Skip to main content
Annals of Medicine logoLink to Annals of Medicine
. 2022 Aug 2;54(1):2181–2190. doi: 10.1080/07853890.2022.2105394

Development and validation of a risk prediction model for anxiety or depression among patients with chronic obstructive pulmonary disease between 2018 and 2020

Tingyu Tang a, Zongju Li b, Xiaoling Lu a, Jianzong Du a,
PMCID: PMC9351569  PMID: 35916588

Abstract

Anxiety and depression are important risk factors for chronic obstructive pulmonary disease (COPD). The aim of this study was to develop a prediction model to predict anxiety or depression in COPD patients. The retrospective study was conducted in COPD patients receiving stable treatment between 2018 and 2020 to develop prediction model. The variables, were readily available in clinical practice, were analysed. After data preprocessing, model training and performance evaluation were performed. Validity of the prediction model was verified in 3 comparative model training. Between 2018 and 2020, 375 eligible patients were analysed. Thirteen variables were included into the final model: gender, age, marital status, education level, long-term residence, per capita annual household income, payment method of medical expenses, direct economic costs of treating COPD in the past year, smoking, COPD progression, number of acute exacerbation of COPD in the last year, regular treatment with inhalants and family oxygen therapy. Risk score threshold in each sample in the training set was 1.414. The area under the curve value was respectively 0.763 and 0.702 in the training set and test set, which were higher than three comparative models. The simple prediction model to predict anxiety or depression in patients with COPD has been developed. Based on 13 available data in clinical indicators, the model may serve as an instrument for clinical decision-making for COPD patients who may have anxiety or depression.

Key messages

  • Thirteen variables were included into the prediction model.

  • The AUC value was, respectively, 0.763 and 0.702 in the training set and test set, which were higher than three comparative models.

  • The simple prediction model to predict anxiety or depression in patients with COPD has been developed.

Keywords: Prediction model, validation, anxiety, depression, COPD

Introduction

Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death by 2030 [1]. It is characterized by airflow obstruction that leads to slowly progressive symptoms of persistent cough, wheezing and exertional dyspnoea. COPD also results in some extrapulmonary comorbidities, such as skeletal muscle dysfunction, cardiovascular disease, anaemia, diabetes and osteoporosis [2,3]. Anxiety is related to physical and psychological discomfort. Depression is accompanied by the high degree of emotional distress [4]. Anxiety and depression often co-occur. At least half of people with depression also have anxiety [5].

It is estimated that the prevalence of anxiety in COPD patients is 16%–31% [6,7]. Anxiety in COPD patients is related to increased morbidity and mortality, including more exacerbations, more functional limitations and longer hospital stays [6,8–13]. In addition, numbers of studies have reported that depressive symptoms in patients with COPD have adverse effects on functional mobility and mortality [14–17]. According to previous reports, more than one-third of COPD patients have symptoms of both anxiety and depression [5,18,19]. Some factors may contribute to the increase in the prevalence of depression in COPD patients, including low lung function, disease severity, severe dyspnoea, frequent hospitalisation, long-term oxygen therapy, gender, low body mass index, current smoking and social isolation [20–24].

Although certain interventions can improve health outcomes, the diagnosis of anxiety and depression in COPD patients is often unrecognized and untreated [22,25]. In addition, data collected in clinical practice are rarely used for prognosis prediction of anxiety and depression in COPD patients. Furthermore, studies on prediction models for anxiety and depression in patients with COPD are limited. In view of this, a risk prediction model for anxiety and depression in COPD patients was developed and validated. The clinical prediction tool may help decision-making and optimize psychological care for COPD patients.

Methods

Patients

The retrospective study was performed in Zhejiang hospital in Hangzhou, Zhejiang Province, China. A total of 375 patients diagnosed with COPD were enrolled between January 2018 and December 2020. Detailed inclusion criteria were as follows: (1) the diagnostic criteria were in line with the Guidelines for diagnosis and treatment of COPD formulated by the Global Initiative for Chronic Obstructive Pulmonary Disease; (2) patients receiving stable treatment; (3) patients aged from 40 to 80 years old; (4) patients were willing to participate in the study and sign informed consent. Detailed exclusion criteria were as follows: (1) patients with acute exacerbation of COPD or co-occurrence of other chronic lung diseases such as asthma, active pulmonary tuberculosis, lung cancer, bronchiectasis, pulmonary fibrosis, primary pulmonary arterial hypertension, interstitial lung disease or other active lung diseases; (2) patients with severe acute episodes of hemodynamic instability and co-occurring chronic disease; (3) patients had schizophrenia and other mental disorders based on detailed mental examination, routine scales and auxiliary examinations; (4) patients were treated with immunosuppressants, heparin, antiepileptics, aluminium and some drugs that may cause anxiety/depression symptoms; (5) patients with a diagnosis of anxiety/depression disorder prior to receiving treatment for COPD and COPD patients receiving anti-anxiety/depression therapy; (6) patients with substance dependence. According to the World Health Organisation International Classification of Diseases, 10th edition, Hamilton Depression Scale and Hamilton Anxiety Scale were used for psychological evaluation of COPD patients [26]. In addition, clinical interviews with mental health doctors were conducted to diagnose the combination of anxiety and/or depression in COPD patients. Among enrolling 375 COPD patients, 308 patients had depression or anxiety. Clinical diagnostic information and social statistical survey of 375 enrolled patients were collected by uniformly trained respiratory physicians to ensure the homogeneity of the information collection. This study was approved by the Medical Ethics Committee of Zhejiang Hospital (approval no. 2019-8 K).

