Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Aug 9;21(1):83–104. doi: 10.1007/s10888-022-09543-9

Disaggregated impacts of off-farm work participation on household vulnerability to food poverty in Ghana

Kwabena Nyarko Addai 1,, John N Ng’ombe 2, Wencong Lu 3
PMCID: PMC9360693  PMID: 35967589

Abstract

This study examines disaggregated impacts of participation in off-farm employment on household vulnerability to food poverty in Ghana. We use household-level data collected from smallholder farmers in Ghana. This study employs the multinomial endogenous switching regression model to account for selection bias due to both observed and unobserved heterogeneity. Our results indicate that participation in off-farm employment activities, such as petty trading, significantly decreases household vulnerability to food poverty. Our findings further show that households that do participate in arts and crafts as an off-farm activity are more vulnerable to food poverty had they not participated. This paper provides useful policy insights to enable smallholders involved in off-farm work activities to improve food consumption expenditure and reduce their risk of food poverty.

Keywords: Arts and crafts, Disaggregated effects, Multinomial endogenous switching regression model, Off-farm work, Petty trading

Data availability

The data employed in this paper are accessible on request from the corresponding author but not made public as a result of privacy considerations.

Declarations

Declaration of competing interest

None declared.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Abdulai A, Huffman W. The adoption and impact of soil and water conservation technology: an endogenous switching regression application. Land Econ. 2015;90(1):26–43. doi: 10.3368/le.90.1.26. [DOI] [Google Scholar]
  2. Amemiya T. The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica. 1977;45(4):955–968. doi: 10.2307/1912684. [DOI] [Google Scholar]
  3. Asfaw S, Kassie M, Simtowe F, Lipper L. Poverty reduction effects of agricultural technology adoption: a micro-evidence from rural Tanzania. J. Dev. Stud. 2012;48(9):1288–1305. doi: 10.1080/00220388.2012.671475. [DOI] [Google Scholar]
  4. Asfaw, S., McCarthy, N., Paolantonio, A., Cavatassi, R., Amare, M., Lipper, L.: Livelihood Diversification and Vulnerability to Poverty in Rural Malawi. In: FAO (2015)
  5. Babatunde RO, Qaim M. Impact of off-farm income on food security and nutrition in Nigeria. Food Policy. 2010;35(4):303–311. doi: 10.1016/j.foodpol.2010.01.006. [DOI] [Google Scholar]
  6. Becerril J, Abdulai A. The impact of improved maize varieties on poverty in Mexico: a propensity score-matching approach. World Dev. 2010;38(7):1024–1035. doi: 10.1016/j.worlddev.2009.11.017. [DOI] [Google Scholar]
  7. Bogale A. Vulnerability of smallholder rural households to food insecurity in Eastern Ethiopia. Food Security. 2012;4(4):581–591. doi: 10.1007/s12571-012-0208-x. [DOI] [Google Scholar]
  8. Bourguignon F, Fournier M, Gurgand M. Selection bias corrections based on the multinomial logit model: monte carlo comparisons. J. Econ. Surveys. 2007;21(1):174–205. doi: 10.1111/j.1467-6419.2007.00503.x. [DOI] [Google Scholar]
  9. Chaudhuri, S., Jalan, J., Suryahadi, A.: Assessing Household Vulnerability to Poverty from Cross-sectional Data: A Methodology and Estimates from Indonesia. (2002). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6086807498683160254related:vpYxtyuveFQJ. Accessed 24 Apr 2021
