Skip to main content
Research and Practice in Thrombosis and Haemostasis logoLink to Research and Practice in Thrombosis and Haemostasis
. 2022 Aug 5;6(5):e12759. doi: 10.1002/rth2.12759

Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish

Azhwar Raghunath 1,, Allison C Ferguson 1, Jordan A Shavit 1,2,
PMCID: PMC9354590  PMID: 35949884

Abstract

Over the past two decades, the teleost vertebrate Danio rerio (zebrafish) has emerged as a model for hemostasis and thrombosis. At genomic and functional levels, there is a high degree of conservation of the hemostatic system with that of mammals. Numerous features of the fish model offer unique advantages for investigating hemostasis and thrombosis. These include high fecundity, rapid and external development, optical transparency, and extensive functional homology with mammalian hemostasis and thrombosis. Zebrafish are particularly suited to genome‐wide mutagenesis experiments for the study of modifier genes. They are also amenable to whole‐organism small‐molecule screens, a feature that is exceptionally relevant to hemostasis and thrombosis. Zebrafish coagulation factor knockouts that are in utero or neonatal lethal in mammals survive into adulthood before succumbing to hemorrhage or thrombosis, enabling studies not possible in mammals. In this illustrated review, we outline how zebrafish have been employed for the study of hemostasis and thrombosis using modern genome editing techniques, coagulation assays in larvae, and in vivo evaluation of patient‐specific variants to infer causality and demonstrate pathogenicity. Zebrafish hemostasis and thrombosis models will continue to serve as a clinically directed basic research tool and powerful alternative to mammals for the development of new diagnostic markers and novel therapeutics for coagulation disorders through high‐throughput genetic and small‐molecule studies.

graphic file with name RTH2-6-e12759-g003.jpg

Keywords: coagulation, genetics, genome editing, hemostasis, thrombosis, zebrafish


This graphical abstract outlines our review of the use of zebrafish to study disorders of hemostasis and thrombosis. We initially introduce the zebrafish and its associated technologies. This is followed by a review of the models of hemostatic and thrombotic disease that have been produced using genome editing. Finally, we review application of zebrafish to studies of patient coagulation factor variation.

graphic file with name RTH2-6-e12759-g004.jpg


Essentials.

  • The zebrafish hemostatic system is highly conserved with mammals genomically and functionally.

  • Hemostatic disease models produced using genome editing show conservation with human disorders.

  • Zebrafish coagulation factor mutants that are early lethal in mammals survive into adulthood.

  • Potential disease‐causing variants can be rapidly assessed in vivo using zebrafish knockouts.

Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic

AUTHOR CONTRIBUTIONS

AR and JS developed the concepts and wrote the manuscript. AR and AF produced the illustrations. AR, AF, and JS approved the final content.

FUNDING INFORMATION

This work was supported by the National Hemophilia Foundation Judith Graham Pool Postdoctoral Fellowship Award (AR), and National Institutes of Health grants R35HL150784 and R01ES032255 (JAS). JAS is the Henry and Mala Dorfman Family Professor of Pediatric Hematology/Oncology.

RELATIONSHIP DISCLOSURE

JAS has been a consultant for Sanofi, Takeda, CSL Behring, HEMA Biologics, and Bayer. AR and ACF report no conflicts of interest.

ACKNOWLEDGMENTS

The authors thank members of the Shavit laboratory for helpful comments and suggestions.

Raghunath A, Ferguson AC, Shavit JA. Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Res Pract Thromb Haemost. 2022;6:e12759. doi: 10.1002/rth2.12759

Handling Editor: Dr Michelle Sholzberg

Contributor Information

Azhwar Raghunath, Email: razh@umich.edu, @raghugeek.

Jordan A. Shavit, Email: jshavit@umich.edu, @Clot1.