Data preprocessing

In this study, the number of samples was 375. Each sample corresponded to 27 clinical indicators, including body mass index, COPD progression, forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity (FVC), expected value of FEV1%, chronic obstructive pulmonary disease assessment test (CAT) score, drug information, family oxygen therapy, number of acute exacerbation of COPD in the last year, gender, age, marital status, education level, long-term residence, per capita annual household income, payment method of medical expenses, direct economic costs of treating COPD in the past year, smoking and other comorbidities (pulmonary arterial hypertension, coronary heart disease, heart failure, diabetes, arrhythmia, stroke, Parkinson’s disease, cancer and chronic kidney disease). By counting the number of missing samples of clinical indicators in each sample, the indicators with more than 100 missing samples were deleted, including weight, height, body mass index, smoking time, average number of cigarettes smoked per day, smoking cessation, quit smoking time, FEV1, expected value of FEV1%, FEV1/FVC and other comorbidities. The remaining clinical indicators with missing values were filled in. It is noted that clinical indicators of CAT score, anxiety scale and depression scale was not used in the model analysis. The reason was that the phenotype of depression or anxiety was inferred from these three clinical indicators. In the sample data, each sample corresponds to a label indicating whether the corresponding COPD patient has depression or anxiety. Based on the above conditions, 67 COPD patients without depression or anxiety and 308 COPD patients with depression or anxiety were counted. Each of the remaining samples corresponded to 13 indicators: gender, age, marital status, education level, long-term residence, per capita annual household income, payment method of medical expenses, direct economic costs of treating COPD in the past year, smoking, COPD progression, number of acute exacerbation of COPD in the last year, regular treatment with inhalants and family oxygen therapy. Samples (67) without anxiety and depression were used as normal controls. The other samples (308) were used as the samples with depression or anxiety. Clinical data were labelled as follows: For gender field, 1 and 2 represented female and male, respectively. For marital status field, 1–3 represented death of a spouse, single/divorced and married/de facto married, respectively. For education level field, 1–4 represented primary school or no primary school education, junior high school, high school or technical secondary school and college or above, respectively. For long-term residence field, 1 and 2 represented country and cities/towns, respectively. For per capita annual household income field, 1–4 represented 20,001–30,000, 30,001–40,000, 40,001–50,000 and ≥50,001, respectively. For payment method of medical expenses field, 1–4 represented public expense, health insurance, new rural cooperative medical system and self-paying, respectively. For direct economic costs of treating COPD in the past year field, 1–4 represented ≤3000, 3001–6000, 6001–9000 and ≥9001, respectively. For smoking field, 1 and 2 represented no and yes, respectively. For COPD progression field, 1–4 represented 0–5 years, 5–10 years, 10–15 years and >15 years, respectively. For number of acute exacerbation of COPD in the last year field, 1 and 2 represented <2 times and ≥2 times, respectively. For regular treatment with inhalants field, 1 and 2 represented no and other options, respectively. For home oxygen therapy field, 1 and 2 represented no and yes, respectively.

Model training and performance evaluation

All samples were split according to the ratio of the training set:test set = 7:3. Random seed was set to eight. In the training set, logistic regression analysis was performed on the samples. The variables were optimized by stepwise forward selection method. The model was used to obtain the risk score of each sample. ROC analysis was performed on the risk score of each sample to obtain the risk score threshold. The performance evaluation was performed on the training set and test set.