  10. Cornelissen T, Dustmann C, Raute A, Schönberg U. From LATE to MTE: alternative methods for the evaluation of policy interventions. Labour Econ. 2016;41:47–60. doi: 10.1016/J.LABECO.2016.06.004. [DOI] [Google Scholar]
  11. Davis KF, D'Odorico P, Rulli MC. Moderating diets to feed the future. Earth's Future. 2014;2(10):559–565. doi: 10.1002/2014ef000254. [DOI] [Google Scholar]
  12. Dey S. The role of employment diversification in reducing vulnerability to poverty among marginal and small-holder agricultural households in India. Margin. 2018;12(1):88–112. doi: 10.1177/0973801017740661. [DOI] [Google Scholar]
  13. Di Falco S, Veronesi M, Yesuf M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agr. Econ. 2011;93(3):825–842. doi: 10.1093/ajae/aar006. [DOI] [Google Scholar]
  14. Ding Z, Abdulai A. An analysis of the factors influencing choice of microcredit sources and impact of participation on household income. J. Int. Dev. 2020;32(4):505–525. doi: 10.1002/jid.3466. [DOI] [Google Scholar]
  15. Dubin JA, McFadden DL. An econometric analysis of residential electric appliance holdings and consumption. Econometrica. 1984;52(2):345–345. doi: 10.2307/1911493. [DOI] [Google Scholar]
  16. Gallardo M. Identifying vulnerability to poverty: a critical survey. J. Econ. Surveys. 2018;32(4):1074–1105. doi: 10.1111/joes.12216. [DOI] [Google Scholar]
  17. García T, Grande I. Determinants of food expenditure patterns among older consumers. The Spanish case. Appetite. 2010;54(1):62–70. doi: 10.1016/j.appet.2009.09.007. [DOI] [PubMed] [Google Scholar]
  18. GSS.: Ghana Living Standards Survey (GLSS7): Poverty trends in Ghana; 2005–2017 (2018). https://www.statsghana.gov.gh/gssmain/fileUpload/pressrelease/GLSS7%20MAIN%20REPORT_FINAL.pdf. Accessed 2 Apr 2021
  19. GSS.: Multidimensional Poverty-Ghana (2020)
  20. Haughton, J., Khandker, S. R.: Hanbook on Poverty and Inequality. The International Bank for Reconstruction and Development/The World Bank (2009)
  21. Huntington-Klein N. The Effect: An Introduction to Research Design and Causality. CRC Press; 2022. [Google Scholar]
  22. Imai KS, Gaiha R, Thapa G. Does non-farm sector employment reduce rural poverty and vulnerability? Evidence from Vietnam and India. J. Asian Econ. 2015;36:47–61. doi: 10.1016/j.asieco.2015.01.001. [DOI] [Google Scholar]
  23. Kiwanuka-Lubinda RN, Ng’ombe JN, Machethe C. Impacts of interlocked contractual arrangements on dairy farmers’ welfare in Zambia: a robust Bayesian instrumental variable analysis. Agrekon. 2021;60(1):10–30. doi: 10.1080/03031853.2021.1875854. [DOI] [Google Scholar]
  24. Klasen S, Reimers M. Looking at pro-poor growth from an agricultural perspective. World Dev. 2017;90:147–168. doi: 10.1016/j.worlddev.2016.09.003. [DOI] [Google Scholar]
  25. Kubitza, C., Krishna, V. V.: Instrumental variables and the claim of causality: Evidence from impact studies in maize systems. In (Vol. 26, pp. 100383–100383): Elsevier B.V (2020)
  26. Lee L-F. Unionism and wage rates: a simultaneous equations model with qualitative and limited dependent variables. Int. Econ. Rev. 1978;19(2):415–433. doi: 10.2307/2526310. [DOI] [Google Scholar]
  27. Lokshin M, Sajaia Z. Maximum likelihood estimation of endogenous switching regression models. Stand. Genomic Sci. 2004;4(3):282–289. doi: 10.1177/1536867X0400400306. [DOI] [Google Scholar]
  28. Lopez-Acevedo, G., Devoto, F., Morales, M., Rodriguez, J. R.: Trends and Determinants of Female Labor Force Participation in Morocco: An Initial Exploratory Analysis. In: World Bank Group (2021)
