/j.gene.2013.01.038 [DOI] [PubMed] [Google Scholar]
  75. Wei Y., Corbalan-Campos J., Gurung R., Natarelli L., Zhu M., Exner N., et al. (2018). Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation 138, 2007–2020. 10.1161/CIRCULATIONAHA.117.031589 [DOI] [PubMed] [Google Scholar]
  76. Wong W. K. M., Sorensen A. E., Joglekar M. V., Hardikar A. A., Dalgaard L. T. (2018). Non-coding RNA in pancreas and beta-cell development. Noncoding. RNA 4, E41. 10.3390/ncrna4040041 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wronska A., Kurkowska-Jastrzebska I., Santulli G. (2015). Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol. 213, 60–83. 10.1111/apha.12416 [DOI] [PubMed] [Google Scholar]
  78. Xiong H., Chen S., Lai L., Yang H., Xu Y., Pang J., et al. (2019). Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis. Neurobiol. Aging 79, 30–42. 10.1016/j.neurobiolaging.2019.03.013 [DOI] [PubMed] [Google Scholar]
  79. Yarnall A. J., Sayer A. A., Clegg A., Rockwood K., Parker S., Hindle J. V., et al. (2017). New horizons in multimorbidity in older adults. Age Ageing 46, 882–888. 10.1093/ageing/afx150 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Yu D., Shang J., Cai Y., Wang Z., Zhang X., Zhao B., et al. (2019). Derivation and external validation of a risk prediction algorithm to estimate future risk of cardiovascular death among patients with type 2 diabetes and incident diabetic nephropathy: prospective cohort study. BMJ Open Diabetes Res. Care 7, e000735. 10.1136/bmjdrc-2019-000735 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Yuan Q., Chen Z., Santulli G., Gu L., Yang Z. G., Yuan Z. Q., et al. (2014). Functional role of Calstabin2 in age-related cardiac alterations. Sci. Rep. 4, 7425. 10.1038/srep07425 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Yun J. S., Park Y. M., Cha S. A., Ahn Y. B., Ko S. H. (2018). Progression of cardiovascular autonomic neuropathy and cardiovascular disease in type 2 diabetes. Cardiovasc. Diabetol. 17, 109. 10.1186/s12933-018-0752-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Zhang X., Zuo X., Yang B., Li Z., Xue Y., Zhou Y., et al. (2014). MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619. 10.1016/j.cell.2014.05.047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Zheng Y., Kong J., Li Q., Wang Y., Li J. (2018). Role of miRNAs in skeletal muscle aging. Clin. Interv. Aging 13, 2407–2419. 10.2147/CIA.S169202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Zhu H., Lin Y., Liu Y. (2021). miR34a increases inflammation and oxidative stress levels in patients with necrotizing enterocolitis by downregulating SIRT1 expression. Mol. Med. Rep. 24, 664. 10.3892/mmr.2021.12303 [DOI] [PubMed] [Google Scholar]
  86. Zimta A. A., Cenariu D., Irimie A., Magdo L., Nabavi S. M., Atanasov A. G., et al. (2019). The role of Nrf2 activity in cancer development and progression. Cancers (Basel) 11, E1755. 10.3390/cancers11111755 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Aging are provided here courtesy of Frontiers Media SA

RESOURCES