Sample size calculation and statistical analysis

The formula N = Z2 * P (1 – P)/E2 was used for sample size calculation [27]. Z is the statistic. The confidence degree is set at 90%, Therefore, Z = 1.64. E is the error value. In this study, E = 5%. P is the prevalence rate (40%) of anxiety/depression in COPD patients. Combined with the patient shedding rate and other factors, 400 COPD patients were finally determined to be included in this study. The statistical test of clinical information for enrolled COPD patients was performed using compareGroups package in R language [28]. Categorical variables were analysed using Chi’s-square test. In the baseline feature table, space in the classification variables represents missing values. The results of classification variables are displayed in the form of frequency and percentage. The flow chart of all methods in this study is shown in Figure 1.

Figure 1.

Figure 1.

The flow chart of all methods in this study.

Results

Clinical information

A total of 375 COPD patients admitted between 2018 and 2020 were available for model development. Detailed information of these patients is listed in Table 1. The clinical indicators of age, payment method of medical expenses and smoking were significantly different in the anxiety and depression group.

Table 1.

Clinical information of 375 COPD patients.

  Totality COPD + anxiety/depression COPD  
Clinical indicators (n = 375) (n = 308) (n = 67) p Value
Gender       .179
 Female 88 (23.5%) 77 (25.0%) 11 (16.4%)  
 Male 287 (76.5%) 231 (75.0%) 56 (83.6%)  
Age (years)       .031
  11 (2.9%) 11 (3.6%) 0 (0.0%)  
 <70 57 (15.2%) 42 (13.6%) 15 (22.4%)  
 ≥90 31 (8.3%) 30 (9.7%) 1 (1.5%)  
 70–80 116 (30.9%) 93 (30.2%) 23 (34.3%)  
 80–90 160 (42.7%) 132 (42.9%) 28 (41.8%)  
Marital status       .452
 Death of a spouse 24 (6.4%) 19 (6.2%) 5 (7.5%)  
 Married/de facto married 348 (92.8%) 287 (93.2%) 61 (91.0%)  
 Single/divorce 3 (0.8%) 2 (0.6%) 1 (1.5%)  
Education level       .454
 High school/technical secondary school 53 (14.1%) 44 (14.3%) 9 (13.4%)  
 Junior high school 78 (20.8%) 68 (22.1%) 10 (14.9%)  
 Primary school/no primary school education 193 (51.5%) 153 (49.7%) 40 (59.7%)  
 College or above 51 (13.6%) 43 (14.0%) 8 (11.9%)  
Long-term residence       .069
  1 (0.3%) 1 (0.3%) 0 (0.0%)  
 Country 345 (92.0%) 279 (90.6%) 66 (98.5%)  
 Cities/towns 29 (7.7%) 28 (9.1%) 1 (1.5%)  
Per capita annual household income (RMB)       .321
 20,001–30,000 5 (1.3%) 5 (1.6%) 0 (0.0%)  
 30,001–40,000 37 (9.9%) 33 (10.7%) 4 (6.0%)  
 40,001–50,000 189 (50.4%) 149 (48.4%) 40 (59.7%)  
 ≥50,001 144 (38.4%) 121 (39.3%) 23 (34.3%)  
Direct economic costs of treating COPD in the past year (RMB)       .359
 ≤3000 226 (60.3%) 190 (61.7%) 36 (53.7%)  
 3001–6000 114 (30.4%) 91 (29.5%) 23 (34.3%)  
 6001–9000 16 (4.3%) 11 (3.6%) 5 (7.5%)  
 ≥9001 19 (5.1%) 16 (5.2%) 3 (4.5%)  
Smoking       .004
 No 202 (53.9%) 177 (57.5%) 25 (37.3%)  
 Yes 173 (46.1%) 131 (42.5%) 42 (62.7%)  
COPD progression (years)       .077
  1 (0.3%) 0 (0.0%) 1 (1.5%)  
 >15 149 (39.7%) 126 (40.9%) 23 (34.3%)  
 0–5 84 (22.4%) 66 (21.4%) 18 (26.9%)  
 10–15 56 (14.9%) 42 (13.6%) 14 (20.9%)  
 5–10 85 (22.7%) 74 (24.0%) 11 (16.4%)  
Number of acute exacerbation of COPD in the last year (times)       .817
  9 (2.4%) 7 (2.3%) 2 (3.0%)  
 <2 253 (67.5%) 207 (67.2%) 46 (68.7%)  
 ≥2 113 (30.1%) 94 (30.5%) 19 (28.4%)  
Regular treatment with inhalants       .359
 No 261 (69.6%) 218 (70.8%) 43 (64.2%)  
 Yes 114 (30.4%) 90 (29.2%) 24 (35.8%)  
Home oxygen therapy       .985
 No 344 (91.7%) 282 (91.6%) 62 (92.5%)  
 Yes 31 (8.3%) 26 (8.4%) 5 (7.5%)  
Payment method of medical expenses       .011
 Public expense 34 (9.1%) 33 (10.7%) 1 (1.5%)  
 New rural cooperative medical system 10 (2.7%) 10 (3.2%) 0 (0.0%)  
 Health insurance 315 (84.0%) 254 (82.5%) 61 (91.0%)  
 Self-paying 16 (4.3%) 11 (3.6%) 5 (7.5%)  

RMB: renminbi.