  29. Lu W, Addai KN, Ng’ombe JN. Does the use of multiple agricultural technologies affect household welfare? Evidence from Northern Ghana. Agrekon. 2021;60(4):370–387. doi: 10.1080/03031853.2021.1992290. [DOI] [Google Scholar]
  30. Maddala, G. S.: Limited-dependent and qualitative variables in econometrics. Cambridge University Press (1983). 10.1017/cbo9780511810176
  31. Mulungu K, Mudege NN. Effect of group and leader attributes on men and women farmers’ participation in group activities in Zambia. Fem. Econ. 2020;26(4):178–204. doi: 10.1080/13545701.2020.1791926. [DOI] [Google Scholar]
  32. Ng’ombe JN, Kalinda TH, Tembo G. Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia. Agrekon. 2017;56(2):205–221. doi: 10.1080/03031853.2017.1312467. [DOI] [Google Scholar]
  33. Nguyen-Van P, Poiraud C, To-The N. Modeling farmers’ decisions on tea varieties in Vietnam: a multinomial logit analysis. Agric. Econ. (United Kingdom) 2017;48(3):291–299. doi: 10.1111/agec.12334. [DOI] [Google Scholar]
  34. OECD.: Promoting Diversified Livelihoods. In Promoting Pro-poor Growth: 664 Policy guidance for Donors (pp. 1–29). OECD (2007)
  35. Owusu V, Abdullai A, Abdul-Rahaman S. Non-farm work and food security among farm households in Northern Ghana. Food Policy. 2011;36(2011):108–118. doi: 10.1016/j.foodpol.2010.09.002. [DOI] [Google Scholar]
  36. Pritchett, L., Suryahadi, A., Sumarto, S.: Quantifying Vulnerability to Poverty : A Proposed Measure , Applied to Indonesia (2000)
  37. Rahman A, Mishra S. Does non-farm income affect food security? Evidence from India. J. Dev. Stud. 2020;56(6):1190–1209. doi: 10.1080/00220388.2019.1640871. [DOI] [Google Scholar]
  38. Reddy EL, Reddy DR. A study on resource use efficiency of input factors with reference to farm size in paddy cultivation in nellore district. IOSR J. Humanit Soc. Sci. 2013;17(1):48–55. doi: 10.9790/0837-1714855. [DOI] [Google Scholar]
  39. Rodrik D. An African growth miracle? J. Afr. Econ. 2018;27(1):10–27. doi: 10.1093/jae/ejw027. [DOI] [Google Scholar]
  40. Shumetie A, Mamo K. Effect of cropland and livestock ownership on child labour in eastern Ethiopia: empirical examination of the Wealth Paradox. Int. J. Child Care Educ. Policy. 2019;13(1):1–15. doi: 10.1186/s40723-019-0061-x. [DOI] [Google Scholar]
  41. Vasco C, Tamayo GN. Determinants of non-farm employment and non-farm earnings in Ecuador: Cristian Vasco and Grace Natalie Tamayo. CEPAL Rev. 2017;2017(121):53–67. doi: 10.18356/80b76a5e-en. [DOI] [Google Scholar]
  42. World Bank.: Attacking poverty (0195211294) (2001)
  43. World Bank.: Poverty and shared prosperity 2020: Reversals of fortune. International Bank for Reconstruction and Development / World Bank Group (2020). 10.1596/978-1-4648-1602-4
  44. Zereyesus YA, Embaye WT, Tsiboe F, Amanor-Boadu V. Implications of non-farm work to vulnerability to food poverty-recent evidence from Northern Ghana. World Dev. 2017;91:113–124. doi: 10.1016/j.worlddev.2016.10.015. [DOI] [Google Scholar]
  45. Zereyesus, Y. A., Ross, K. L., Amanor-Boadu, V., Dalton, T. J.: Baseline Feed the Future Indicators for Northern Ghana 2012 Monitoring, Evaluation and Technical Support Services (METSS) (2014)

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data employed in this paper are accessible on request from the corresponding author but not made public as a result of privacy considerations.


Articles from Journal of Economic Inequality are provided here courtesy of Nature Publishing Group

RESOURCES