REFERENCES

  • 1. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253‐310. [DOI] [PubMed] [Google Scholar]
  • 2. Matthews M, Trevarrow B, Matthews J. A virtual tour of the guide for zebrafish users. Lab Anim (NY). 2002;31(3):34‐40. [DOI] [PubMed] [Google Scholar]
  • 3. Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001;230(2):278‐301. [DOI] [PubMed] [Google Scholar]
  • 4. Weyand AC, Shavit JA. Zebrafish as a model system for the study of hemostasis and thrombosis. Curr Opin Hematol. 2014;21(5):418‐422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Rost MS, Grzegorski SJ, Shavit JA. Quantitative methods for studying hemostasis in zebrafish larvae. Methods Cell Biol. 2016;134:377‐389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498‐503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Hanumanthaiah R, Day K, Jagadeeswaran P. Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor VIII. Blood Cells Mol Dis. 2002;29(1):57‐68. [DOI] [PubMed] [Google Scholar]
  • 8. Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one‐to‐four (‐to‐eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699‐704. [DOI] [PubMed] [Google Scholar]
  • 9. Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal models of thrombosis from zebrafish to nonhuman primates: use in the elucidation of new pathologic pathways and the development of antithrombotic drugs. Circ Res. 2016;118(9):1363‐1379. [DOI] [PubMed] [Google Scholar]
  • 10. Rafferty SA, Quinn TA. A beginner's guide to understanding and implementing the genetic modification of zebrafish. Prog Biophys Mol Biol. 2018;138:3‐19. [DOI] [PubMed] [Google Scholar]
  • 11. Vo AH, Swaroop A, Liu Y, Norris ZG, Shavit JA. Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS One. 2013;8(9):e74682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Lin HF, Traver D, Zhu H, et al. Analysis of thrombocyte development in CD41‐GFP transgenic zebrafish. Blood. 2005;106(12):3803‐3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Lam PY, Peterson RT. Developing zebrafish disease models for in vivo small molecule screens. Curr Opin Chem Biol. 2019;50:37‐44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611‐628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest. 2012;122(7):2337‐2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Walker C, Streisinger G. Induction of mutations by gamma‐rays in Pregonial germ cells of zebrafish embryos. Genetics. 1983;103(1):125‐136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Chakrabarti S, Streisinger G, Singer F, Walker C. Frequency of gamma‐ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio . Genetics. 1983;103(1):109‐123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Streisinger G, Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981;291(5813):293‐296. [DOI] [PubMed] [Google Scholar]
  • 19. Grunwald DJ, Streisinger G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res. 1992;59(2):103‐116. [DOI] [PubMed] [Google Scholar]
  • 20. Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet. 2000;26(2):216‐220. [DOI] [PubMed] [Google Scholar]
  • 21. Kim S, Radhakrishnan UP, Rajpurohit SK, Kulkarni V, Jagadeeswaran P. Vivo‐morpholino knockdown of alphaIIb: a novel approach to inhibit thrombocyte function in adult zebrafish. Blood Cells Mol Dis. 2010;44(3):169‐174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat Biotechnol. 2008;26(6):702‐708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc‐finger nucleases. Nat Biotechnol. 2008;26(6):695‐701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. 2011;29(8):697‐698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high‐efficiency TALEN system. Nature. 2012;491(7422):114‐118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA. 2013;110(34):13904‐13909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR‐Cas system. Nat Biotechnol. 2013;31(3):227‐229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Hwang WY, Fu Y, Reyon D, Gonzales AP, Joung JK, Yeh JR. Targeted mutagenesis in zebrafish using CRISPR RNA‐guided nucleases. Methods Mol Biol. 2015;1311:317‐334. [DOI] [PubMed] [Google Scholar]
  • 29. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469‐476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Kretz CA, Weyand AC, Shavit JA. Modeling disorders of blood coagulation in the zebrafish. Curr Pathobiol Rep. 2015;3(2):155‐161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Weyand AC, Grzegorski SJ, Rost MS, et al. Analysis of factor V in zebrafish demonstrates minimal levels needed for early hemostasis. Blood Adv. 2019;3(11):1670‐1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Baudhuin LM, Lagerstedt SA, Klee EW, Fadra N, Oglesbee D, Ferber MJ. Confirming variants in next‐generation sequencing panel testing by sanger sequencing. J Mol Diagn. 2015;17(4):456‐461. [DOI] [PubMed] [Google Scholar]