Model training

Logistic regression analysis was performed on the samples in the training set. The variables were optimized by stepwise forward selection method. The final result of model training is shown in Figure 2. The above result was converted into the following formula:

Figure 2.

Figure 2.

The result of model training.

Y = 33.06 + sex2*(–1.135)+age*0.03409 + marriage2*(–0.8872)+marriage3*0.2666 + edu2*0.8243 + edu3*0.7396 + edu4*(–0.001483)+live2*(–17.07)+income2*(–15.75)+income3*(–15.9)+income4*(–15.73)+payment2*(–1.59)+payment3*14.39 + payment4*(–2.44)+eburden2*(–0.04575)+eburden3*(–0.7311)+eburden4*0.2107 + smoke2*0.5709 + copdYear2*0.5739 + copdYear3*(–0.3204)+copdYear4*0.2287 + exacerbation2*0.03427 + inhalation2*(–0.2394)+oxygen2*0.163.

In the formula, Y and * represented the risk score and multiplier, respectively. The specific values of each indicator in the set of independent variables are as follows: sex2 = 0 and sex2 = 1 when gender is female and male, respectively. Age was the specific age value. Marriage2 = 0/1/0 and marriage3 = 0/0/1 when marital status is death of a spouse, single/divorced, married/de facto married, respectively. Edu2 = 0/1/0/0, edu3 = 0/0/1/3 and edu4 = 0/0/0/1 if the education level is primary school or no primary school education, junior high school, high school or technical secondary school and college or above, respectively. Live2 = 0 and live2 = 1 when long-term residence is country and cities/towns, respectively. Income2 = 0/1/0/0, income3 = 0/0/1/0 and income4 = 0/0/0/1 when the per capita annual income of households is 20,001–30,000, 30,001–40,000, 40,001–50,000 and ≥50,001, respectively. Payment2 = 0/1/0/0, Payment3 = 0/0/1/0, Payment4 = 0/0/0/1 when payment method of medical expenses is public expense, health insurance, new rural cooperative medical system and self-paying, respectively. Eburden2 = 0/1/0/0, eburden3 = 0/0/1/0 and eburden4 = 0/0/0/1 when direct economic costs of treating COPD in the past year are ≤3000, 3001–6000, 6001–9000 and ≥9001, respectively. When not smoking, smoke2 = 0. When smoking, smoke2 = 1. CopdYear2 = 0/1/0/0, copdYear3 = 0/0/1/0 and copdYear4 = 0/0/0/1 when COPD progression is 0 to 5 years, 5–10 years, 10–15 years and >15 years, respectively. Exacerbation2 = 0 and Exacerbation2 = 1 when number of acute exacerbation of COPD in the last year is <2 times and ≥2 times, respectively. Inhalation2 = 0 and inhalation2 = 1 when there is no regular inhalant treatment and other options, respectively. Oxygen2 = 0 when there is no home oxygen therapy. Oxygen2 = 1 when there is home oxygen therapy.

Risk score threshold

In the training set, the risk score of each sample was obtained by using the model. Result of ROC analysis showed that risk score threshold for each sample was 1.414. If the risk score in each sample was ≤1.414, the COPD subject was judged not to have anxiety or depression. Or to say the risk of anxiety or depression was low. The risk of anxiety or depression was high if the risk score in each sample is >1.414.

Performance evaluation

The result of performance evaluation on the training set is shown in Figure 3. It can be seen that the specificity and sensitivity of this model is 0.627 and 0.843, respectively. The area under the curve (AUC) value is 0.763. In addition, the performance evaluation was also performed on the test set (Figure 4). AUC value is 0.702. Due to the performance evaluation results of the model in the training set and test set based on 13 clinical indicators, the AUC values are all >0.7, indicating that the model has a good predictive effect on whether COPD patients suffer from depression or anxiety.

Figure 3.

Figure 3.

ROC curves of performance evaluation on the training set.

Figure 4.

Figure 4.

ROC curves of performance evaluation on the test set.

Validity verification of the prediction model

To prove the prediction effect of the model, three comparative model training was redone on the basis of above model. In the first comparative model training, four variables including age, education level, COPD progression and regular treatment with inhalants were removed. The result of model training, performance evaluation on the training set and test set is shown in Figure 5(A–C), respectively. AUC value was 0.693 and 0.476 in the training set and test set, respectively. In the second comparative model training, four variables including age, education level, COPD progression and home oxygen therapy were removed. The result of model training, performance evaluation on the training set and test set is shown in Figure 6(A–C), respectively. AUC value was 0.696 and 0.440 in the training set and test set, respectively. In the third comparative model training, four variables including education level, COPD progression, per capita annual household income and payment method of medical expenses were removed. The result of model training, performance evaluation on the training set and test set is shown in Figure 7(A–C), respectively. AUC value was 0.716 and 0.440 in the training set and test set, respectively. In contrast, AUC value in three comparative models was lower (close to 0.5), which suggested that they have no clinical diagnostic value. In conclusion, the model based on 13 clinical indicators is a good predictor of depression or anxiety in COPD patients compared to comparative model.

Figure 5.

Figure 5.

The result of model training (A), performance evaluation on the training set (B) and performance evaluation on the test set (C) in the first comparative model training.

Figure 6.

Figure 6.

The result of model training (A), performance evaluation on the training set (B) and performance evaluation on the test set (C) in the second comparative model training.

Figure 7.

Figure 7.

The result of model training (A), performance evaluation on the training set (B) and performance evaluation on the test set (C) in the third comparative model training.

Discussion

In this study, a simple risk prediction model was developed to predict anxiety or depression in patients with COPD using routinely collected data in hospital, including gender, age, marital status, education level, long-term residence, per capita annual household income, payment method of medical expenses, direct economic costs of treating COPD in the past year, smoking, COPD progression, number of acute exacerbation of COPD in the last year, regular treatment with inhalants and family oxygen therapy. The prediction model can accurately predict anxiety or depression in COPD patients, with excellent diagnostic ability in internal validation and comparative model.

According to clinical information of these COPD patients, we found that male and the elderly (especially those over 80) were more likely to suffer from anxiety or depression. Gender differences exist when it comes to manifestation of depression, and can be found in prevalence rates, symptom profile and treatment response in COPD [29–31]. It is found that age is significant in explaining the life quality among patients with COPD [32]. The prevalence of COPD is variable between countries, overall there is a prevalence rate of about 10% in patients aged 40 and above [33]. In developing and developed countries, COPD is the most frequent respiratory disease in middle-aged and old people [34]. It is noted that the frequency of depression is determined according to age [35]. Moreover, older age has been considered as a predictor of caregiver depression in COPD patients [36].

It is reported that depression in COPD patients is related to marital status [14,37]. Education level is a risk factor of depressive and anxious symptoms in COPD patients [18]. It is shown that COPD patients with the bachelor degree have fewer depressive symptoms when compared to COPD patients with no education, elementary school, middle school and high school education [38,39]. Jemal et al. found that lack of access to critical resource like sanitary residence facilities is one of socioeconomic risk factors for patients with COPD [40]. When analysing the residence place, the majority of patients live in the cities [41]. In Spain, it exceeds 70% of COPD patients and the reasons most frequently associated with under-diagnosis are limited residence in rural areas [42]. Thus, it can be seen that marital status, education level and long-term residence can be important clinically predictive indicators of anxiety or depression for COPD patients.

It is reported that the COPD patients who had low family income tended to suffer from anxiety and depression [18]. Screening COPD patients for concomitant psychological distress are important as it is found to contribute to poorer health outcomes across a number of domains, including general greater economic burden [43]. Cost effectiveness is measured in one study of 224 patients with COPD [44]. At 12-month follow-up, expenses related to hospital admissions are reduced in the psychological therapy group. Maybe, per capita annual household income, payment method of medical expenses, direct economic costs of treating COPD in the past year can be used as potential predictive clinical indicators for anxiety or depression in patients with COPD.

It is supported that there is an association between COPD, depressive symptoms and smoking [45]. In addition, anxiety and depression interact with smoking produces stronger combined effects on mortality risk in patients with COPD [46]. It is suggested that clinicians should think more about screening for depressive symptoms among COPD patients who are actively smoking. In patients with COPD, depression is significantly related to disease progression [47]. It is reported that depression is an independent risk factor for mortality in COPD patients and is associated with the increased risk of exacerbations [11,48–50]. In addition, anxiety symptoms in COPD patients may distract patients from self-management of disease exacerbations [51]. COPD is related to occupational and environmental inhalants [42]. It is found that severe COPD patients had the higher risk of depression, with rates of depression up to 62% in oxygen dependent patients [52]. It is indicated that above clinical indicators can be taken into account to predict anxiety or depression in COPD patients.