  • 33. Wei X, Ju X, Yi X, et al. Identification of sequence variants in genetic disease‐causing genes using targeted next‐generation sequencing. PLoS One. 2011;6(12):e29500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Hu Z, Liu Y, Huarng MC, et al. Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway. Blood. 2017;130(5):666‐676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Hu Z, Lavik KI, Liu Y, et al. Loss of fibrinogen in zebrafish results in an asymptomatic embryonic hemostatic defect and synthetic lethality with thrombocytopenia. J Thromb Haemost. 2019;17(4):607‐617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Glasauer SM, Neuhauss SC. Whole‐genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289(6):1045‐1060. [DOI] [PubMed] [Google Scholar]
  • 37. Braasch I, Bobe J, Guiguen Y, Postlethwait JH. Reply to: ‘Subfunctionalization versus neofunctionalization after whole‐genome duplication’. Nat Genet. 2018;50(7):910‐911. [DOI] [PubMed] [Google Scholar]
  • 38. Iyer N, Al Qaryoute A, Kacham M, Jagadeeswaran P. Identification of zebrafish ortholog for human coagulation factor IX and its age‐dependent expression. J Thromb Haemost. 2021;19(9):2137‐2150. [DOI] [PubMed] [Google Scholar]
  • 39. Buchner DA, Su F, Yamaoka JS, et al. pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc Natl Acad Sci USA. 2007;104(35):13996‐14001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Arias‐Romero LE, Chernoff J. A tale of two paks. Biol Cell. 2008;100(2):97‐108. [DOI] [PubMed] [Google Scholar]
  • 41. Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handb Exp Pharmacol. 2012;210:3‐22. [DOI] [PubMed] [Google Scholar]
  • 42. Lee D, Fong KP, King MR, Brass LF, Hammer DA. Differential dynamics of platelet contact and spreading. Biophys J. 2012;102(3):472‐482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Hartwig JH. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol. 1992;118(6):1421‐1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Khandekar G, Kim S, Jagadeeswaran P. Zebrafish thrombocytes: functions and origins. Adv Hematol. 2012;2012:857058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D. Identification and characterization of zebrafish thrombocytes. Br J Haematol. 1999;107(4):731‐738. [DOI] [PubMed] [Google Scholar]
  • 46. Lloyd‐Evans P, Barrow SE, Hill DJ, et al. Eicosanoid generation and effects on the aggregation of thrombocytes from the rainbow trout, Oncorhynchus mykiss . Biochim Biophys Acta. 1994;1215(3):291‐299. [DOI] [PubMed] [Google Scholar]
  • 47. Hill DJ, Hallett MB, Rowley AF. Effect of prostanoids and their precursors on the aggregation of rainbow trout thrombocytes. Am J Physiol. 1999;276(3):R659‐R664. [DOI] [PubMed] [Google Scholar]
  • 48. Hughes CE, Radhakrishnan UP, Lordkipanidzé M, et al. G6f‐like is an ITAM‐containing collagen receptor in thrombocytes. PLoS One. 2012;7(12):e52622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Rost MS, Shestopalov I, Liu Y, et al. Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Adv. 2018;2(23):3418‐3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Sandmann R, Köster S. Topographic cues reveal two distinct spreading mechanisms in blood platelets. Sci Rep. 2016;6:22357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Gregory M, Hanumanthaiah R, Jagadeeswaran P. Genetic analysis of hemostasis and thrombosis using vascular occlusion. Blood Cells Mol Dis. 2002;29(3):286‐295. [DOI] [PubMed] [Google Scholar]
  • 52. Zhu XY, Liu HC, Guo SY, et al. A zebrafish thrombosis model for assessing antithrombotic drugs. Zebrafish. 2016;13(4):335‐344. [DOI] [PubMed] [Google Scholar]
  • 53. Jagadeeswaran P, Carrillo M, Radhakrishnan UP, Rajpurohit SK, Kim S. Laser‐induced thrombosis in zebrafish. Methods Cell Biol. 2011;101:197‐203. [DOI] [PubMed] [Google Scholar]
  • 54. Huarng MC, Shavit JA. Simple and rapid quantification of thrombocytes in zebrafish larvae. Zebrafish. 2015;12(3):238‐242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238‐1246. [DOI] [PubMed] [Google Scholar]
  • 56. Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S. GATA‐1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development. 1997;124(20):4105‐4111. [DOI] [PubMed] [Google Scholar]
  • 57. Ishiguro K, Kojima T, Kadomatsu K, et al. Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest. 2000;106(7):873‐878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Kojima T. Targeted gene disruption of natural anticoagulant proteins in mice. Int J Hematol. 2002;76(Suppl 2):36‐39. [DOI] [PubMed] [Google Scholar]
  • 59. Liu Y, Kretz CA, Maeder ML, et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood. 2014;124(1):142‐150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Grzegorski SJ, Hu Z, Liu Y, et al. Disruption of the kringle 1 domain of prothrombin leads to late onset mortality in zebrafish. Sci Rep. 2020;10(1):4049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Cui J, O'Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature. 1996;384(6604):66‐68. [DOI] [PubMed] [Google Scholar]