Conclusions

In conclusion, the model’s prediction capability is satisfactory in terms of screening anxiety or depression individuals from COPD patients. The prediction model may be used as a tool to help clinical doctors identify anxiety or depression patients and take a modulated approach to disease treatment. However, there are some limitations in our study. First, the prediction model is needed to be validated in large and independent populations. Second, the prediction model is needed to validate in an independent population from geographically different areas. Third, more pertinent medical information probably contributes to anxiety and depression, such as comorbid physical conditions, polypharmacy, younger age, living alone, unemployment, childhood trauma, female gender, psychiatric history and so on can be considered as variables, which can be included into the predictive model. Fourth, specific age groups and specific areas of study may be more meaningful for the predictive model, which may be considered in the further study.

In spite of the above limitations, the study may shed some light on clinical value in predicting patients’ psychological states. The risk prediction model is built from 13 readily available clinical indicators, which imply a straight-forward application in clinical practice.

Glossary

Abbreviations

AUC

Area under the curve

COPD

Chronic obstructive pulmonary disease

FEV1

Forced expiratory volume in 1s

FVC

Forced vital capacity

Funding Statement

This study was funded by Zhejiang Basic Public Welfare Research Program: “The early screening system for anxiety/depression in stable COPD patients in the community” [LGF18H010002] and Basic Public Welfare Research Program of Zhejiang Province.

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki and approved by the Medical Ethics Committee of Zhejiang Hospital (approval no. 2019-8 K).

Patient consent for publication

All participants were informed as to the purpose of this study and provided informed consent for publication of the images in Figures.

Disclosure statement

No potential conflict of interest was reported by the authors.

Author contributions

Conception and design: Tingyu Tang and Jianzong Du; Administrative support: Jianzong Du; Supply of materials and samples: Zongju Li and Xiaoling Lu; Data collection and collation: Zongju Li and Xiaoling Lu; Data analysis and interpretation: Tingyu Tang and Jianzong Du; All authors approved and revised the manuscript.