  • 62. Sun WY, Witte DP, Degen JL, et al. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA. 1998;95(13):7597‐7602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Xue J, Wu Q, Westfield LA, et al. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice. Proc Natl Acad Sci USA. 1998;95(13):7603‐7607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Dewerchin M, Liang Z, Moons L, et al. Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost. 2000;83(2):185‐190. [PubMed] [Google Scholar]
  • 65. Mullins ES, Kombrinck KW, Talmage KE, et al. Genetic elimination of prothrombin in adult mice is not compatible with survival and results in spontaneous hemorrhagic events in both heart and brain. Blood. 2009;113(3):696‐704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Fish RJ, Di Sanza C, Neerman‐Arbez M. Targeted mutation of zebrafish fga models human congenital afibrinogenemia. Blood. 2014;123(14):2278‐2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Fish RJ, Freire C, Di Sanza C, Neerman‐Arbez M. Venous thrombosis and thrombocyte activity in zebrafish models of quantitative and qualitative fibrinogen disorders. Int J Mol Sci. 2021;22(2):655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Shivdasani RA, Rosenblatt MF, Zucker‐Franklin D, et al. Transcription factor NF‐E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81(5):695‐704. [DOI] [PubMed] [Google Scholar]
  • 69. Zheng L, Abdelgawwad MS, Zhang D, et al. Histone‐induced thrombotic thrombocytopenic purpura in adamts13 (−/−) zebrafish depends on von Willebrand factor. Haematologica. 2020;105(4):1107‐1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Ghosh A, Vo A, Twiss BK, et al. Characterization of zebrafish von Willebrand factor reveals conservation of domain structure, multimerization, and intracellular storage. Adv Hematol. 2012;2012:214209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Iyer N, Tcheuyap VT, Schneider S, Marshall V, Jagadeeswaran P. Knockout of von Willebrand factor in zebrafish by CRISPR/Cas9 mutagenesis. Br J Haematol. 2019;186(4):e76‐e80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Shavit JA, Ginsburg D. Hemophilias and other disorders of hemostasis. In: Rimoin DL, Pyeritz RE, Korf BR, eds. Emery and Rimoin's Principles and Practice of Medical Genetics. 6th ed. Elsevier Science; 2013:1‐33. [Google Scholar]
  • 73. Olds RJ, Lane DA, Boisclair M, Sas G, Bock SC, Thein SL. Antithrombin Budapest 3. An antithrombin variant with reduced heparin affinity resulting from the substitution L99F. FEBS Lett. 1992;300(3):241‐246. [DOI] [PubMed] [Google Scholar]
  • 74. Kuhle S, Lane DA, Jochmanns K, et al. Homozygous antithrombin deficiency type II (99 leu to Phe mutation) and childhood thromboembolism. Thromb Haemost. 2001;86(4):1007‐1011. [PubMed] [Google Scholar]
  • 75. Mushunje A, Zhou A, Huntington JA, Conard J, Carrell RW. Antithrombin ‘DREUX’ (Lys 114Glu): a variant with complete loss of heparin affinity. Thromb Haemost. 2002;88(3):436‐443. [PubMed] [Google Scholar]
  • 76. Picard V, Susen S, Bellucci S, Aiach M, Alhenc‐Gelas M. Two new antithrombin variants support a role for K114 and R13 in heparin binding. J Thromb Haemost. 2003;1(2):386‐387. [DOI] [PubMed] [Google Scholar]
  • 77. Bauer KA, Ashenhurst JB, Chediak J, Rosenberg RD. Antithrombin “Chicago”: a functionally abnormal molecule with increased heparin affinity causing familial thrombophilia. Blood. 1983;62(6):1242‐1250. [PubMed] [Google Scholar]
  • 78. Owen MC, Beresford CH, Carrell RW. Antithrombin Glasgow, 393 Arg to his: a P1 reactive site variant with increased heparin affinity but no thrombin inhibitory activity. FEBS Lett. 1988;231(2):317‐320. [DOI] [PubMed] [Google Scholar]
  • 79. Luxembourg B, Delev D, Geisen C, et al. Molecular basis of antithrombin deficiency. Thromb Haemost. 2011;105(4):635‐646. [DOI] [PubMed] [Google Scholar]
  • 80. Castoldi E, Lunghi B, Mingozzi F, et al. A missense mutation (Y1702C) in the coagulation factor V gene is a frequent cause of factor V deficiency in the Italian population. Haematologica. 2001;86(6):629‐633. [PubMed] [Google Scholar]
  • 81. Duga S, Montefusco MC, Asselta R, et al. Arg2074Cys missense mutation in the C2 domain of factor V causing moderately severe factor V deficiency: molecular characterization by expression of the recombinant protein. Blood. 2003;101(1):173‐177. [DOI] [PubMed] [Google Scholar]
  • 82. Smith N, Bornikova L, Noetzli L, et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost. 2018;2(4):800‐811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Zhang JZ, Redman CM. Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J Biol Chem. 1994;269(1):652‐658. [PubMed] [Google Scholar]
  • 84. Hanss M, Pouymayou C, Blouch MT, et al. The natural occurrence of human fibrinogen variants disrupting inter‐chain disulfide bonds (a{alpha}Cys36Gly, a{alpha}Cys36Arg and a{alpha}Cys45Tyr) confirms the role of N‐terminal a{alpha} disulfide bonds in protein assembly and secretion. Haematologica. 2011;96(8):1226‐1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. https://varsome.com/variant/hg19/

Articles from Research and Practice in Thrombosis and Haemostasis are provided here courtesy of Elsevier

RESOURCES