References

  • 1.Global surveillance, prevention and control of CHRONIC RESPIRATORY DISEASES A comprehensive approach WHO Library Cataloguing-in-Publication Data 2013. [Google Scholar]
  • 2.Hurst J. Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE) investigators: Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138. [DOI] [PubMed] [Google Scholar]
  • 3.Huertas A, Palange P.. COPD: a multifactorial systemic disease. Ther Adv Respir Dis. 2011;5(3):217–224. [DOI] [PubMed] [Google Scholar]
  • 4.Ayuso-Mateos JL, Vázquez-Barquero JL, Dowrick C, ODIN Group, et al. Depressive disorders in Europe: prevalence figures from the ODIN study. Br J Psychiatry. 2001;179:308–316. [DOI] [PubMed] [Google Scholar]
  • 5.Panagioti M, Scott C, Blakemore A, et al. Overview of the prevalence, impact, and management of depression and anxiety in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:1289–1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Josep M-C, Godoy P, Ramon J, et al. Overview of the impact of depression and anxiety in chronic obstructive pulmonary disease. Lung 2017;195(1):77–85. [DOI] [PubMed] [Google Scholar]
  • 7.Kunik ME, Roundy K, Veazey C, et al. Surprisingly high prevalence of anxiety and depression in chronic breathing disorders. Chest 2005;127(4):1205–1211. [DOI] [PubMed] [Google Scholar]
  • 8.Divo M, Cote C, de Torres JP, for the BODE Collaborative Group, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155–161. [DOI] [PubMed] [Google Scholar]
  • 9.Yohannes AM, Baldwin RC, Connolly MJ.. Prevalence of depression and anxiety symptoms in elderly patients admitted in post-acute intermediate care. Int J Geriatr Psychiatry. 2008;23(11):1141–1147. [DOI] [PubMed] [Google Scholar]
  • 10.Yohannes AM, Baldwin RC, Connolly MJ.. Depression and anxiety in elderly outpatients with chronic obstructive pulmonary disease: prevalence, and validation of the BASDEC screening questionnaire. Int J Geriat Psychiatry. 2000;15(12):1090–1096. [DOI] [PubMed] [Google Scholar]
  • 11.Xu W, Collet JP, Shapiro S, et al. Independent effect of depression and anxiety on chronic obstructive pulmonary disease exacerbations and hospitalizations. Am J Respir Crit Care Med. 2008;178(9):913–920. [DOI] [PubMed] [Google Scholar]
  • 12.Felker B, Katon W, Hedrick SC, et al. The association between depressive symptoms and health status in patients with chronic pulmonary disease. Gen Hosp Psychiatry. 2001;23(2):56–61. [DOI] [PubMed] [Google Scholar]
  • 13.Cully JA, Graham DP, Stanley MA, et al. Quality of life in patients with chronic obstructive pulmonary disease and comorbid anxiety or depression. Psychosomatics 2006;47(4):312–319. [DOI] [PubMed] [Google Scholar]
  • 14.Ng TP, Niti M, Tan WC, et al. Depressive symptoms and chronic obstructive pulmonary disease: effect on mortality, hospital readmission, symptom burden, functional status, and quality of life. Arch Intern Med. 2007;167(1):60–67. [DOI] [PubMed] [Google Scholar]
  • 15.Gudmundsson G, Gislason T, Janson C, et al. Risk factors for rehospitalisation in COPD: role of health status, anxiety and depression. Eur Respir J. 2005;26(3):414–419. [DOI] [PubMed] [Google Scholar]
  • 16.McCathie HC, Spence SH, Tate RL.. Adjustment to chronic obstructive pulmonary disease: the importance of psychological factors. Eur Respir J. 2002;19(1):47–53. [DOI] [PubMed] [Google Scholar]
  • 17.Stein MB, Cox BJ, Afifi TO, et al. Does co-morbid depressive illness magnify the impact of chronic physical illness? A population-based perspective. Psychol Med. 2006;36(5):587–596. [DOI] [PubMed] [Google Scholar]
  • 18.Lou P, Zhu Y, Chen P, et al. Prevalence and correlations with depression, anxiety, and other features in outpatients with chronic obstructive pulmonary disease in China: a cross-sectional case control study. BMC Pulm Med. 2012;12(1):53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tsai TY, Livneh H, Lu MC, et al. Increased risk and related factors of depression among patients with COPD: a population-based cohort study. BMC Public Health. 2013;13(1):976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Pumar MI, Gray CR, Walsh JR, et al. Anxiety and depression-Important psychological comorbidities of COPD. J Thorac Dis. 2014;6(11):1615–1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Burgel P-R, Escamilla R, Perez T, et al. Impact of comorbidities on COPD-specific health-related quality of life. Respir Med. 2013;107(2):233–241. [DOI] [PubMed] [Google Scholar]
  • 22.Maurer J, Rebbapragada V, Borson S, ACCP Workshop Panel on Anxiety and Depression in COPD, et al. Anxiety and depression in COPD: current understanding, unanswered questions, and research needs. Chest 2008;134(4 Suppl):43s–56s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hanania NA, Müllerova H, Locantore NW, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study investigators, et al. Determinants of depression in the ECLIPSE chronic obstructive pulmonary disease cohort. Am J Respir Crit Care Med. 2011;183(5):604–611. [DOI] [PubMed] [Google Scholar]
  • 24.Al-shair K, Dockry R, Mallia-Milanes B, et al. Depression and its relationship with poor exercise capacity, BODE index and muscle wasting in COPD. Respir Med. 2009;103(10):1572–1579. [DOI] [PubMed] [Google Scholar]
  • 25.Peveler R, Carson A, Rodin G.. Depression in medical patients. BMJ. 2002;325(7356):149–152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Chen Q, Wu C, Gao Y, et al. A clinical study on the role of psychosomatic therapy in evaluation and treatment of patients with chronic obstructive pulmonary disease complicated with anxiety-depression disorder. Int J Clin Exp Med. 2015;8(9):16613–16619. [PMC free article] [PubMed] [Google Scholar]
  • 27.Charan J, Biswas T.. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121–126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Subirana I, Sanz H, Vila J.. Building bivariate tables: the compareGroups package for R. J Stat Soft. 2014;57(12):518–524. [Google Scholar]
  • 29.Altemus M, Sarvaiya N, Neill Epperson C.. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35(3):320–330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Johnsen TJ, Friborg O.. The effects of cognitive behavioral therapy as an anti-depressive treatment is falling: a Meta-analysis. Psychol Bull. 2015;141(4):747–768. [DOI] [PubMed] [Google Scholar]
  • 31.Van de Velde S, Bracke P, Levecque K.. Gender differences in depression in 23 european countries. Cross-national variation in the gender gap in depression. Soc Sci Med. 2010;71(2):305–313. [DOI] [PubMed] [Google Scholar]
  • 32.Orlandi LdCL, Pinho JF, Murad MGR, et al. Depression diagnosed by the mini international neuropsychiatric interview plus (MINI) in patients with chronic obstructive pulmonary disease: relationship with functional capacity and quality of life. BMC Res Notes. 2016;9:65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD study): a population-based prevalence study. Lancet (London, England). 2007;370(9589):741–750. [DOI] [PubMed] [Google Scholar]
  • 34.Long J, Ouyang Y, Duan H, et al. Multiple factor analysis of depression and/or anxiety in patients with acute exacerbation chronic obstructive pulmonary disease. J Chron Obstruct Pulmon Dis. 2020;15:1449–1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lee YS, Park S, Oh YM, Korean COPD Study Group, et al. Chronic obstructive pulmonary disease assessment test can predict depression: a prospective multi-center study. J Korean Med Sci. 2013;28(7):1048–1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Figueiredo D, Gabriel R, Jácome C, et al. Caring for relatives with chronic obstructive pulmonary disease: how does the disease severity impact on family carers? Aging Ment Health. 2014;18(3):385–393. [DOI] [PubMed] [Google Scholar]
  • 37.Gudmundsson G, Gislason T, Janson C, et al. Depression, anxiety and health status after hospitalisation for COPD: a multicentre study in the nordic countries. Respir Med. 2006;100(1):87–93. [DOI] [PubMed] [Google Scholar]
  • 38.Lee H, Yoon JY, Kim I, et al. The effects of personal resources and coping strategies on depression and anxiety in patients with chronic obstructive pulmonary disease. Heart Lung. 2013;42(6):473–479. [DOI] [PubMed] [Google Scholar]
  • 39.Lou P, Zhu Y, Chen P, et al. Interaction of depressive and anxiety symptoms on the mortality of patients with COPD: a preliminary study. COPD. 2014;11(4):444–450. [DOI] [PubMed] [Google Scholar]
  • 40.Jemal A, Ward E, Hao Y, et al. Trends in the leading causes of death in the United States, 1970-2002. JAMA. 2005;294(10):1255–1259. [DOI] [PubMed] [Google Scholar]
  • 41.Rosińczuk J, Przyszlak M, Uchmanowicz I.. Sociodemographic and clinical factors affecting the quality of life of patients with chronic obstructive pulmonary disease. COPD. 2018;13:2869–2882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bouza E, Alvar A, Almagro P, et al. Chronic obstructive pulmonary disease (COPD) in Spain and the different aspects of its social impact: a multidisciplinary opinion document. Revista espanola de quimioterapia: publicacion oficial de la sociedad espanola de. Rev Esp Quimioter. 2020;33(1):49–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Katon W, Lin EH, Kroenke K.. The association of depression and anxiety with medical symptom burden in patients with chronic medical illness. Gen Hosp Psychiatry. 2007;29(2):147–155. [DOI] [PubMed] [Google Scholar]
  • 44.Howard C, Dupont S.. The COPD breathlessness manual': a randomised controlled trial to test a cognitive-behavioural manual versus information booklets on health service use, mood and health status, in patients with chronic obstructive pulmonary disease. NPJ Prim Care Respir Med. 2014;24:14076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Schane RE, Walter LC, Dinno A, et al. Prevalence and risk factors for depressive symptoms in persons with chronic obstructive pulmonary disease. J Gen Intern Med. 2008;23(11):1757–1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Lou P, Chen P, Zhang P, et al. Effects of smoking, depression, and anxiety on mortality in COPD patients: a prospective study. Respir Care. 2014;59(1):54–61. [DOI] [PubMed] [Google Scholar]
  • 47.Fan VS, Ramsey SD, Giardino ND, et al. Sex, depression, and risk of hospitalization and mortality in chronic obstructive pulmonary disease. Arch Intern Med. 2007;167(21):2345–2353. [DOI] [PubMed] [Google Scholar]
  • 48.Jennings JH, Digiovine B, Obeid D, et al. The association between depressive symptoms and acute exacerbations of COPD. Lung 2009;187(2):128–135. [DOI] [PubMed] [Google Scholar]
  • 49.Qian J, Simoni-Wastila L, Rattinger GB, et al. Associations of depression diagnosis and antidepressant treatment with mortality among young and disabled medicare beneficiaries with COPD. General Hospital Psychiatry. 2013;35(6):612–618. [DOI] [PubMed] [Google Scholar]
  • 50.Quint JK, Baghai-Ravary R, Donaldson GC, et al. Relationship between depression and exacerbations in COPD. Eur Respir J. 2008;32(1):53–60. [DOI] [PubMed] [Google Scholar]
  • 51.Dowson CA, Town GI, Frampton C, et al. Psychopathology and illness beliefs influence COPD self-management. J Psychosom Res. 2004;56(3):333–340. [DOI] [PubMed] [Google Scholar]
  • 52.van Manen JG, Bindels PJ, Dekker FW, et al. Risk of depression in patients with chronic obstructive pulmonary disease and its determinants. Thorax 2002;57(5):412–416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Medicine are provided here courtesy of Taylor & Francis

RESOURCES